2 e. 14 e. # e # orbitals. 10 e 5. sublevel. shape of orbital. Orbital Shapes. Notes Orbital Notation; e Config; NGN.

Size: px
Start display at page:

Download "2 e. 14 e. # e # orbitals. 10 e 5. sublevel. shape of orbital. Orbital Shapes. Notes Orbital Notation; e Config; NGN."

Transcription

1 How to build an atom: The bigger (more massive) the atom, the more protons (and neutrons) The bigger the atom, the more electrons Electrons fill lower energy levels first "Aufbau" Principle ("To build up") 7 energy levels 4 sublevels (s, p, d, f) s = holds 2 p = holds 6 d = holds 10 f = holds 14 Diagonal Rule Orbital Shapes sublevel s p d f # # orbitals 2 6 I shape of orbital 1

2 2

3 Bohr model Quantum mechanical model Quantum Mechanics for Dummies: Hund's Rule "Spread out before you fill up" When filling sublevels other than s, electrons are placed in individual orbitals before they are paired up. Pull X e? a.k.a., "Smelly Bus Rule" e "Mercedes convertible" e e 3

4 "Aufbau" (To build up) Electrons fill lower energy levels first "Hund's Rule" When filling sublevels other than s, electrons are placed in individual orbitals before they are paired up. "Pauli Exclusion Principle" F. Hund An orbital can hold 0, 1, or 2 electrons only, and if there are two electrons in the orbital, they must have opposite (paired) spins. Therefore, no two electrons in the same atom can have the same set of four "Quantum numbers". W. Pauli Orbital Notation How many electrons? Use boxes to represent orbitals Use arrows to represent electrons Use opposite arrows to represent "opposite spin" electrons H: He: Be: Mg: P: "Aufbau" (Diagonal Rule) "Hund's Rule" "Pauli Exclusion Principle" H/W: p.101 #1 4, 5b sublevel 2e 6e s p d 10e f 14e orbitals Be: Mg: P: 4

5 Orbital Notation Write the orbital notation for: (1) nitrogen (2) neon (3) aluminum (4) scandium Remember: "Aufbau" (Diagonal Rule) "Hund's Rule" "Pauli Exclusion Principle" s p d f N: Ne: Al: Sc: Write the orbital notation for: (1) oxygen (2) sulfur (3) selenium (4) tellurium (5) What similarities do the orbital notations for the above elements share? Highest E level O: S: Se: Te: # in Highest Level 2/14/14 s p d f 5

6 (Valence) Write the orbital notation for: (1) oxygen S: (2) sulfur (3) selenium Se: (4) tellurium (5) What similarities do the orbital notations for the above elements share? Highest E level O: S: Se: Te: s p d f Te: # in Highest Level O: Write the orbital notation for: (1) sodium (2) chlorine Warm up! (3) Circle the electron(s) in the metal orbitals that will be lost. (4) Circle the opening(s) in the nonmetal orbitals where the electron(s) from the metal will go. (5) Draw arrows indicating which electron(s) go where. 6

7 Draw orbital notation for: unstable Valence shell = Energy Level #3 Na: stable Na + Valence shell = Now Energy Level #2 : 11 Cl Cl - : 17 unstable stable Na atom 1 valence electron Choose: Steal 7 to make 8, OR lose 1 to make 8 Which is easier to do? circle that is lost circle where goes draw arrow to show where comes from, {& where it goes Valence shell = Energy Level #3 Valence shell = Still Energy Level #3 Cl atom 7 valence electrons Choose: Steal 1 to make 8, OR lose 7 to make 8 Which is easier to do? 6. Draw orbital notation for Be +2 : 7. Draw orbital notation for F - : Be +2 : 8. Which is more stable: Be or Be +2? F or F -? Explain using max = stable "valence electrons" in your explanation. Full. Stable. Happy! = "isoelectronic" with He" = "isoelectronic" with Ne" Energy Levels: #1 7 Sublevels: s,p,d,f 7

8 1. i.* Students know the experimental basis for the development of the quantum theory of atomic structure and the historical importance of the Bohr model of the atom. 1. j.* Students know that spectral lines are the result of transitions of electrons between energy levels and that these lines correspond to photons with a frequency related to the energy spacing between levels by using Planck s relationship E = hv. 8

9 Electron Configuration summary notation of the location of faster than orbital notation differences: no boxes, no arrows, put in order of energy levels Be: Mg: Orbital Notation Orbital Notation Electron Configuration Electron Configuration 7 N 10 Ne: Sc: 3s 3p 4s 3d s p d f 9

10 Electron Configuration Warm up! Write the electron configuration for: (1) nitrogen (2) neon (3) aluminum (4) scandium Electron Configuration Write the electron configuration for: (1) nitrogen (2) neon (3) aluminum (4) scandium 10

11 s p d f Write the orbital notation for: (1) vanadium Write the electron configuration for: (2) germanium (3) silver Warm up! (4) gold (5) What similarities do the electron configurations for silver and gold share? s p d f 11

12 (1) Write the electron configuration for fluorine (2) Write the electron configuration for calcium (3) For the ionic solid calcium fluoride: a) Give the formula b) Describe how many electrons are transferred c) Describe where they come from (which energy level, sublevel, and orbital) d) Describe where the electrons go (which energy level, sublevel, and orbital) (4) Write the electron configuration for cobalt (5) How many electrons in the 3rd energy level of Co? (6) How many valence electrons in Co? (1) Write the electron configuration for fluorine (2) Write the electron configuration for calcium (3) For the ionic solid calcium fluoride: a) Give the formula b) Describe how many electrons are transferred c) Describe where they come from (which energy level, sublevel, and orbital) d) Describe where the electrons go (which energy level, sublevel, and orbital) (4) Write the electron configuration for cobalt (5) How many electrons in the 3rd energy level of Co? (6) How many valence electrons in Co? Warm up! 12

13 Write the electron configuration for: the noble gases (He - Rn) He: Ne: Ar: Kr: Xe: Rn: 2e With which noble gas is the magnesium ion "isoelectronic"? With which noble gas is the fluoride ion "isoelectronic"? Electron Configuration summary notation of the location of faster than orbital notation differences: no boxes, no arrows, put in order of energy levels Noble gas notation substitute the configuration for a noble gas! Find the nearest noble gas, "without going over" Plug in the noble gas in brackets Add only the electrons that are left Write the noble gas notation for potassium: electron config. noble gas notation Li: 2 2s 1 Li: [ ] Mg: 2 2s 2 2p 6 3s 2 Mg: [ ] 13

14 Write noble gas notations for: l) sodium 2) Y 3) Rat poison (arsenic) (1) Write the orbital notation for Si (2) Write the electron configuration for Ge (3) Write the electron configuration for tin (4) Write the noble gas notation for #1-3. Si: Si: Ge: Sn: 14

15 (1) Write the orbital notation for Ca (2) Write the electron configuration for Y (3) Write the electron configuration for rat poison (arsenic) (4) Write the noble gas notation for #1-3 Ca: [ ] Y: [ ] As: [ ] 15

16 Using JUST your periodic table as reference, write the electron configurations for: 1) cobalt 2) cadmium And the noble gas notations for: 3) iodine 4) barium s orbitals d orbitals p orbitals Ca Co Kr Ag Cd I Ba At Ne? Ar? Kr? Xe? Q: How many electrons in the highest energy level of: f orbitals 16

17 Procedures: A. Record observations of high, medium and low energy waves produced in the slinky demonstration. Compare the effect on both wavelength and frequency as the energy of the wave increases. Draw a labeled sketch to compare the waves. ENERGY: WAVELENGTH: FREQUENCY: HIGH MEDIUM LOW WAVELENGTH 17

18 Write the orbital notation for: (1) sodium (2) chlorine (3) circle the electrons in the metal that will be lost when NaCl(s) dissociates into NaCl(aq) (4) circle the openings in the nonmetal orbitals where the electrons from the metal will go (5) draw arrows indicating which electrons go where Cl is "isoelectronic" with which element? (same e config.) Na + is "isoelectronic" with which element? 18

19 Noble gas notation substitute the config. for a noble gas: Na: Sr: Ni: 11 find nearest noble gas (without going over) Write the electron configuration for: (1) titanium (2) Mo (3) barium (4) Write the noble gas notation for #1-3. s p d f 19

20 Write the orbital notation for: (1) sodium (2) chlorine (3) circle the electrons in the metal that will be lost when NaCl(s) dissociates into NaCl(aq) (4) circle the openings in the nonmetal orbitals where the electrons from the metal will go (5) draw arrows indicating which electrons go where Write the electron configuration for: (6) sodium (7) chlorine (8) Write the electron configuration for Na+ (9) Write the electron configuration for Cl- (10) Write the noble gas notation for Cl- "isoelectronic" Na + is "" with Cl is "" with Draw the orbital notation for: Li Cr Draw the electron configuration for: Fe Sb Draw the noble gas notation for: Nb Re 20

21 Attachments photoelectric_en.jar

Electron Configurations

Electron Configurations Section 3 Electron Configurations Key Terms electron configuration Pauli exclusion principle noble gas Aufbau principle Hund s rule noble-gas configuration Main Ideas Electrons fill in the lowest-energy

More information

Where are the s, p, d, f orbitals located on the periodic table? Identify them on the diagram below.

Where are the s, p, d, f orbitals located on the periodic table? Identify them on the diagram below. Chapter 4 Arrangement of Electrons in Atoms Section 3: Electron Configuration Objectives: Be able to define: Aufbau Principle, Pauli Exclusion Principle, Hund s rule. Be able to list the number of electrons

More information

Unit 4B- Electron Configuration- Guided Notes

Unit 4B- Electron Configuration- Guided Notes Unit 4B- Electron Configuration- Guided Notes Atomic Structure Electrons are arranged in or around the nucleus of an atom o First shell can hold a maximum of electrons o Second shell can hold a maximum

More information

Orbital Diagram Rules: 1. The Aufbau Principle: Under normal condition, each electron occupies the

Orbital Diagram Rules: 1. The Aufbau Principle: Under normal condition, each electron occupies the Honors Chemistry Ms. Ye Name Date Block Orbital Diagram Rules: 1. The Aufbau Principle: Under normal condition, each electron occupies the 2. The Pauli Exclusion Principle: a maximum of can occupy an orbital

More information

Chapter 2 Atoms and the Periodic Table

Chapter 2 Atoms and the Periodic Table Chapter 2 1 Chapter 2 Atoms and the Periodic Table Solutions to In-Chapter Problems 2.1 Each element is identified by a one- or two-letter symbol. Use the periodic table to find the symbol for each element.

More information

Note that the protons and neutrons are each almost 2,000 times more massive than an electron; What is the approximate diameter of an atom?

Note that the protons and neutrons are each almost 2,000 times more massive than an electron; What is the approximate diameter of an atom? Atomic Structure and the Periodic Table Evolution of Atomic Theory The ancient Greek scientist Democritus is often credited with developing the idea of the atom Democritus proposed that matter was, on

More information

Full file at

Full file at 16 Chapter 2: Atoms and the Periodic Table Solutions to In-Chapter Problems 2.1 Each element is identified by a one- or two-letter symbol. Use the periodic table to find the symbol for each element. a.

More information

1. The elements on the Periodic Table are arranged in order of increasing A atomic mass C molar mass

1. The elements on the Periodic Table are arranged in order of increasing A atomic mass C molar mass 1. The elements on the Periodic Table are arranged in order of increasing A atomic mass C molar mass A Br, Ga, Hg C O, S, Se B atomic number D oxidation number 2. Which list includes elements with the

More information

Honors Unit 6 Atomic Structure

Honors Unit 6 Atomic Structure Honors Unit 6 Atomic Structure Miss Adams Honors Chemistry 1 Name: 1 Homework #1: Frequency, Wavelength and the Speed of Light Show all of your work for the problems, including the initial formula, substitution

More information

1. The elements on the Periodic Table are arranged in order of increasing A atomic mass C molar mass

1. The elements on the Periodic Table are arranged in order of increasing A atomic mass C molar mass 1. The elements on the Periodic Table are arranged in order of increasing A atomic mass C molar mass A Br, Ga, Hg C O, S, Se B atomic number D oxidation number 2. Which list includes elements with the

More information

1. The arrangement of the elements from left to right in Period 4 on the Periodic Table is based on

1. The arrangement of the elements from left to right in Period 4 on the Periodic Table is based on 1. The arrangement of the elements from left to right in Period 4 on the Periodic Table is based on A) atomic mass B) atomic number C) the number of electron shells D) the number of oxidation states 2.

More information

Orbital Diagrams & Electron Configurations for Atoms and Ions

Orbital Diagrams & Electron Configurations for Atoms and Ions Orbital Diagrams & Electron Configurations for Atoms and Ions Section 3.5 The Periodic Table is like a MAP that describes the arrangement of electrons within their orbitals. Orbital diagrams represent

More information

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. ELECTRONS IN ATOMS Chapter Quiz Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. 1. The orbitals of a principal energy level are lower in energy than the orbitals

More information

The orbitals in an atom are arranged in shells and subshells. orbital 3s 3p 3d. Shell: all orbitals with the same value of n.

The orbitals in an atom are arranged in shells and subshells. orbital 3s 3p 3d. Shell: all orbitals with the same value of n. Shells and Subshells The orbitals in an atom are arranged in shells and subshells. n=3 orbital 3s 3p 3d Shell: all orbitals with the same value of n n=3 3s 3p 3d Subshell: all orbitals with the same value

More information

CDO AP Chemistry Unit 5

CDO AP Chemistry Unit 5 1. a. Calculate the wavelength of electromagnetic radiation that has a frequency of 5.56 MHz. b. Calculate the frequency of electromagnetic radiation that has a wavelength equal to 667 nm. 2. Electromagnetic

More information

Chemistry: A Molecular Approach, 2e (Tro) Chapter 2 Atoms and Elements. Multiple Choice Questions

Chemistry: A Molecular Approach, 2e (Tro) Chapter 2 Atoms and Elements. Multiple Choice Questions Chemistry: A Molecular Approach, 2e (Tro) Chapter 2 Atoms and Elements Multiple Choice Questions 1) In a chemical reaction, matter is neither created or destroyed. Which law does this refer to? A) Law

More information

Name: Period: Date: Find the following elements according to their group and period: Write the excited state electron configuration of Na.

Name: Period: Date: Find the following elements according to their group and period: Write the excited state electron configuration of Na. Name: Period: Date: UNIT 3: Electrons Lesson 3: Small particles, big similarities Do Now: By the end of today, you will have an answer to: Why do elements within the same group react similarly? Find the

More information

E J The electron s energy difference between the second and third levels is J. = J

E J The electron s energy difference between the second and third levels is J. = J The wavelength of light emitted is 654 nm. = c f c 3.00 10 8 m/s f c 3.00 108 m 1s 6.54 10 7 m f 4.59 4.59 10 14 z 1 s 10 14 The frequency of the light emitted is 4.59 10 14 z. E hf h 6.63 10 34 J/z E

More information

#9 Modern Atomic Theory Quantitative Chemistry

#9 Modern Atomic Theory Quantitative Chemistry Name #9 Modern Atomic Theory Quantitative Chemistry Student Learning Map Unit EQ: What is the current model of the atom? Key Learning: The current model of the atom is based on the quantum mechanical model.

More information

Principles of Chemistry: A Molecular Approach 2e (Tro) Chapter 2 Atoms and Elements

Principles of Chemistry: A Molecular Approach 2e (Tro) Chapter 2 Atoms and Elements Principles of Chemistry: A Molecular Approach 2e (Tro) Chapter 2 Atoms and Elements 1) Which of the following is an example of the law of multiple proportions? A) A sample of chlorine is found to contain

More information

5. N. 9. Cl 2. Pb. 6. Ag. c. 4f d. 3d

5. N. 9. Cl 2. Pb. 6. Ag. c. 4f d. 3d Brief Instructions An electron configuration is a method of indicating the arrangement of electrons about a nucleus. A typical electron configuration consists of numbers, letters, and superscripts with

More information

Unit 3: The Periodic Table and Atomic Theory

Unit 3: The Periodic Table and Atomic Theory Name: Period: Unit 3: The Periodic Table and Atomic Theory Day Page # Description IC/HW 1 2-3 Periodic Table and Quantum Model Notes IC 1 4-5 Orbital Diagrams Notes IC 1 14 3-A: Orbital Diagrams Worksheet

More information

ELECTRON CONFIGURATIONS... WHY BOHR RUTHERFORD DIAGRAMS JUST WON T CUT IT ANYMORE!

ELECTRON CONFIGURATIONS... WHY BOHR RUTHERFORD DIAGRAMS JUST WON T CUT IT ANYMORE! ELECTRON CONFIGURATIONS... WHY BOHR RUTHERFORD DIAGRAMS JUST WON T CUT IT ANYMORE! REPRESENTING ELECTRONS... Now that you know what an orbital is, you need to be able to use that to describe the electronic

More information

= proton (positive charge) = electron (negative charge) = neutron (no charge) A Z. ,, and are notations that represent isotopes of carbon.

= proton (positive charge) = electron (negative charge) = neutron (no charge) A Z. ,, and are notations that represent isotopes of carbon. ChemQuest 8 Name: Date: Hour: Information: Structure of the Atom Note the following symbols: (they are not to scale) = proton (positive charge) = electron (negative charge) = neutron (no charge) The following

More information

MODERN ATOMIC THEORY AND THE PERIODIC TABLE

MODERN ATOMIC THEORY AND THE PERIODIC TABLE C10 04/19/2013 13:34:14 Page 114 CHAPTER 10 MODERN ATOMIC THEORY AND THE PERIODIC TABLE SOLUTIONS TO REVIEW QUESTIONS 1. Wavelength is defined as the distance between consecutive peaks in a wave. It is

More information

UNIT (2) ATOMS AND ELEMENTS

UNIT (2) ATOMS AND ELEMENTS UNIT (2) ATOMS AND ELEMENTS 2.1 Elements An element is a fundamental substance that cannot be broken down by chemical means into simpler substances. Each element is represented by an abbreviation called

More information

Unit Two: Elements & Matter. February 1, 2016

Unit Two: Elements & Matter. February 1, 2016 Unit Two: Elements & Matter February 1, 2016 Warm-Up: 2/1/2016 1. Fill in the following information: Atomic Symbol Ca 2+ Atomic Number Proton Neutron Electron 34 36 Mass Num. 2. Identify which family the

More information

POGIL: Electron Configurations

POGIL: Electron Configurations Name DUE DATE Period Chemistry POGIL: Electron Configurations Why? The electron structure of an atom is very important. Scientists use the electronic structure of atoms to predict bonding in molecules,

More information

Principles of Chemistry: A Molecular Approach, 3e (Tro) Chapter 2 Atoms and Elements

Principles of Chemistry: A Molecular Approach, 3e (Tro) Chapter 2 Atoms and Elements Principles of Chemistry: A Molecular Approach, 3e (Tro) Chapter 2 Atoms and Elements 1) Which of the following is an example of the law of multiple proportions? A) A sample of chlorine is found to contain

More information

Homework Chapter 03 Chemistry 51 Los Angeles Mission College Answer the following questions: a. What electron sublevel starts to fill after

Homework Chapter 03 Chemistry 51 Los Angeles Mission College Answer the following questions: a. What electron sublevel starts to fill after 3.93 Give the period and group number for each of the following elements: a. bromine b. argon c. potassium d. radium 3.94 Give the period and group number for each of the following elements: a. radon b.

More information

Principles of Chemistry: A Molecular Approach (Tro) Chapter 2 Atoms and Elements

Principles of Chemistry: A Molecular Approach (Tro) Chapter 2 Atoms and Elements Principles of Chemistry: A Molecular Approach (Tro) Chapter 2 Atoms and Elements 1) Which of the following is an example of the law of multiple proportions? A) A sample of chlorine is found to contain

More information

Chapter 3: Electron Structure and the Periodic Law

Chapter 3: Electron Structure and the Periodic Law Chapter 3: Electron Structure and the Periodic Law PERIODIC LAW This is a statement about the behavior of the elements when they are arranged in a specific order. In its present form the statement is:

More information

HSVD Ms. Chang Page 1

HSVD Ms. Chang Page 1 Name: Chemistry, PERIODIC TABLE 1. A solid element that is malleable, a good conductor of electricity, and reacts with oxygen is classified as a (1) noble gas (2) metalloid (3) metal (4) nonmetal 2. Which

More information

1. Electronic Structure 2. Electron Configuration 3. Core Notation 4. EC Relationship to Periodic Table 5. Electron Configuration of Ions

1. Electronic Structure 2. Electron Configuration 3. Core Notation 4. EC Relationship to Periodic Table 5. Electron Configuration of Ions Pre-AP Chemistry 11 Atomic Theory II Name: Date: Block: 1. Electronic Structure 2. Electron Configuration 3. Core Notation 4. EC Relationship to Periodic Table 5. Electron Configuration of Ions Electronic

More information

Test Review # 4. Chemistry: Form TR4-9A

Test Review # 4. Chemistry: Form TR4-9A Chemistry: Form TR4-9A REVIEW Name Date Period Test Review # 4 Location of electrons. Electrons are in regions of the atom known as orbitals, which are found in subdivisions of the principal energy levels

More information

Test Review # 4. Chemistry: Form TR4-5A 6 S S S

Test Review # 4. Chemistry: Form TR4-5A 6 S S S Chemistry: Form TR4-5A REVIEW Name Date Period Test Review # 4 Development of the Periodic Table. Dmitri Mendeleev (1869) prepared a card for each of the known elements listing the symbol, the atomic mass,

More information

Note Taking Guide: Episode 401. arranged elements by. predicted of missing. discovered that each has a unique. arranged elements by

Note Taking Guide: Episode 401. arranged elements by. predicted of missing. discovered that each has a unique. arranged elements by Note Taking Guide: Episode 401 Dmitri Mendeleev: arranged elements by. predicted of missing. Henry Moseley: discovered that each has a unique. arranged elements by. now all elements fit into place based

More information

Electron Configuration & Periodicity Unit 3

Electron Configuration & Periodicity Unit 3 Name: Electron Configuration & Periodicity Unit 3 (seven class periods) Unit 3.1: First Ionization Energy & Photoelectron Spectroscopy 1) Coulombs Law a) The force of attraction between two charged objects

More information

THE PERIODIC TABLE, OBSERVABLE PROPERTIES & ATOMIC THEORY

THE PERIODIC TABLE, OBSERVABLE PROPERTIES & ATOMIC THEORY CH 11 T7 THE PERIODIC TABLE & ATOMIC THEORY 1 You have mastered this topic when you can: 1) relate stability of the NOBLE GASSES to electron arrangement within the atom. 2) relate the charge of MONATOMIC

More information

WP Unit 2 Practice: The Atom

WP Unit 2 Practice: The Atom WP Unit 2 Practice: The Atom Name 1. Name, and identify them clearly in your answer, one halogen, one noble gas, one alkali metal, one alkali earth metal, one metalloid, one transition metal and finally

More information

Regan & Johnston Chemistry Unit 3 Exam: The Periodic Table Class Period

Regan & Johnston Chemistry Unit 3 Exam: The Periodic Table Class Period Regan & Johnston Name Chemistry Unit 3 Exam: The Periodic Table Class Period 1. An atom of which element has the largest atomic radius? (1) Si (2) Fe (3) Zn (4) Mg 2. Which characteristics both generally

More information

Chemistry Chapter 9 Review. 2. Calculate the wavelength of a photon of blue light whose frequency is 6.3 x s -1.

Chemistry Chapter 9 Review. 2. Calculate the wavelength of a photon of blue light whose frequency is 6.3 x s -1. Chemistry Chapter 9 Review 1. What is the frequency of radiation that has a wavelength of 4.7 x 10-5 cm? 2. Calculate the wavelength of a photon of blue light whose frequency is 6.3 x 10 14 s -1. 3. The

More information

Electronic configurations, Auf-bau principle, Pauli principle, Hunds rule 1. Which of the following statements in relation to the hydrogen atom is correct? 1) 3s and 3p orbitals are of lower energy than

More information

Name Chemistry-PAP Period. Notes: Electrons. Light travels through space as a wave. Waves have three primary characteristics:

Name Chemistry-PAP Period. Notes: Electrons. Light travels through space as a wave. Waves have three primary characteristics: Name Chemistry-PAP Period The Wave Nature of Light Notes: Electrons Light travels through space as a wave. Waves have three primary characteristics: Wavelength (λ): the distance between 2 consecutive crests

More information

SAMPLE PROBLEMS! 1. From which of the following is it easiest to remove an electron? a. Mg b. Na c. K d. Ca

SAMPLE PROBLEMS! 1. From which of the following is it easiest to remove an electron? a. Mg b. Na c. K d. Ca SAMPLE PROBLEMS! 1. From which of the following is it easiest to remove an electron? a. Mg b. Na c. K d. Ca 2. Which of the following influenced your answer to number one the most? a. effective nuclear

More information

THE PERIODIC TABLE, OBSERVABLE PROPERTIES & ATOMIC THEORY

THE PERIODIC TABLE, OBSERVABLE PROPERTIES & ATOMIC THEORY CH 11 T7 THE PERIODIC TABLE & ATOMIC THEORY 1 You have mastered this topic when you can: 1) relate stability of the NOBLE GASSES to electron arrangement within the atom. 2) relate the charge of MONATOMIC

More information

Accelerated Chemistry Study Guide Electron Configurations, Chapter 4 Key Concepts, Terms, and People

Accelerated Chemistry Study Guide Electron Configurations, Chapter 4 Key Concepts, Terms, and People Accelerated Chemistry Study Guide Electron Configurations, Chapter 4 Key Concepts, Terms, and People Electromagnetic radiation Amplitude Wavelength Frequency Speed of light Visible spectrum Quantum (Planck)

More information

HL Chemistry Topic 12 Atomic Structure

HL Chemistry Topic 12 Atomic Structure Define: ionization energy - 1 - Trends in Ionization Energy in the Periodic Table Why do these trends in ionization energy occur? Background information: Understand the concept of effective nuclear charge

More information

Unit 4 - Periodic Table Exam Name: PRACTICE QUESTIONS Date: 2/23/2016

Unit 4 - Periodic Table Exam Name: PRACTICE QUESTIONS Date: 2/23/2016 Name: PRACTICE QUESTIONS Date: 2/23/2016 1. Which pair of symbols represents a metalloid and a noble gas? 1) Si and Bi 2) As and Ar 3) Ge and Te 4) Ne and Xe 2. What determines the order of placement of

More information

Honors Chemistry: Chapter 4- Problem Set (with some 6)

Honors Chemistry: Chapter 4- Problem Set (with some 6) Honors Chemistry: Chapter 4- Problem Set (with some 6) All answers and work on a separate sheet of paper! Classify the following as always true (AT), sometimes true (ST), or never true (NT) 1. Atoms of

More information

A.P. Chemistry Practice Test - Ch. 7, Atomic Structure and Periodicity

A.P. Chemistry Practice Test - Ch. 7, Atomic Structure and Periodicity A.P. Chemistry Practice Test - Ch. 7, Atomic Structure and Periodicity 1) Ham radio operators often broadcast on the 6-meter band. The frequency of this electromagnetic radiation is MHz. A) 50 B) 20 C)

More information

Worksheet #1: Atomic Spectra Answer the following questions using your Unit 3 notes.

Worksheet #1: Atomic Spectra Answer the following questions using your Unit 3 notes. Worksheet #1: Atomic Spectra 1. How did Bohr expand on Rutherford s model of the atom? 2. Compare the energy of an electron in the ground state and an electron in the excited state. 3. When an electron

More information

Notes: Electrons and Periodic Table (text Ch. 4 & 5)

Notes: Electrons and Periodic Table (text Ch. 4 & 5) Name Per. Notes: Electrons and Periodic Table (text Ch. 4 & 5) NOTE: This set of class notes is not complete. We will be filling in information in class. If you are absent, it is your responsibility to

More information

Name: SCH3U Worksheet-Trends

Name: SCH3U Worksheet-Trends PERIODIC TRENDS WORKSHEET 1. Choose which statement about the alkali metals lithium and cesium is correct. a) as the atomic number increases, the Electronegativity of the elements increases b) as the atomic

More information

1. Draw a wave below and label the following parts: peak, trough, wavelength and amplitude

1. Draw a wave below and label the following parts: peak, trough, wavelength and amplitude Wave Nature of Light 1. Draw a wave below and label the following parts: peak, trough, wavelength and amplitude 2. Draw two waves with different frequencies and circle the wave that has a higher frequency.

More information

Test Topics: Periodic Table, Atomic Theory, Physical/Chemical Properties, Atom, Isotopes, Average Atomic Mass

Test Topics: Periodic Table, Atomic Theory, Physical/Chemical Properties, Atom, Isotopes, Average Atomic Mass Elemental Properties Review Worksheet Test Topics: Periodic Table, Atomic Theory, Physical/Chemical Properties, Atom, Isotopes, Average Atomic Mass Periodic Table 1. List the element symbols for the following

More information

Periodic Table Workbook

Periodic Table Workbook Key Ideas: The placement or location of elements on the Periodic Table gives an indication of physical and chemical properties of that element. The elements on the Periodic Table are arranged in order

More information

UNIT 2 PART 1: ELECTRONS

UNIT 2 PART 1: ELECTRONS UNIT 2 PART 1: ELECTRONS Electrons in an Atom Bohr s Model: Electrons resided in an allowed orbit. Quantum Mechanics Model: Probability of finding an electron in an area around the nucleus. This area around

More information

ELECTRON CONFIGURATIONS ELECTRON CONFIGURATIONS, ORBITAL DIAGRAMS, AUFBAU PRINCIPLE, HUND S RULE

ELECTRON CONFIGURATIONS ELECTRON CONFIGURATIONS, ORBITAL DIAGRAMS, AUFBAU PRINCIPLE, HUND S RULE ELECTRON CONFIGURATIONS ELECTRON CONFIGURATIONS, ORBITAL DIAGRAMS, AUFBAU PRINCIPLE, HUND S RULE REPRESENTING ELECTRONS... Now that you know what an orbital is, you need to be able to use that to describe

More information

Name Date Period Answer Key change font to white CHAPTER 4/5 THE PERIODIC TABLE/ELECTRON CONFIGURATIONS: WARM-UP

Name Date Period Answer Key change font to white CHAPTER 4/5 THE PERIODIC TABLE/ELECTRON CONFIGURATIONS: WARM-UP Name Date Period Answer Key change font to white CHAPTER 4/5 THE PERIODIC TABLE/ELECTRON CONFIGURATIONS: WARM-UP 1. What is the periodic law? (These questions are from Chapter 5 The Periodic Table) When

More information

Notes: Unit 6 Electron Configuration and the Periodic Table

Notes: Unit 6 Electron Configuration and the Periodic Table Name KEY Block Notes: Unit 6 Electron Configuration and the Periodic Table In the 1790's Antoine Lavoisier compiled a list of the known elements at that time. There were only 23 elements. By the 1870's

More information

Ch. 3 Answer Key. O can be broken down to form two atoms of H and 1 atom of O. Hydrogen and oxygen are elements.

Ch. 3 Answer Key. O can be broken down to form two atoms of H and 1 atom of O. Hydrogen and oxygen are elements. Ch. 3 Answer Key 1. The Greeks believed that all matter is made of elements. We currently believe the same thing. However, the Greeks believed that there were 4 elements: earth, water, air and fire. Instead,

More information

Unit 3. Atoms and molecules

Unit 3. Atoms and molecules Unit 3. Atoms and molecules Index. s and compounds...2.. Dalton's Atomic theory...2 2.-The atom...2 3.-Atomic number and mass number...2 4.-Isotopes, atomic mass unit and atomic mass...3 5.- configuration...3

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which one of the following is not one of the postulates of Dalton's atomic theory? A)

More information

Teacher Workbooks. Science and Nature Series. Atomic Structure, Electron Configuration, Classifying Matter and Nuclear Chemistry, Vol.

Teacher Workbooks. Science and Nature Series. Atomic Structure, Electron Configuration, Classifying Matter and Nuclear Chemistry, Vol. Teacher Workbooks Science and Nature Series Atomic Structure, Electron Configuration, Classifying Matter and Nuclear Chemistry, Vol. 1 Copyright 23 Teachnology Publishing Company A Division of Teachnology,

More information

Modern Atomic Theory. (a.k.a. the electron chapter!) Chemistry 1: Chapters 5, 6, and 7 Chemistry 1 Honors: Chapter 11

Modern Atomic Theory. (a.k.a. the electron chapter!) Chemistry 1: Chapters 5, 6, and 7 Chemistry 1 Honors: Chapter 11 Modern Atomic Theory (a.k.a. the electron chapter!) 1 Chemistry 1: Chapters 5, 6, and 7 Chemistry 1 Honors: Chapter 11 ELECTROMAGNETIC RADIATION 2 Electromagnetic radiation. 3 4 Electromagnetic Radiation

More information

Electron Arrangement - Part 2

Electron Arrangement - Part 2 Brad Collins Electron Arrangement - Part 2 Chapter 9 Some images Copyright The McGraw-Hill Companies, Inc. Review Energy Levels Multi-electron 4d 4d 4d 4d 4d n = 4 4s 4p 4p 4p 3d 3d 3d 3d 3d n=3, l = 2

More information

Regan & Johnston Chemistry Unit 3 Exam: The Periodic Table Class Period

Regan & Johnston Chemistry Unit 3 Exam: The Periodic Table Class Period Regan & Johnston Name Chemistry Unit 3 Exam: The Periodic Table Class Period 1. An atom of which element has the largest atomic radius? (1) Si (2) Fe (3) Zn (4) Mg 2. Which characteristics both generally

More information

6.4 Electronic Structure of Atoms (Electron Configurations)

6.4 Electronic Structure of Atoms (Electron Configurations) Chapter 6 Electronic Structure and Periodic Properties of Elements 317 Orbital n l m l degeneracy Radial nodes (no.) 4f 4 3 7 0 4p 4 1 3 2 7f 7 3 7 3 5d 5 2 5 2 Check Your Learning How many orbitals have

More information

ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom.

ORBITAL DIAGRAM - A graphical representation of the quantum number map of electrons around an atom. 160 ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom. 4p 3d 4s 3p 3s 2p 2s 1s Each blank represents an ORBITAL, and can hold two electrons. The 4s subshell

More information

Test Review # 5. Chemistry: Form TR5-8A. Average Atomic Mass. Subatomic particles.

Test Review # 5. Chemistry: Form TR5-8A. Average Atomic Mass. Subatomic particles. Chemistry: Form TR5-8A REVIEW Name Date Period Test Review # 5 Subatomic particles. Type of Particle Location Mass Relative Mass Charge Proton Center 1.67 10-27 kg 1 +1 Electron Outside 9.11 10-31 kg 0-1

More information

Part I Assignment: Electron Configurations and the Periodic Table

Part I Assignment: Electron Configurations and the Periodic Table Chapter 11 The Periodic Table Part I Assignment: Electron Configurations and the Periodic Table Use your periodic table and your new knowledge of how it works with electron configurations to write complete

More information

General Rules. Pauli Exclusion Principle. Each orbital can hold TWO electrons with opposite spins. Wolfgang Pauli

General Rules. Pauli Exclusion Principle. Each orbital can hold TWO electrons with opposite spins. Wolfgang Pauli General Rules Pauli Exclusion Principle Each orbital can hold TWO electrons with opposite spins. Wolfgang Pauli General Rules Aufbau Principle Electrons fill the lowest energy orbitals first. Lazy Tenant

More information

Bohr Model of Atom: electrons move around nucleus in orbits similar to how planets orbit the sun energy levels for electrons are quantized

Bohr Model of Atom: electrons move around nucleus in orbits similar to how planets orbit the sun energy levels for electrons are quantized Chemistry I: Quantum Mechanics Notes Bohr Model of Atom: electrons move around nucleus in orbits similar to how planets orbit the sun energy levels for electrons are quantized Major developments that put

More information

Chapter 2: Atoms and the Periodic Table

Chapter 2: Atoms and the Periodic Table 1. Which element is a nonmetal? A) K B) Co C) Br D) Al Ans: C Difficulty: Easy 2. Which element is a metal? A) Li B) Si C) Cl D) Ar E) More than one of the elements above are metals. 3. Which element is

More information

Honors Chemistry - Unit 4 Bonding Part I

Honors Chemistry - Unit 4 Bonding Part I Honors Chemistry - Unit 4 Bonding Part I Unit 4 Packet - Page 1 of 8 Vocab Due: Quiz Date(s): Test Date: UT Quest Due: Bonding Vocabulary: see separate handout assignment OBJECTIVES: Chapters 4-8 Be able

More information

-"l" also contributes ENERGY. Higher values for "l" mean the electron has higher energy.

-l also contributes ENERGY. Higher values for l mean the electron has higher energy. 170 - Giving the four parameters will uniquely identify an electron around an atom. No two electrons in the same atom can share all four. These parameters are called QUANTUM NUMBERS. PRINCIPAL QUANTUM

More information

Practice Packet Unit: 5 Periodic Table

Practice Packet Unit: 5 Periodic Table Regents Chemistry: Practice Packet Unit: 5 Periodic Table 1 VOCABULARY For each word, provide a short but specific definition from YOUR OWN BRAIN! No boring textbook definitions. Write something to help

More information

Name: Teacher: Gerraputa

Name: Teacher: Gerraputa Name: Teacher: Gerraputa 1. Which list of elements contains a metal, a metalloid, and a nonmetal? 1. Ag, Si, I 2 3.K, Cu, Br 2 2. Ge, As, Ne 4.S, Cl 2, Ar 2. The elements on the Periodic Table are arranged

More information

Unit 3 Periodic Table and Quantum HW Packet Name Date. Periodic Table Concepts. 1. In what family are the most active metals located?

Unit 3 Periodic Table and Quantum HW Packet Name Date. Periodic Table Concepts. 1. In what family are the most active metals located? Directions: Answer the following questions. Periodic Table Concepts 1. In what family are the most active metals located? 2. In what family are the most active non-metals located? 3. What family on the

More information

The Periodic Table & Formation of Ions

The Periodic Table & Formation of Ions The Periodic Table & Formation of Ions Development of the Periodic Table Mendeleev: Considered to be the father of the periodic table Arranged elements by increasing atomic mass Placed elements with similar

More information

7. How many unpaired electrons are there in an atom of tin in its ground state? 2

7. How many unpaired electrons are there in an atom of tin in its ground state? 2 Name period AP chemistry Unit 2 worksheet 1. List in order of increasing energy: 4f, 6s, 3d,1s,2p 1s, 2p, 6s, 4f 2. Explain why the effective nuclear charge experienced by a 2s electron in boron is greater

More information

Which order of statements represents the historical development of the atomic model? A) C D A B B) C D B A C) D B A C D) D B C A

Which order of statements represents the historical development of the atomic model? A) C D A B B) C D B A C) D B A C D) D B C A 1. The mass of a proton is approximately equal to the mass of A) an electron B) a neutron C) an alpha particle D) a beta particle 2. What is the number of electrons in an atom that has 20 protons and 17

More information

5. The outermost principal energy level electron configuration of the element bromine is: a. 4s 2 c. 4s 2 4p 5 b. 4p 5 d.

5. The outermost principal energy level electron configuration of the element bromine is: a. 4s 2 c. 4s 2 4p 5 b. 4p 5 d. 1 c E = h 1. Sodium and potassium have similar properties because they have the same a. atomic radii. c. number of valence electrons. b. ionization energy. d. electronegativity. 2. Electrons must be added

More information

Unit Five Practice Test (Part I) PT C U5 P1

Unit Five Practice Test (Part I) PT C U5 P1 Unit Five Practice Test (Part I) PT C U5 P1 Name Period LPS Standard(s): --- State Standard(s): 12.3.1 Short Answers. Answer the following questions. (5 points each) 1. Write the electron configuration

More information

Use the Venn Diagram to compare and contrast the Bohr Model of the atom with the Quantum Mechanical Model of atom

Use the Venn Diagram to compare and contrast the Bohr Model of the atom with the Quantum Mechanical Model of atom Use the Venn Diagram to compare and contrast the Bohr Model of the atom with the Quantum Mechanical Model of atom Bohr Model Quantum Model Energy level Atomic orbital Quantum Atomic number Quantum mechanical

More information

Unit 8: Atomic Theory. Quantum Mechanics

Unit 8: Atomic Theory. Quantum Mechanics Unit 8: Atomic Theory Quantum Mechanics 1 Unit 8: Atomic Theory 1. Historical Views of the Atom 2. The 'New' Look Atom 3. Electron Configurations 4. Electron Configurations & the Periodic Table 5. Quantum

More information

Organizing the Periodic Table

Organizing the Periodic Table Organizing the Periodic Table How did chemists begin to organize the known elements? Chemists used the properties of the elements to sort them into groups. The Organizers JW Dobereiner grouped the elements

More information

Chapter 6: The Periodic Table

Chapter 6: The Periodic Table Chapter 6: The Periodic Table Name: Per: Test date: In-Class Quiz: Moodle Quiz: preap Learning Objectives Trace the historical development of the periodic table Identify the major groups and key features

More information

Atomic Emission Spectra. and. Flame Tests. Burlingame High School Chemistry

Atomic Emission Spectra. and. Flame Tests. Burlingame High School Chemistry Atomic Structure Atomic Emission Spectra and Flame Tests Flame Tests Sodium potassium lithium When electrons are excited they bump up to a higher energy level. As they bounce back down they release energy

More information

Name: Unit 3 Guide-Electrons In Atoms

Name: Unit 3 Guide-Electrons In Atoms Name: Unit 3 Guide-Electrons In Atoms Importance of Electrons Draw a complete Bohr model of the atom. Write an element s electron configuration. Know how the symbols used in ECs relate to electron properties

More information

[3.3] Energy Level Diagrams and Configurations

[3.3] Energy Level Diagrams and Configurations [3.3] Energy Level Diagrams and Configurations 1 Energy Level Diagrams Energy level diagrams are used to represent the electron arrangement in an atom 2 Pauli s Exclusion Principle No two electrons have

More information

Unit 8: Atomic Theory. Quantum Mechanics

Unit 8: Atomic Theory. Quantum Mechanics Unit 8: Atomic Theory Quantum Mechanics 1 Unit 8: Atomic Theory 1. Historical Views of the Atom 2. The 'New' Look Atom 3. Electron Configurations 4. Electron Configurations & the Periodic Table 5. Quantum

More information

Topic 2 Atomic Structure. IB Chemistry SL Coral Gables Senior High School Ms. Kiely

Topic 2 Atomic Structure. IB Chemistry SL Coral Gables Senior High School Ms. Kiely Topic 2 Atomic Structure IB Chemistry SL Coral Gables Senior High School Ms. Kiely Bell Ringer (i) Calculate the number of neutrons and electrons in one atom of ⁶⁵Cu. (ii) State one difference in the physical

More information

Work hard. Be nice. Name: Period: Date: UNIT 3: Electrons Lesson 4: The Octet Rule. Nitrogen Neon Carbon He

Work hard. Be nice. Name: Period: Date: UNIT 3: Electrons Lesson 4: The Octet Rule. Nitrogen Neon Carbon He Name: Period: Date: UNIT 3: Electrons Lesson 4: The Octet Rule Do Now: By the end of today, you will have an answer to: What role do valence electrons play in chemical changes? Draw the following lewis

More information

Made the FIRST periodic table

Made the FIRST periodic table Made the FIRST periodic table 1869 Mendeleev organized the periodic table based on the similar properties and relativities of certain elements Later, Henri Moseley organized the elements by increasing

More information

Name: Electrons in Atoms Chemical Periodicity Chapters 13 and 14

Name: Electrons in Atoms Chemical Periodicity Chapters 13 and 14 Name: Electrons in Atoms Chemical Periodicity Chapters 13 and 14 1 Chapter 13 Electrons in Atoms We need to further develop our understanding of atomic structure to help us understand how atoms bond to

More information

Electrons and Periodic Table (Ch. 4 & 5) OTHS Academic Chemistry

Electrons and Periodic Table (Ch. 4 & 5) OTHS Academic Chemistry Name Objectives: Per. Electrons and Periodic Table (Ch. 4 & 5) OTHS Academic Chemistry Express the arrangement of electrons in atoms through electron configurations Understand the electromagnetic spectrum

More information

Professor K. Section 8 Electron Configuration Periodic Table

Professor K. Section 8 Electron Configuration Periodic Table Professor K Section 8 Electron Configuration Periodic Table Schrödinger Cannot be solved for multielectron atoms We must assume the orbitals are all hydrogen-like Differences In the H atom, all subshells

More information

Electron Configurations and the Periodic Table

Electron Configurations and the Periodic Table Electron Configurations and the Periodic Table The periodic table can be used as a guide for electron configurations. The period number is the value of n. Groups 1A and 2A have the s-orbital filled. Groups

More information