Electrochemistry of Silicon and Its Oxide

Size: px
Start display at page:

Download "Electrochemistry of Silicon and Its Oxide"

Transcription

1 Electrochemistry of Silicon and Its Oxide

2 Electrochemistry of Silicon and Its Oxide Xiaoge Gregory Zhang Cominco Ltd. Mississauga, Ontario, Canada and McMaster University Hamilton, Ontario, Canada KLUWER ACADEMIC PUBLISHERS NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

3 ebook ISBN: Print ISBN: Kluwer Academic Publishers New York, Boston, Dordrecht, London, Moscow Print 2001 Kluwer Academic/Plenum Publishers New York All rights reserved No part of this ebook may be reproduced or transmitted in any form or by any means, electronic, mechanical, recording, or otherwise, without written consent from the Publisher Created in the United States of America Visit Kluwer Online at: and Kluwer's ebookstore at:

4 To the people who assisted, encouraged, and inspired me

5 There is an expanding frontier of ignorance Richard P. Feynman

6 Foreword It may be argued that silicon, carbon, hydrogen, oxygen, and iron are among the most important elements on our planet, because of their involvement in geological, biological, and technological processes and phenomena. All of these elements have been studied exhaustively, and voluminous material is available on their properties. Included in this material are numerous accounts of their electrochemical properties, ranging from reviews to extensive monographs to encyclopedic discourses. This is certainly true for C, H, O, and Fe, but it is true to a much lesser extent for Si, except for the specific topic of semiconductor electrochemistry. Indeed, given the importance of the electrochemical processing of silicon and the use of silicon in electrochemical devices (e.g., sensors and photoelectrochemical cells), the lack of a comprehensive account of the electrochemistry of silicon in aqueous solution at the fundamental level is surprising and somewhat troubling. It is troubling in the sense that the non-photoelectrochemistry of silicon seems to have fallen through the cracks, with the result that some of the electrochemical properties of this element are not as well known as might be warranted by its importance in a modern technological society. Dr. Zhang s book, Electrochemical Properties of Silicon and Its Oxide, will go a long way toward addressing this shortcoming. As with his earlier book on the electrochemistry of zinc, the present book provides a comprehensive account of the electrochemistry of silicon in aqueous solution. The topics covered are mostly fundamental in nature and include comprehensive accounts of the silicon/electrolyte interface, anodic oxidation, etching, photoeffects, cathodic reactions and redox couples, porous silicon, and photoelectrochemistry. The book starts with a discussion of basic semiconductor electrochemistry that sets the stage for the discussion of specific phenomena (e.g., anodic oxidation) in later chapters. Careful attention has been paid to the accurate definition of terms and to identifying what is unique about silicon with regard to its electrochemical properties. The level of the book renders it suitable as an introduction to the field of silicon electrochemistry, with its value being greatly enhanced by inclusion of material that is not related to photoeffects, which has been covered extensively elsewhere. As with any book, the material that is presented reflects the interests of the author and this book is no exception. However, Dr. Zhang has stepped back and taken a new look at a field that for so long has been dominated by one particular aspect of the subject. Accordingly, it is my fervent hope that the book will spark a renewed interest in the general electrochemistry of one of the most important and remarkable of elements, silicon. State College, Pennsylvania D.D. Macdonald ix

7 Preface The importance of electrochemistry in silicon technology has spurred intense research activity in the last five decades, resulting in a tremendous amount of experimental data and theoretical information on the silicon/electrolyte interfaces. This book is a comprehensive compilation and digestion of this body of information. The aim of this book is to serve as a centralized information source for anyone who is interested in the surface and electrochemical properties of silicon and its oxides. It will be most useful to the scientists who study the surface phenomena of silicon and to the engineers who design and fabricate silicon-based electronic devices. It can also serve as a general reference for researchers working in the fields of semiconductor electrochemistry and surface science, in which silicon is commonly used as a model material. In addition, it can be useful to the geologists who study rock water interactions and to the people who work on etching and surface treatment of glasses. My fascination with the electrode behavior of silicon began some fourteen years ago when I was a postdoctoral research fellow at MIT investigating the formation mechanism of porous silicon. 2,8,9 The decision to write this book came shortly after the publication of my first book entitled Corrosion and Electrochemistry of Zinc in I recognized then: From the viewpoint of material users and researchers, it is most beneficial that all the relevant information, theoretical and practical on all aspects of electrochemistry of one element be systematically organized in a single source. Compiling and digesting the results from all discrete studies provide a collective and holistic perspective in evaluating the validity and difference in the data and theories resulting from individual studies, and allow a more complete characterization of each specific phenomenon. Also, writing a book of this nature is itself a research process, through which new data and new insights that are not clear in individual studies, can be generated. As a result, about 100 new tables, figures and illustrations of synthesized information are generated and presented here for the first time. Two general considerations have been taken in the selection of the information from the literature. The first is the emphasis on the information pertaining to silicon as a single crystalline material and not that pertaining to alloys and structures made or transformed from silicon. This emphasis is essential in warranting a sufficient focus and space for such an extensively studied material as silicon. The second is the emphasis on details and specificity of data because the diverse electrochemical phenomena observed on silicon electrodes are governed by specific conditions and are differentiated only in detail. In practice, it is the condition-phenomenon specific information xi

8 xii PREFACE rather than the generalized information that is most useful to the people who work on concrete problems. Each phenomenon is dealt with by a systematic characterization first based on a collective body of experimental data followed by a comprehensive discussion on the underlying mechanisms. It is believed that while the experimental data generally remains true and therefore valuable over time, theories and mathematical formulations tend to vary with individual studies, and their usefulness, with a few exceptions, are limited to its time. This is because the former is the measurement of facts whereas the latter is the interpretation of the measurement. In discussing mechanisms, the focus is on physical schemes rather than mathematical formulations. This is because many details of the phenomena observed in the complex system of silicon/electrolyte interface are still not understood and mathematical formulations are not really meaningful without a clear understanding of the physical schemes. Thus, for each phenomenon, the concepts and theories on the physical schemes proposed in different studies are compared against the collective body of data. Generalization is provided when a coherence exists in the data and the theories. When it does not exist, effort is made to provide a comprehensive analysis with new hypotheses that is more consistent with the collective body of data from a global perspective. Generally, for a complex system a collective view is more accurate and more complete than individual ones. The information in the book is organized in nine chapters comprising roughly of two parts: The first part, consisting of Chapters 1 to 4, deals with the conditions of silicon/electrolyte interface and second part, of Chapters 5 to 8, deals with the phenomena of silicon electrodes. The first chapter provides an overview on the basic concepts and theories of semiconductor electrochemistry to serve as a reference base on which the electrochemical properties of silicon are described. Chapter 2 covers the information on the surface conditions of silicon and the characteristics of silicon/electrolyte interfaces. The information related to properties of silicon oxides in general and to those of anodic oxides in specific are presented in Chapters 3 and 4. Chapter 5 deals with the anodic behavior of silicon electrodes with respect to the chemical nature of the reactions and the kinetic processes. Chapter 6 summarizes research findings on the various cathodic reactions and the reactions of redox couples. Chapter 7 is devoted to the etching of silicon by compiling the data on etch rate and morphology of etched surfaces, and by discussing the etching mechanisms in different solutions. Chapter 8, the largest chapter, deals with the formation and morphology of porous silicon, and the complex mechanistic aspects, utilizing all information presented in the earlier chapters. The last chapter, Chapter 9, provides a summary on the book from six different respects that connect the information in different chapters, and an indication on the areas of interest for future research. ACKNOWLEDGMENTS A book such as this is the result of labor for many years, during which I have received assistance, encouragement, and inspiration in various forms from many people.

9 PREFACE xiii I wish, first of all, to express my immense gratitude to my wife Li and my son Kevin for their understanding and support in my undertaking such a time and energyconsuming endeavor. I am specially grateful to D.D. Macdonald of the Pennsylvania State University for his reviewing the manuscript and writing a foreword for this book. My sincere thank is due to a number of people who reviewed the different chapters: J. Bardwell of The National Research Council of Canada, T.D. Burleigh of University of Pittsburgh, J.J. Kelly of University of Utrecht, and E.S. Kooij of University of Twente. I would also like to acknowledge M. Christopherson and H. Föll of Christian-Albrechts University for providing photographs on porous silicon. I would like particularly to thank K. Howell of Kluwer Academic/Plenum Publishers, the editor of this book; his enthusiastic engagement and critical reading of the entire book have been especially important. I am also grateful to X. Gu, J. Jin, M.C. Zhang, and A.Q. Xing who helped in various tasks such as literature search, copying, and typing and so on, which are invisible but essential in the development of a book. I would also take this opportunity to express my gratitude to S.L. Smith of University of California at Davis, and R.M. Latanision and S.D. Senturia of MIT for providing me the opportunity many years ago to study the electrochemistry of silicon, from which I gained the knowledge and developed a lasting fascination with silicon. Finally, I wish that this book can be a tribute to the authors, whose research work contributed to the huge knowledge base on silicon that made this book possible. Xiaoge Gregory Zhang Toronto, Canada xgzhang@interlog.com

10 Contents LIST OF SYMBOLS xxiii CHAPTER 1. Basic Theories of Semiconductor Electrochemistry Introduction 1 Energetics of Semiconductor/Electrolyte Interface Potential and Charge Distribution in Space Charge Layer Kinetics of Charge Transfer Photoeffects Energy Levels in Semiconductor Energy Levels in Electrolyte Distribution of Energy Levels in Electrolyte Energy Levels at Semiconductor/Electrolyte Interface Carrier Density in Space Charge Region Depletion Layer Accumulation Layer and Inversion Layer Helmholtz Double Layer Surface States Fermi Level Pinning Equivalent Circuit and Capacitance of Semiconductor/Electrolyte Interface Flatband Potentials Basic Theories Limitations of the Basic Theories Limiting Current Breakdown Potential Distribution Current Multiplication Photocurrent Photopotential Efficiency ofenergy Conversion xv

11 xvi CONTENTS Surface Recombination Open-Circuit Potential ExperimentalTechniques CHAPTER 2. Silicon/Electrolyte Interface Basic Properties of Silicon Thermodynamic Stability in Aqueous Solutions Surface Adsorption Hydrogen Termination Mechanistic Aspects Fluoride Termination Adsorption of Metal and Organic Impurities 2.4. Native Oxide In Air In Water and Solutions 2.5. Hydrophobic and Hydrophilic Surfaces 2.6. Surface States 2.7. Flatband Potentials Effect of ph Effect of Surface Condition Effect of Surface States Band Diagrams 2.8. Open-Circuit Potentials Effect of Various Factors Corrosion Current CHAPTER 3. Anodic Oxide Introduction Types of Oxides 3.. Thermal Oxide Chemical Vapor Deposition Liquid-Phase Deposition Native Oxide and Anodic Oxide Use of Oxides in Device Fabrication 3.3. Formation of Anodic Oxides Growth Mechanisms General Effect of Solution Composition Effect of Silicon Substrate Effect of Polarization Conditions Effect of Illumination Electroluminescence

12 CONTENTS xvii Reactions 105 Ionic Transport within Oxide 106 Growth on n Si 108 Electroluminescence 109 An Overall Growth Model 110 Growth Kinetics 112 Thermal Oxides 112 Anodic Oxides Properties Physical and Chemical Properties Interface Electrical Properties Thermal Oxides Anodic Oxides CHAPTER 4. Etching of Oxides Introduction General Thermal Oxide Quartz and Fused Silica Deposited Oxides Anodic Oxides Etching Mechanisms Reactions In Nonfluoride Solutions In HF-Based Solutions Rate Equations Effect of Oxide Structure CHAPTER 5. Anodic Behavior Introduction Current Potential Relationship 5.. Fluoride Solutions Effect of Solution Composition Alkaline Solutions Photoeffect Quantum Yield and Surface Recombination Effective Dissolution Valence Hydrogen Evolution Limiting Current Impedance of Interface Layers Tafel Slope and Distribution of Potential

13 xviii CONTENTS Passivation Tafel Slope Potential Distribution Occurrence Passivation in Alkaline Solutions Passive Films Current Oscillation Amplitude and Frequency Oscillation of Anodic Oxide Thickness and Properties Mechanisms A New Model Participation of Bands and Rate-Limiting Processes Reaction Mechanisms Turner Memming Model Later Modifications Model to Account for Electron Injection into the Current Band Modification for Hydrogen Termination Consideration of Chemical versus Electrochemical Reaction Individual Steps in the Transfer of Valence Electrons Models for the Reaction Mechanisms in Alkaline Solutions An Overall Reaction Scheme Elemental Steps Reaction Paths CHAPTER Cathodic Behavior and Redox Couples Introduction Hydrogen Evolution 6.. Kinetics Surface Transformation Metal Deposition Kinetics Morphology Deposition of Silicon Redox Couples Individual Redox Couples Other Redox Species Electroluminescence Associated with Redox Reactions

14 CONTENTS xix Open-Circuit Photovoltage 268 Surface Modification Metallic Deposits Polymer Coatings Nonaqueous Solutions CHAPTER 7. Etching of Silicon Introduction General Fluoride Solutions Absence of Oxidants Effect of Effect of Effect of Other Oxidants Alkaline Solutions KOH Solutions Etching Mechanism Other Inorganic Solutions Solutions Hydrazine Organic Solutions EDP Solntions Ethanolamine Tetramethyl Ammonium Hydroxide (TMAH) Etch Rate Reduction of Heavily Doped Materials Anisotropic Etching Sensitivity of Etch Rates to Crystal Orientation Mechanisms Rate-Limiting Process Passivation Models Surface Reaction Kinetics-Based Models Mechanism of Anisotropic Etching Basic Features of Anisotropically Etched Surfaces Surface Roughness Microroughness Macroroughness Crystallographic Characters and Formation of Hillocks Origins of Roughness Applications Cleaning RCA Cleaning Defect Etching

15 xx CONTENTS Material Removal 347 Uniform Material Removal 347 Selective Material Removal 349 CHAPTER 8. Porous Silicon Introduction Formation of Porous Silicon Characteristics of i V Curves Conditions for PS Formation and Electrochemical Polishing Effective Dissolution Valence and Hydrogen Evolution Growth Rate of Porous Silicon Mass Transport Chemical Dissolution during PS Formation 8.3 Morphology General Diameter and Interpore Spacing Effect of Doping Effect of Potential Primary and Branched Pores Pore Arrays Variation from Surface to Bulk Interpore Spacing Distribution of Pore Diameter Pore Density Pore Orientation and Shape Pore Branching Interface between PS and Silicon Depth Variation Transitional Layer Two-Layer PS Fill of Pores Density and Specific Surface Area Composition Crystallographic Structure Summary PS Formed at OCP PS Formed under Special Conditions Formation Mechanisms Historical Development Discovery of PS and the Initial Model Macropores on n-si and the Barrier Breakdown Model Characterization of PS and Growth Kinetics

16 CONTENTS xxi Depletion Layer and Field Intensification Model Carrier Diffusion Model Formation Condition of PS Quantum Confinement Model Surface Curvature Model Formation of Uniformly Spaced Pore Array Formation of Two-Layer PS on Illuminated n-si Theories on the Macro PS Formed on Lowly Doped p-si Miscellaneous Hypotheses Integration of Models Current Burst Theory Advances in the Understanding of Electrochemical Reactions Summary Analysis of the Mechanistic Aspects Involved in PS Formation Effect of Radius of Curvature Potential Drop in the Substrate Anisotropic Effect Reactions on the Surfaces of Silicon and Silicon Oxide Distribution of Reactions and Their Rates on Pore Bottoms Dissolution of PS Potential Drops in Different Phases of the Current Path Relativity of the Dimensions and Events Pore Diameter and Interpore Spacing Varitation of Morphology from Surface to Bulk. Initiation of Pores Summary 8.7. Properties and Applications CHAPTER 9. Summaries and General Remarks 9.1. Complexity 9.2. Surface Condition 9.3. Oxide Film 9.4. Sensitivity to Curvature 9.5. Sensitivity to Lattice Structure 9.6. Relativity 9.7. Future Research Interests REFERENCES 453 INDEX 499

17 List of Symbols Symbols Definition Section lattice constant activities of oxidized and reduced species capture coefficients for electrons and holes at the surface Tafel slope capacitance concentration of electrolyte surface states capacitance thickness of oxide film densities of occupied and empty states in the electrolyte normalizing factors intrinsic Debye length diffusion coefficient of electrons diffusion coefficient of holes electron charge energy level field energy at which there is zero surface state charge breakdown field energy levels of the oxidized and reduced species conduction and valence band edges at the surface redox potential corrosion potential width of band gap surface field activation energy frequency of current oscillation Fermi-Dirac distribution function Maxwell-Boltzmann distribution function non-equilibrium occupancy of surface levels density of allowed states rate of photo carrier generation degeneracy of the energy level anodic and cathodic currents , , xxiii

18 xxiv LIST OF SYMBOLS Symbols Definition Section, exchange current densities limiting current due to hole diffusion in the bulk photo currents generated in the double layer and in the bulk photo current conduction band and valence band currents anodic currents via the conduction band and valence band cathodic currents via conduction band and valence band exchange current densities via conduction band and valence band ionic and electronic currents hole diffusion current passivation current net current density corrosion current density current densities at pore bottom, pore tip and pore wall light intensity peak and valley current values of I V curve in HF flux of electrons and holes from/into the conduction and valence bands light frequency Boltzmann s constant rate constant equilibrium constants hole diffusion length atomic weight molar concentration per liter effective dissolution valence atomic density effective density of states in the valance band acceptor and donor concentrations densities of empty states and occupied states intrinsic carrier density anionic concentration captured electron density in the surface states surface electron and hole concentrations at equilibrium electron concentration at equilibrium hole concentration at equilibrium density of holes in the valence band captured holes in the surface states charge charge in the Helmholtz double layer charge in the solution radius of curvature rate of particle movement etch rate radius of atoms rate of dissolution, etching, etc , , 7.2

19 LIST OF SYMBOLS xxv Symbols Definition Section rate of recombination via surface states recombination rates of electrons and holes via surface states surface recombination velocity time oxide thickness electrode potential volume flatbandpotential possivation potential melting temperature applied potential excess voltage open circuit photo potential potential across the space charge layer at equilibrium measured potential potential drop, overpotential width of space change layer quantum efficiency relative permittivity permittivity of vacuum Schotteky barrier height standard electrode potential reorientation energy number of holes involved in reaction surface free energy life time of hole chemical potentials of electrons and holes mobility of electrons and holes ionic mobility fraction of surface coverage angle of the side pore from the main pore density resistivity power efficiency of photo cell anodic overpotential concentration overpotential in electrolyte space charge layer over potential efficiency of hydrogen evolution transition coefficient velocity of electrons in oxide film electron affinity partitioning coefficient of potential partitioning coefficient of potential change American Society of Testing and Materials buffered HF solution current efficiency ,

20 xxvi LIST OF SYMBOLS Symbols Definition Section chemical vapor deposition etching solution mixed with ethylenediamine, pyrocatechol and water isopropyl alcohol liquid phase deposition metal-oxide-semiconductor N-Methylacetamine Acetonitrile Acetonitrile porous silicon low pressure chemical vapor deposition potential of zero charge open circuit potential potential of saturated calomel electrode standard potential of hydrogen electrode tetramethyl ammonium hydroxide, etching solution rate determining step number of rotations per minute ultra violet light

Electrochemistry of Semiconductors

Electrochemistry of Semiconductors Electrochemistry of Semiconductors Adrian W. Bott, Ph.D. Bioanalytical Systems, Inc. 2701 Kent Avenue West Lafayette, IN 47906-1382 This article is an introduction to the electrochemical properties of

More information

MATHEMATICAL MODELING OF DISBONDED COATING AND CATHODIC DELAMINATION SYSTEMS KERRY N. ALLAHAR

MATHEMATICAL MODELING OF DISBONDED COATING AND CATHODIC DELAMINATION SYSTEMS KERRY N. ALLAHAR MATHEMATICAL MODELING OF DISBONDED COATING AND CATHODIC DELAMINATION SYSTEMS By KERRY N. ALLAHAR A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE

More information

e - Galvanic Cell 1. Voltage Sources 1.1 Polymer Electrolyte Membrane (PEM) Fuel Cell

e - Galvanic Cell 1. Voltage Sources 1.1 Polymer Electrolyte Membrane (PEM) Fuel Cell Galvanic cells convert different forms of energy (chemical fuel, sunlight, mechanical pressure, etc.) into electrical energy and heat. In this lecture, we are interested in some examples of galvanic cells.

More information

ESE 372 / Spring 2013 / Lecture 5 Metal Oxide Semiconductor Field Effect Transistor

ESE 372 / Spring 2013 / Lecture 5 Metal Oxide Semiconductor Field Effect Transistor Metal Oxide Semiconductor Field Effect Transistor V G V G 1 Metal Oxide Semiconductor Field Effect Transistor We will need to understand how this current flows through Si What is electric current? 2 Back

More information

Appendix 1: List of symbols

Appendix 1: List of symbols Appendix 1: List of symbols Symbol Description MKS Units a Acceleration m/s 2 a 0 Bohr radius m A Area m 2 A* Richardson constant m/s A C Collector area m 2 A E Emitter area m 2 b Bimolecular recombination

More information

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination The Metal-Semiconductor Junction: Review Energy band diagram of the metal and the semiconductor before (a)

More information

Unit IV Semiconductors Engineering Physics

Unit IV Semiconductors Engineering Physics Introduction A semiconductor is a material that has a resistivity lies between that of a conductor and an insulator. The conductivity of a semiconductor material can be varied under an external electrical

More information

Semiconductor Physics fall 2012 problems

Semiconductor Physics fall 2012 problems Semiconductor Physics fall 2012 problems 1. An n-type sample of silicon has a uniform density N D = 10 16 atoms cm -3 of arsenic, and a p-type silicon sample has N A = 10 15 atoms cm -3 of boron. For each

More information

ELECTROCHEMICAL SYSTEMS

ELECTROCHEMICAL SYSTEMS ELECTROCHEMICAL SYSTEMS Third Edition JOHN NEWMAN and KAREN E. THOMAS-ALYEA University of California, Berkeley ELECTROCHEMICAL SOCIETY SERIES WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC PUBLICATION PREFACE

More information

Semiconductor Physics fall 2012 problems

Semiconductor Physics fall 2012 problems Semiconductor Physics fall 2012 problems 1. An n-type sample of silicon has a uniform density N D = 10 16 atoms cm -3 of arsenic, and a p-type silicon sample has N A = 10 15 atoms cm -3 of boron. For each

More information

Self Formation of Porous Silicon Structure: Primary Microscopic Mechanism of Pore Separation

Self Formation of Porous Silicon Structure: Primary Microscopic Mechanism of Pore Separation Solid State Phenomena Vols. 97-98 (2004) pp 181-184 (2004) Trans Tech Publications, Switzerland Journal doi:10.4028/www.scientific.net/ssp.97-98.181 Citation (to be inserted by the publisher) Copyright

More information

VOLUME 2B MODERN ELECTROCHEMISTRY SECOND EDITION Electrodics in Chemistry, Engineering, Biology, and Environmental Science

VOLUME 2B MODERN ELECTROCHEMISTRY SECOND EDITION Electrodics in Chemistry, Engineering, Biology, and Environmental Science VOLUME 2B MODERN ELECTROCHEMISTRY SECOND EDITION Electrodics in Chemistry, Engineering, Biology, and Environmental Science John O'M Bockris Molecular Green Technology College Station, Texas and Amulya

More information

Quiz #1 Practice Problem Set

Quiz #1 Practice Problem Set Name: Student Number: ELEC 3908 Physical Electronics Quiz #1 Practice Problem Set? Minutes January 22, 2016 - No aids except a non-programmable calculator - All questions must be answered - All questions

More information

Midterm I - Solutions

Midterm I - Solutions UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 130 Spring 2008 Professor Chenming Hu Midterm I - Solutions Name: SID: Grad/Undergrad: Closed

More information

Semiconductor Physical Electronics

Semiconductor Physical Electronics Semiconductor Physical Electronics Sheng S. Li Semiconductor Physical Electronics Second Edition With 230 Figures Sheng S. Li Department of Electrical and Computer Engineering University of Florida Gainesville,

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Fall Exam 1

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Fall Exam 1 UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 143 Fall 2008 Exam 1 Professor Ali Javey Answer Key Name: SID: 1337 Closed book. One sheet

More information

Principles of Electrochemistry Second Edition

Principles of Electrochemistry Second Edition Principles of Electrochemistry Second Edition Jiri Koryta Institute of Physiology, Czechoslovak Academy of Sciences, Prague HKJin Dvorak Department of Physical Chemistry, Faculty of Science, Charles University,

More information

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer Sheng S. Li Semiconductor Physical Electronics Second Edition With 230 Figures 4) Springer Contents Preface 1. Classification of Solids and Crystal Structure 1 1.1 Introduction 1 1.2 The Bravais Lattice

More information

Lecture Note #13. Bard, ch. 18. Photoelectrochemistry (ch. 18) 1. Electrogenerated Chemiluminescence 2. Photoelectrochemistry at Semiconductors

Lecture Note #13. Bard, ch. 18. Photoelectrochemistry (ch. 18) 1. Electrogenerated Chemiluminescence 2. Photoelectrochemistry at Semiconductors Lecture Note #13 Photoelectrochemistry (ch. 18) 1. Electrogenerated Chemiluminescence 2. Photoelectrochemistry at Semiconductors Bard, ch. 18 Photoelectrochemistry Radiation energy electrical or chemical

More information

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00 1 Name: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND Final Exam Physics 3000 December 11, 2012 Fall 2012 9:00-11:00 INSTRUCTIONS: 1. Answer all seven (7) questions.

More information

Reactivity of the Aluminium Surface in Aqueous Solutions

Reactivity of the Aluminium Surface in Aqueous Solutions TALAT Lecture 5102 Reactivity of the Aluminium Surface in Aqueous Solutions 13 pages, 10 figures (also available as overheads) Basic Level prepared by Herman Terryn, Vrije Universiteit, Brussels Objectives:

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2007

EE C245 ME C218 Introduction to MEMS Design Fall 2007 EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 11: Bulk

More information

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester SOLID STATE PHYSICS Second Edition J. R. Hook H. E. Hall Department of Physics, University of Manchester John Wiley & Sons CHICHESTER NEW YORK BRISBANE TORONTO SINGAPORE Contents Flow diagram Inside front

More information

Basic Training in Chemistry

Basic Training in Chemistry Basic Training in Chemistry Basic Training in Chemistry Steven L. Hoenig Ridgewood, New York Kluwer Academic Publishers New York Boston Dordrecht London Moscow ebook ISBN: 0-306-46926-X Print ISBN: 0-306-46546-9

More information

EE 527 MICROFABRICATION. Lecture 24 Tai-Chang Chen University of Washington

EE 527 MICROFABRICATION. Lecture 24 Tai-Chang Chen University of Washington EE 527 MICROFABRICATION Lecture 24 Tai-Chang Chen University of Washington EDP ETCHING OF SILICON - 1 Ethylene Diamine Pyrocatechol Anisotropy: (100):(111) ~ 35:1 EDP is very corrosive, very carcinogenic,

More information

Electrochemical Science for a Sustainable Society

Electrochemical Science for a Sustainable Society Electrochemical Science for a Sustainable Society Kohei Uosaki Editor Electrochemical Science for a Sustainable Society A Tribute to John O M Bockris 123 Editor Kohei Uosaki National Institute for Materials

More information

CONDUCTION BAND I BANDGAP VALENCE BAND. Figure 2.1: Representation of semiconductor band theory. Black dots represents electrons

CONDUCTION BAND I BANDGAP VALENCE BAND. Figure 2.1: Representation of semiconductor band theory. Black dots represents electrons 2.ELECTROCHEMISTRY CHAPTER-2 ELECTROCHEMISTRY 2.1: Semiconductor and Metal Theory 134-136 A photoelectrochemical cell is composed primarily of a material called a semiconductor which is heart of the PEe

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006 UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 130 Professor Ali Javey Fall 2006 Midterm 2 Name: SID: Closed book. Two sheets of notes are

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements Homework #6 is assigned, due May 1 st Final exam May 8, 10:30-12:30pm

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 23, 2018 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2018 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor

More information

n N D n p = n i p N A

n N D n p = n i p N A Summary of electron and hole concentration in semiconductors Intrinsic semiconductor: E G n kt i = pi = N e 2 0 Donor-doped semiconductor: n N D where N D is the concentration of donor impurity Acceptor-doped

More information

5. Semiconductors and P-N junction

5. Semiconductors and P-N junction 5. Semiconductors and P-N junction Thomas Zimmer, University of Bordeaux, France Summary Learning Outcomes... 2 Physical background of semiconductors... 2 The silicon crystal... 2 The energy bands... 3

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006 UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 130 Professor Ali Javey Fall 2006 Midterm I Name: Closed book. One sheet of notes is allowed.

More information

PN Junction

PN Junction P Junction 2017-05-04 Definition Power Electronics = semiconductor switches are used Analogue amplifier = high power loss 250 200 u x 150 100 u Udc i 50 0 0 50 100 150 200 250 300 350 400 i,u dc i,u u

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figures Supplementary Figure S1. Change in open circuit potential ( OCP) of 1% W-doped BiVO 4 photoanode upon illumination with different light intensities. Above

More information

Contents. I Background 1. Contents... Preface... Acknowledgments... The Blind Men and the Elephant... xxi. History of Impedance Spectroscopy...

Contents. I Background 1. Contents... Preface... Acknowledgments... The Blind Men and the Elephant... xxi. History of Impedance Spectroscopy... Contents Contents...................................... Preface....................................... Acknowledgments................................. v xv xix The Blind Men and the Elephant.......................

More information

Solid State electrochemistry

Solid State electrochemistry Solid State electrochemistry edited by Peter G. Bruce Department of Chemistry, University of St Andrews, Scotland IH CAMBRIDGE ^pf UNIVERSITY PRESS 1 1.1 1.2 1.3 1.4 1.5 1.6 Preface Introduction P. G.

More information

Nanowires and nanorods

Nanowires and nanorods Nanowires and nanorods One-dimensional structures have been called in different ways: nanowires, nanorod, fibers of fibrils, whiskers, etc. These structures have a nanometer size in one of the dimensions,

More information

Electronic Processes on Semiconductor Surfaces during Chemisorption

Electronic Processes on Semiconductor Surfaces during Chemisorption Electronic Processes on Semiconductor Surfaces during Chemisorption T. Wolkenstein Translatedfrom Russian by E. M. Yankovskii Translation edited in part by Roy Morrison CONSULTANTS BUREAU NEW YORK AND

More information

This is the 15th lecture of this course in which we begin a new topic, Excess Carriers. This topic will be covered in two lectures.

This is the 15th lecture of this course in which we begin a new topic, Excess Carriers. This topic will be covered in two lectures. Solid State Devices Dr. S. Karmalkar Department of Electronics and Communication Engineering Indian Institute of Technology, Madras Lecture - 15 Excess Carriers This is the 15th lecture of this course

More information

Biosciences Approved 10/14/16. COURSE OUTLINE CHM 110 Chemistry I (KRSN CHM1010) 5 credits

Biosciences Approved 10/14/16. COURSE OUTLINE CHM 110 Chemistry I (KRSN CHM1010) 5 credits COURSE OUTLINE CHM 110 Chemistry I (KRSN CHM1010) 5 credits Course Description This course will enable students to understand the scientific method, improve knowledge of basic math skills, work with scientific

More information

KATIHAL FİZİĞİ MNT-510

KATIHAL FİZİĞİ MNT-510 KATIHAL FİZİĞİ MNT-510 YARIİLETKENLER Kaynaklar: Katıhal Fiziği, Prof. Dr. Mustafa Dikici, Seçkin Yayıncılık Katıhal Fiziği, Şakir Aydoğan, Nobel Yayıncılık, Physics for Computer Science Students: With

More information

MOS CAPACITOR AND MOSFET

MOS CAPACITOR AND MOSFET EE336 Semiconductor Devices 1 MOS CAPACITOR AND MOSFET Dr. Mohammed M. Farag Ideal MOS Capacitor Semiconductor Devices Physics and Technology Chapter 5 EE336 Semiconductor Devices 2 MOS Capacitor Structure

More information

QUANTUM WELLS, WIRES AND DOTS

QUANTUM WELLS, WIRES AND DOTS QUANTUM WELLS, WIRES AND DOTS Theoretical and Computational Physics of Semiconductor Nanostructures Second Edition Paul Harrison The University of Leeds, UK /Cf}\WILEY~ ^INTERSCIENCE JOHN WILEY & SONS,

More information

* motif: a single or repeated design or color

* motif: a single or repeated design or color Chapter 2. Structure A. Electronic structure vs. Geometric structure B. Clean surface vs. Adsorbate covered surface (substrate + overlayer) C. Adsorbate structure - how are the adsorbed molecules bound

More information

Energetic particles and their detection in situ (particle detectors) Part II. George Gloeckler

Energetic particles and their detection in situ (particle detectors) Part II. George Gloeckler Energetic particles and their detection in situ (particle detectors) Part II George Gloeckler University of Michigan, Ann Arbor, MI University of Maryland, College Park, MD Simple particle detectors Gas-filled

More information

Solutions for Assignment-8

Solutions for Assignment-8 Solutions for Assignment-8 Q1. The process of adding impurities to a pure semiconductor is called: [1] (a) Mixing (b) Doping (c) Diffusing (d) None of the above In semiconductor production, doping intentionally

More information

(name) Electrochemical Energy Systems, Spring 2014, M. Z. Bazant. Final Exam

(name) Electrochemical Energy Systems, Spring 2014, M. Z. Bazant. Final Exam 10.626 Electrochemical Energy Systems, Spring 2014, M. Z. Bazant Final Exam Instructions. This is a three-hour closed book exam. You are allowed to have five doublesided pages of personal notes during

More information

Section 12: Intro to Devices

Section 12: Intro to Devices Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals Bond Model of Electrons and Holes Si Si Si Si Si Si Si Si Si Silicon

More information

MODERN ASPECTS OF ELECTROCHEMISTRY. No. 31

MODERN ASPECTS OF ELECTROCHEMISTRY. No. 31 MODERN ASPECTS OF ELECTROCHEMISTRY No. 31 LIST OF CONTRIBUTORS JENS E. T. ANDERSEN The Technical University of Denmark DK-2800 Lyngby, Denmark AKIKO ARAMATA Catalysis Research Center Hokkaido University

More information

Electronic and Optoelectronic Properties of Semiconductor Structures

Electronic and Optoelectronic Properties of Semiconductor Structures Electronic and Optoelectronic Properties of Semiconductor Structures Jasprit Singh University of Michigan, Ann Arbor CAMBRIDGE UNIVERSITY PRESS CONTENTS PREFACE INTRODUCTION xiii xiv 1.1 SURVEY OF ADVANCES

More information

The first three categories are considered a bottom-up approach while lithography is a topdown

The first three categories are considered a bottom-up approach while lithography is a topdown Nanowires and Nanorods One-dimensional structures have been called in different ways: nanowires, nanorod, fibers of fibrils, whiskers, etc. The common characteristic of these structures is that all they

More information

Semiconductor Physical Electronics

Semiconductor Physical Electronics Semiconductor Physical Electronics Sheng S. Li Department of Electrical Engineering University of Florida Gainesville, Florida Plenum Press New York and London Contents CHAPTER 1. Classification of Solids

More information

CHAPTER 6 Modern Theory Principles LECTURER SAHEB M. MAHDI

CHAPTER 6 Modern Theory Principles LECTURER SAHEB M. MAHDI CHAPTER 6 Modern Theory Principles LECTURER SAHEB M. MAHDI Modern Theory principles in Corrosion and their applications :- Corrosion studies can be carried-out by two methods 1 Thermodynamics. or 2 By

More information

ECE 340 Lecture 39 : MOS Capacitor II

ECE 340 Lecture 39 : MOS Capacitor II ECE 340 Lecture 39 : MOS Capacitor II Class Outline: Effects of Real Surfaces Threshold Voltage MOS Capacitance-Voltage Analysis Things you should know when you leave Key Questions What are the effects

More information

Principles and Applications of Electrochemistry

Principles and Applications of Electrochemistry Principles and Applications of Electrochemistry Fourth edition D. R. CROW Professor of Electrochemistry and Dean of Research University of Wolverhampton BLACKIE ACADEMIC & PROFESSIONAL An Imprint of Chapman

More information

ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY

ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY MARK E. ORAZEM University of Florida BERNARD TRIBOLLET Universite Pierre et Marie Curie WILEY A JOHN WILEY & SONS, INC., PUBLICATION Contents Contents Preface Acknowledgments

More information

11.3. Electrolytic Cells. Electrolysis of Molten Salts. 524 MHR Unit 5 Electrochemistry

11.3. Electrolytic Cells. Electrolysis of Molten Salts. 524 MHR Unit 5 Electrochemistry 11.3 Electrolytic Cells Section Preview/ Specific Expectations In this section, you will identify the components of an electrolytic cell, and describe how they work describe electrolytic cells using oxidation

More information

CARBON. Electrochemical ond Physicochemicol Properties KIM KINOSHITA. Lawrence Berkeley Laboratory Berkeley, California

CARBON. Electrochemical ond Physicochemicol Properties KIM KINOSHITA. Lawrence Berkeley Laboratory Berkeley, California CARBON Electrochemical ond Physicochemicol Properties KIM KINOSHITA Lawrence Berkeley Laboratory Berkeley, California A Wiley-Interscience Publicotion JOHN WILEY & SONS New York / Chichester / Brisbane

More information

Dynamics of Macropore Growth in n-type Silicon Investigated by FFT In-Situ Analysis. J. Carstensen, A. Cojocaru, M. Leisner, and H.

Dynamics of Macropore Growth in n-type Silicon Investigated by FFT In-Situ Analysis. J. Carstensen, A. Cojocaru, M. Leisner, and H. 1.1149/1.31715 The Electrochemical Society Dynamics of Macropore Growth in n-type Silicon Investigated by FFT In-Situ Analysis J. Carstensen, A. Cojocaru, M. Leisner, and H. Föll Institute for Materials

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Ali Javey. Spring 2009.

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Ali Javey. Spring 2009. UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EE143 Professor Ali Javey Spring 2009 Exam 1 Name: SID: Closed book. One sheet of notes is allowed.

More information

Introduction to Semiconductor Integrated Optics

Introduction to Semiconductor Integrated Optics Introduction to Semiconductor Integrated Optics Hans P. Zappe Artech House Boston London Contents acknowledgments reface itroduction Chapter 1 Basic Electromagnetics 1 1.1 General Relationships 1 1.1.1

More information

Fundamentals of Semiconductor Physics

Fundamentals of Semiconductor Physics Fall 2007 Fundamentals of Semiconductor Physics 万 歆 Zhejiang Institute of Modern Physics xinwan@zimp.zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Transistor technology evokes new physics The objective of

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 29, 2019 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2019 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor

More information

V BI. H. Föll: kiel.de/matwis/amat/semi_en/kap_2/backbone/r2_2_4.html. different electrochemical potentials (i.e.

V BI. H. Föll:  kiel.de/matwis/amat/semi_en/kap_2/backbone/r2_2_4.html. different electrochemical potentials (i.e. Consider the the band diagram for a homojunction, formed when two bits of the same type of semicondutor (e.g. Si) are doped p and ntype and then brought into contact. Electrons in the two bits have different

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements HW#3 is assigned due Feb. 20 st Mid-term exam Feb 27, 2PM

More information

Electrochemical Cell - Basics

Electrochemical Cell - Basics Electrochemical Cell - Basics The electrochemical cell e - (a) Load (b) Load e - M + M + Negative electrode Positive electrode Negative electrode Positive electrode Cathode Anode Anode Cathode Anode Anode

More information

FUNDAMENTALS OF ELECTRO- ANALYTICAL CHEMISTRY

FUNDAMENTALS OF ELECTRO- ANALYTICAL CHEMISTRY FUNDAMENTALS OF ELECTRO- ANALYTICAL CHEMISTRY Paul Monk Manchester Metropolitan University, Manchester, UK JOHN WILEY & SONS LTD Chichester New York Weinheim Brisbane Toronto Singapore Contents Series

More information

Electron Energy, E E = 0. Free electron. 3s Band 2p Band Overlapping energy bands. 3p 3s 2p 2s. 2s Band. Electrons. 1s ATOM SOLID.

Electron Energy, E E = 0. Free electron. 3s Band 2p Band Overlapping energy bands. 3p 3s 2p 2s. 2s Band. Electrons. 1s ATOM SOLID. Electron Energy, E Free electron Vacuum level 3p 3s 2p 2s 2s Band 3s Band 2p Band Overlapping energy bands Electrons E = 0 1s ATOM 1s SOLID In a metal the various energy bands overlap to give a single

More information

Lecture 7: Extrinsic semiconductors - Fermi level

Lecture 7: Extrinsic semiconductors - Fermi level Lecture 7: Extrinsic semiconductors - Fermi level Contents 1 Dopant materials 1 2 E F in extrinsic semiconductors 5 3 Temperature dependence of carrier concentration 6 3.1 Low temperature regime (T < T

More information

Crystal Properties. MS415 Lec. 2. High performance, high current. ZnO. GaN

Crystal Properties. MS415 Lec. 2. High performance, high current. ZnO. GaN Crystal Properties Crystal Lattices: Periodic arrangement of atoms Repeated unit cells (solid-state) Stuffing atoms into unit cells Determine mechanical & electrical properties High performance, high current

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Chenming Hu.

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Chenming Hu. UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 130 Spring 2009 Professor Chenming Hu Midterm I Name: Closed book. One sheet of notes is

More information

Electrochemical deposition of metals onto silicon

Electrochemical deposition of metals onto silicon J. Phys. D: Appl. Phys. 31 (1998) 1927 1949. Printed in the UK PII: S0022-3727(98)78690-5 REVIEW ARTICLE Electrochemical deposition of metals onto silicon G Oskam, J G Long, A Natarajan and P C Searson

More information

EE495/695 Introduction to Semiconductors I. Y. Baghzouz ECE Department UNLV

EE495/695 Introduction to Semiconductors I. Y. Baghzouz ECE Department UNLV EE495/695 Introduction to Semiconductors I Y. Baghzouz ECE Department UNLV Introduction Solar cells have always been aligned closely with other electronic devices. We will cover the basic aspects of semiconductor

More information

Novel High-Efficiency Crystalline-Si-Based Compound. Heterojunction Solar Cells: HCT (Heterojunction with Compound. Thin-layer)

Novel High-Efficiency Crystalline-Si-Based Compound. Heterojunction Solar Cells: HCT (Heterojunction with Compound. Thin-layer) Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Supplementary Information for Novel High-Efficiency Crystalline-Si-Based Compound

More information

Effective masses in semiconductors

Effective masses in semiconductors Effective masses in semiconductors The effective mass is defined as: In a solid, the electron (hole) effective mass represents how electrons move in an applied field. The effective mass reflects the inverse

More information

Laurence M Peter Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom

Laurence M Peter Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom SEMICONDUCTOR ELECTROCHEMISTRY Laurence M Peter Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom Keywords: band bending, current doubling, dye-sensitized, Gärtner equation, Mott

More information

Junction Diodes. Tim Sumner, Imperial College, Rm: 1009, x /18/2006

Junction Diodes. Tim Sumner, Imperial College, Rm: 1009, x /18/2006 Junction Diodes Most elementary solid state junction electronic devices. They conduct in one direction (almost correct). Useful when one converts from AC to DC (rectifier). But today diodes have a wide

More information

Kentaro INOUE. Introduction. Measurement principle (membrane polarographic method)

Kentaro INOUE. Introduction. Measurement principle (membrane polarographic method) FFeature Article Article Performance of the Dissolved Oxygen Monitor Used in the Semiconductor Wet Process; Low Concentration Monitoring, High Temperature, Small Amount of Sampling Volume, Chemical Resistance

More information

Self-study problems and questions Processing and Device Technology, FFF110/FYSD13

Self-study problems and questions Processing and Device Technology, FFF110/FYSD13 Self-study problems and questions Processing and Device Technology, FFF110/FYSD13 Version 2016_01 In addition to the problems discussed at the seminars and at the lectures, you can use this set of problems

More information

ECEN 3320 Semiconductor Devices Final exam - Sunday December 17, 2000

ECEN 3320 Semiconductor Devices Final exam - Sunday December 17, 2000 Your Name: ECEN 3320 Semiconductor Devices Final exam - Sunday December 17, 2000 1. Review questions a) Illustrate the generation of a photocurrent in a p-n diode by drawing an energy band diagram. Indicate

More information

Semiconductor Physics Problems 2015

Semiconductor Physics Problems 2015 Semiconductor Physics Problems 2015 Page and figure numbers refer to Semiconductor Devices Physics and Technology, 3rd edition, by SM Sze and M-K Lee 1. The purest semiconductor crystals it is possible

More information

Chapter 1 Overview of Semiconductor Materials and Physics

Chapter 1 Overview of Semiconductor Materials and Physics Chapter 1 Overview of Semiconductor Materials and Physics Professor Paul K. Chu Conductivity / Resistivity of Insulators, Semiconductors, and Conductors Semiconductor Elements Period II III IV V VI 2 B

More information

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e)

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e) (a) (b) Supplementary Figure 1. (a) An AFM image of the device after the formation of the contact electrodes and the top gate dielectric Al 2 O 3. (b) A line scan performed along the white dashed line

More information

Surfaces, Interfaces, and Layered Devices

Surfaces, Interfaces, and Layered Devices Surfaces, Interfaces, and Layered Devices Building blocks for nanodevices! W. Pauli: God made solids, but surfaces were the work of Devil. Surfaces and Interfaces 1 Interface between a crystal and vacuum

More information

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state.

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state. Photovoltaics Basic Steps the generation of light-generated carriers; the collection of the light-generated carriers to generate a current; the generation of a large voltage across the solar cell; and

More information

Semiconductor Devices and Circuits Fall Midterm Exam. Instructor: Dr. Dietmar Knipp, Professor of Electrical Engineering. Name: Mat. -Nr.

Semiconductor Devices and Circuits Fall Midterm Exam. Instructor: Dr. Dietmar Knipp, Professor of Electrical Engineering. Name: Mat. -Nr. Semiconductor Devices and Circuits Fall 2003 Midterm Exam Instructor: Dr. Dietmar Knipp, Professor of Electrical Engineering Name: Mat. -Nr.: Guidelines: Duration of the Midterm: 1 hour The exam is a closed

More information

Advanced Analytical Chemistry Lecture 12. Chem 4631

Advanced Analytical Chemistry Lecture 12. Chem 4631 Advanced Analytical Chemistry Lecture 12 Chem 4631 What is a fuel cell? An electro-chemical energy conversion device A factory that takes fuel as input and produces electricity as output. O 2 (g) H 2 (g)

More information

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS Operation and Modeling of The MOS Transistor Second Edition Yannis Tsividis Columbia University New York Oxford OXFORD UNIVERSITY PRESS CONTENTS Chapter 1 l.l 1.2 1.3 1.4 1.5 1.6 1.7 Chapter 2 2.1 2.2

More information

The interfacial study on the Cu 2 O/Ga 2 O 3 /AZO/TiO 2 photocathode for water splitting fabricated by pulsed laser deposition

The interfacial study on the Cu 2 O/Ga 2 O 3 /AZO/TiO 2 photocathode for water splitting fabricated by pulsed laser deposition Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2017 The interfacial study on the Cu 2 O/Ga 2 O 3 /AZO/TiO 2 photocathode for

More information

Semiconductor Detectors

Semiconductor Detectors Semiconductor Detectors Summary of Last Lecture Band structure in Solids: Conduction band Conduction band thermal conductivity: E g > 5 ev Valence band Insulator Charge carrier in conductor: e - Charge

More information

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

! CMOS Process Enhancements. ! Semiconductor Physics.  Band gaps.  Field Effects. ! MOS Physics.  Cut-off.  Depletion. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 3, 018 MOS Transistor Theory, MOS Model Lecture Outline! CMOS Process Enhancements! Semiconductor Physics " Band gaps " Field Effects!

More information

Comprehensive Treatise of Electrochemistry

Comprehensive Treatise of Electrochemistry Comprehensive Treatise of Electrochemistry Volume 1: The Double Layer Edited by J. O'M. Bockris Texas A&M University College Station, Texas Brian E. Conway University of Ottawa Ottawa, Ontario, Canada

More information

Schottky Rectifiers Zheng Yang (ERF 3017,

Schottky Rectifiers Zheng Yang (ERF 3017, ECE442 Power Semiconductor Devices and Integrated Circuits Schottky Rectifiers Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Power Schottky Rectifier Structure 2 Metal-Semiconductor Contact The work function

More information

pn JUNCTION THE SHOCKLEY MODEL

pn JUNCTION THE SHOCKLEY MODEL The pn Junction: The Shockley Model ( S. O. Kasap, 1990-001) 1 pn JUNCTION THE SHOCKLEY MODEL Safa Kasap Department of Electrical Engineering University of Saskatchewan Canada Although the hole and its

More information

THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF PHYSICS FINAL EXAMINATION JUNE/JULY PHYS3080 Solid State Physics

THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF PHYSICS FINAL EXAMINATION JUNE/JULY PHYS3080 Solid State Physics THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF PHYSICS FINAL EXAMINATION JUNE/JULY 006 PHYS3080 Solid State Physics Time Allowed hours Total number of questions - 5 Answer ALL questions All questions are

More information

The Materials Science of Semiconductors

The Materials Science of Semiconductors The Materials Science of Semiconductors Angus Rockett The Materials Science of Semiconductors Angus Rockett University of Illinois 201a Materials Science and Engineering Building 1304 West Green Street

More information

Figure 3.1 (p. 141) Figure 3.2 (p. 142)

Figure 3.1 (p. 141) Figure 3.2 (p. 142) Figure 3.1 (p. 141) Allowed electronic-energy-state systems for two isolated materials. States marked with an X are filled; those unmarked are empty. System 1 is a qualitative representation of a metal;

More information

Institute of Physics Publishing Journal of Physics: Conference Series 34 (2006) 1038 1043 doi:10.1088/1742-6596/34/1/172 International MEMS Conference 2006 Characterisation of anisotropic etching in KOH

More information

Lecture 4. Conductance sensors. ChemFET. Electrochemical Impedance Spectroscopy. py Practical consideration for electrochemical biosensors.

Lecture 4. Conductance sensors. ChemFET. Electrochemical Impedance Spectroscopy. py Practical consideration for electrochemical biosensors. Lecture 4 Conductance sensors. ChemFET. Electrochemical Impedance Spectroscopy. py Practical consideration for electrochemical biosensors. Conductivity I V = I R=, L - conductance L= κa/, l Λ= κ /[ C]

More information