Bis2A 5.1 REDOX Chemistry and the REDOX Tower *

Size: px
Start display at page:

Download "Bis2A 5.1 REDOX Chemistry and the REDOX Tower *"

Transcription

1 OpenStax-CNX module: m Bis2A 5.1 REDOX Chemistry and the REDOX Tower * The BIS2A Team This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract This module will discuss REDOX chemistry basics including the denitions of the terms and several examples of chemical reactions where REDOX is occurring. Section Summary An oxidation-reduction (redox) reaction is a type of chemical reaction that involves a transfer of electrons between two compounds or atoms. For example, the transfer of an electron from sodium (Na) to chloride (Cl) resulting in a positively charged Na and negatively charged Cl is a Redox reaction. An oxidation reaction strips an electron from an atom in a compound, and the addition of this electron to another compound is a reduction reaction. Because oxidation and reduction usually occur together, these pairs of reactions are called oxidation reduction reactions, or redox reactions. Redox reactions are common and vital to some of the basic functions of life, including photosynthesis, respiration, combustion, and corrosion or rusting. Every red/ox reaction can be thought of as 2 half reactions, in one reaction a compound looses electrons and in the second reaction a dierent compound gains electrons. The amount of energy transfered in a redox reaction is associated with the dierence in each half reactions' reduction potential, E 0'. The electron tower is a tool that ranks dierent common half reactions (and therefore various compounds) based on how likely they are to donate or accept electrons. The lower, more negative, the electrochemical potential for each half reaction, the higher it sits in the electron tower. Reduced compounds can donate electrons to oxidized compounds that are below it on the electron tower. Oxidized compounds can accept electrons from any compound that are above it in the electron tower. The use of the electron tower will be more evident as we discuss electron transport chains in a few modules. note: Sometime a redox tower will list compounds in order of decreasing redox potentials (high values on top and low values on the bottom). Does this change the redox potential of a compound compared to a table that lists compounds in increasing order as described above? * Version 1.1: Jan 18, :20 am

2 OpenStax-CNX module: m Figure 1: The rusting of iron is an electrochemical process that begins with the transfer of electrons from iron to oxygen. The iron is the reducing agent (gives up electrons) while the oxygen is the oxidizing agent (gains electrons). Source: 1 Reduction-Oxidation Reactions In this class we are going to focus on REDOX reactions that are biologically associated. The majority of the reactions we discuss occur in the context of metabolic pathways (connected sets of metabolic reactions) where compounds may be consumed by the cell, broken down into smaller parts and then reassembled into larger macromolecules. Lets start with some Generic Reactions Transferring electrons between two compounds results in one of these compounds loosing an electron, and one of the compounds gaining an electron. For example, look at the gure below. If we use the energy story rubric here to look at the overall reaction we can compare the before and after characteristics of the reactants and products. What happens to the matter (stu) before and after the reaction? Compound A starts as neutral and becomes positively charged. Compound B starts as neutral and becomes negatively charged. Because electrons are negatively charged, we can follow the movement of electrons from compound A to B by looking at the change in charge. A looses an electron (becoming positively charged), and in so doing we say that A has become oxidized. Oxidation is loss of electron(s). B gains the electron (becoming negatively charged), and we say that B has become reduced. Reduction is gain of electrons. We also know, since something happened that energy must have been either transfered and/or reorganized in this

3 OpenStax-CNX module: m process and we'll consider this shortly. Figure 2: A generic redox reaction. The full reaction is A +B goes to A + + B -. The two half reactions are shown in the blue box. A is oxidized by the reaction and B is reduced by the reaction. When an electron(s) is lost, or a molecule is oxidized, the electron(s) must then passed to another molecule. The molecule gaining the electron is said to be reduced. The oxidation and reduction reactions are always paired in what is known as an oxidation-reduction reaction (also called a red/ox reaction). Remember the Denitions: oxidation = loss of electrons reduction = gain of electrons 2 The Half Reaction To formalize our common understanding of red/ox reactions, we introduce the concept of the half reaction. Two half reactions are required to make the full red/ox reaction. Each half reaction can be thought of as a description of what happens to one of the two molecules involved in the red/ox reaction. This is illustrated below. In this example compound AH is being oxidized by compound B + ; electrons are moving from AH to B + to generate A + and BH. Each reaction can be thought of as two half reactions: Where AH is being oxidized and a second reaction where B + is being reduced to BH. These two reactions are considered coupled, a term that indicates that these two reactions occur together, at the same time.

4 OpenStax-CNX module: m Figure 3: Generic red/ox reaction where compound AH is being oxidized by compound B +. Each half reaction represents a single species or compound to either lose or gain electrons (and a subsequent proton as shown in the gure above). In half reaction #1 AH loses a proton and 2 electrons: in the second half reaction, B + gains 2 electrons and a proton. In this example HA is oxidized to A + while B + is reduced to BH. Exercise 1 (Solution on p. 9.) In reaction #1, AH becomes: a. oxidized b. reduced c. degraded note: If you consider a generic redox reaction and reect back on the thermodynamic lectures what factor will determine whether a redox reaction will "go" in a particular direction spontaneously and what might determine its rate? 3 Reduction Potential By convention we analyze and describe red/ox reactions with respect to reduction potentials that is, with respect to the ability of a compound to gain electrons. This value is determined experimentally but for the purpose of this course we assume that the reader will accept that the reported values are reasonably correct. We can anthropomorphize the reduction potential by saying that it is related to the strength with which a

5 OpenStax-CNX module: m compound can attract or pull or capture electrons. Not surprisingly this is is related to but not identical to electronegativity. What is this intrinsic property to attract electrons? Electronegativity, the tendency of an atom or molecule to pull electrons to itself. Dierent compounds, based on their structure and composition have intrinsic and distinct attractions for electrons. This quality is termed reduction potential or E 0 ' and is a relative quantity (relative by comparison to some standard reaction). If a test compound has a stronger "attraction" to electrons than the standard (if the two competed the test compound would "take" electrons from the standard compound), we say that the test compound has a positive reduction potential whose magnitude is proportional to how much more it "wants" electrons than the standard compound. The relative strength of the compound in comparison to the standard is measured and reported in units of Volts (V) (sometimes written as electron volts or ev) or millivolts (mv). The reference compound in most redox towers is H 2. note: Rephrase for yourself: What is the dierence between the concept of electronegativity and redox potential? 4 The Redox Tower All kinds of compounds can participate in red/ox reactions. A tool has been developed to rate red/ox half reactions based on their E 0' values and to help us predict the direction of electron ow between potential electron donors and acceptors. Whether a particular compound can act as an electron donor (reductant) or electron acceptor (oxidant) depends critically on what other compound it is interacting with. The electron tower ranks a variety of common compounds (their half reactions) from most negative E 0', compounds that readily get rid of electrons, to the most positive E 0', compounds most likely to accept electrons. The tower organizes these half reactions based on the ability of compounds to accept electrons, with the most electronegative at the bottom of the tower and the least electronegative values at the top. In addition each half reaction is written by convention with the oxidized form on the left/followed by the reduced form on the right of the slash. For example the half reaction for the reduction of NAD + to NADH is written: NAD + /NADH + 2e -. An electron tower is shown below.

6 OpenStax-CNX module: m Figure 4: Common Red/ox tower used in Bis2A. By convention the tower half reactions are written with the oxidized form of the compound on the left and the reduced form on the right. Compounds that make excellent electron donors are found at the top of the tower. Compounds such as Glucose and Hydrogen gas are excellent electron donors. Notice, that they are found on the right hand side of the red/ox pair half reactions. At the other end of the tower lies compounds that make excellent terminal electron acceptors, such as Oxygen and Nitrite, these compounds are found on the left side of the red/ox pair and have a positive E ' 0 value.

7 OpenStax-CNX module: m Video on electron tower For a short video on how to use the electron tower in red/ox problems click here 1. This video was made by Dr. Easlon for Bis2A students. (This is quite informative.) Exercise 2: Reading a Redox tower (Solution on p. 9.) The right and left sides of the chemical reactions in the redox tower are separated by a "/". The form of the compound on the left of the slash is, and the form of the compound on the right of the slash is. a. oxidized, reduced b. reduced, oxidized c. oxidized at the top of the tower, reduced at the bottom of the tower d. reduced at the top of the tower, oxidized at the bottom of the tower What is the relationship between E 0' and G? The question now becomes: how do we know if any given redox reaction is energetically spontaneous or not (exergonic or endergonic) and regardless of direction what the free energy dierence is? The answer lies in the dierence of the reduction potentials of the two compounds. The dierence in the reduction potential for the reaction or E 0 ' for the reaction, is the dierence between the E 0' for the oxidant (the compound getting the electrons and causing the oxidation of the other compound) and the reductant (the compound losing the electrons). In our generic example below, AH is the reductant and B + is the oxidant. Electrons are moving from AH to B +. Using the E 0 ' of for the reductant and 0.82 for the oxidant the total change in E 0' or E 0 ' is 1.14 ev. Figure 5: Generic Red/Ox reaction with half reactions written with reduction potential (E 0 ' ) of the two half reactions indicated. 1

8 OpenStax-CNX module: m The change in E 0' correlates to changes in Gibbs free energy, G. In general a large positive E 0 ' is proportional to a large negative G. The reactions are exergonic and spontaneous. For a reaction to be exergonic the reaction needs to have a negative change in free energy or - G, this will correspond to a positive E 0 '. In other words, when electrons ow "downhill" in a redox reaction from a compound with a higher (more positive) reduction potential to a second compound with a lower (less positive) reduction potential, they release free energy (review module 4.0 and 4.1). The greater the voltage, E 0 ', between the two components, the greater the energy available when electron ow occurs. It is, in fact, possible to quantify the amount of free energy available. The relationship is given by the Nernst equation: Figure 6: The Nernst equation relates free energy of a redox reaction to the dierence in reduction potential between the reduced products of the reaction and oxidized reactant. Where: n is the number of moles of electrons transferred F is the Faraday constant of kj/v. Sometimes it is given in units of kcal/v which is kcal/v, which is the amount of energy (in kj or kcal) released when one mole of electrons passes through a potential drop of 1 volt note: What you should notice is that G and E have an inverse relationship: When G is positive, E is negative and when G is negative E is positive. For a review see Red/Ox discussion in the Bis2A Discussion Manual. Exercise 3 (Solution on p. 9.) Using the table suggest which of the following could be used as an electron acceptor for an electron transfer from Ubiquinone red. The subscript "red" indicates that ubiquinone is in a reduced state - it has an electron to give to the "right" acceptor. If you would have seen the subscript "ox" this would have indicated that ubiquinone was oxidized and thus not available to donate electrons, but rather accept them. a. FAD b. NADH c. cytrochrome a ox d. cytochrome c red

9 OpenStax-CNX module: m Solutions to Exercises in this Module Solution to Exercise (p. 4) a Solution to Exercise (p. 7) a Solution to Exercise (p. 8) C

Bis2A 5.6: Oxidative Phosphorylation and the Electron Transport Chain *

Bis2A 5.6: Oxidative Phosphorylation and the Electron Transport Chain * OpenStax-CNX module: m59707 1 Bis2A 5.6: Oxidative Phosphorylation and the Electron Transport Chain * The BIS2A Team This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution

More information

Section A: The Principles of Energy Harvest

Section A: The Principles of Energy Harvest CHAPTER 9 CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY Section A: The Principles of Energy Harvest 1. Cellular respiration and fermentation are catabolic, energy-yielding pathways 2. Cells recycle

More information

Metabolism. Fermentation vs. Respiration. End products of fermentations are waste products and not fully.

Metabolism. Fermentation vs. Respiration. End products of fermentations are waste products and not fully. Outline: Metabolism Part I: Fermentations Part II: Respiration Part III: Metabolic Diversity Learning objectives are: Learn about respiratory metabolism, ATP generation by respiration linked (oxidative)

More information

Atomic combinations: Covalent bonding and Lewis notation *

Atomic combinations: Covalent bonding and Lewis notation * OpenStax-CNX module: m38895 1 Atomic combinations: Covalent bonding and Lewis notation * Free High School Science Texts Project This work is produced by OpenStax-CNX and licensed under the Creative Commons

More information

Cellular Respiration: Harvesting Chemical Energy. 9.1 Catabolic pathways yield energy by oxidizing organic fuels

Cellular Respiration: Harvesting Chemical Energy. 9.1 Catabolic pathways yield energy by oxidizing organic fuels Cellular Respiration: Harvesting Chemical Energy 9.1 Catabolic pathways yield energy by oxidizing organic fuels 9.2 Glycolysis harvests chemical energy by oxidizing glucose to pyruvate 9.3 The citric acid

More information

9.1 Introduction to Oxidation and Reduction

9.1 Introduction to Oxidation and Reduction 9.1 Introduction to Oxidation and Reduction 9.1.1 - Define oxidation and reduction in terms of electron loss and gain Oxidation The loss of electrons from a substance. This may happen through the gain

More information

AP Biology Cellular Respiration

AP Biology Cellular Respiration AP Biology Cellular Respiration The bonds between H and C represents a shared pair of electrons These are high-energy electrons This represents chemical potential energy Hydro-carbons posses a lot of chemical

More information

Bis2A: 2.3 Interpreting Chemical Reactions

Bis2A: 2.3 Interpreting Chemical Reactions OpenStax-CNX module: m59229 1 Bis2A: 2.3 Interpreting Chemical Reactions The BIS2A Team This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract This

More information

Energy Transformation. Metabolism = total chemical reactions in cells.

Energy Transformation. Metabolism = total chemical reactions in cells. Energy Transformation Metabolism = total chemical reactions in cells. metabole = change Metabolism is concerned with managing the material and energy resources of the cell -Catabolism -Anabolism -Catabolism

More information

All organisms require a constant expenditure of energy to maintain the living state - "LIFE".

All organisms require a constant expenditure of energy to maintain the living state - LIFE. CELLULAR RESPIRATION All organisms require a constant expenditure of energy to maintain the living state - "LIFE". Where does the energy come from and how is it made available for life? With rare exception,

More information

Biology Reading Assignment: Chapter 9 in textbook

Biology Reading Assignment: Chapter 9 in textbook Biology 205 5.10.06 Reading Assignment: Chapter 9 in textbook HTTP://WUNMR.WUSTL.EDU/EDUDEV/LABTUTORIALS/CYTOCHROMES/CYTOCHROMES.HTML What does a cell need to do? propagate itself (and its genetic program)

More information

Bis2A 4.1 Thermodynamics *

Bis2A 4.1 Thermodynamics * OpenStax-CNX module: m59528 1 Bis2A 4.1 Thermodynamics * The BIS2A Team This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract This module will discuss

More information

Potential, Kinetic, and Free Energy *

Potential, Kinetic, and Free Energy * OpenStax-CNX module: m47326 1 Potential, Kinetic, and Free Energy * Robert Bear David Rintoul Based on Potential, Kinetic, Free, and Activation Energy by OpenStax This work is produced by OpenStax-CNX

More information

BIOLOGY 111. CHAPTER 7: Vital Harvest: Deriving Energy From Food

BIOLOGY 111. CHAPTER 7: Vital Harvest: Deriving Energy From Food BIOLOGY 111 CHAPTER 7: Vital Harvest: Deriving Energy From Food Deriving Energy from Food: What is the best carbohydrate source (for energy) in our food? Glucose! Where is the energy stored in glucose?

More information

Oxidation refers to any process in which the oxidation number of an atom becomes more positive

Oxidation refers to any process in which the oxidation number of an atom becomes more positive Lecture Notes 3 rd Series: Electrochemistry Oxidation number or states When atoms gain or lose electrons they are said to change their oxidation number or oxidation state. If an element has gained electrons

More information

Potential, Kinetic, Free, and Activation Energy

Potential, Kinetic, Free, and Activation Energy OpenStax-CNX module: m44425 1 Potential, Kinetic, Free, and Activation Energy OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the

More information

2054, Chap. 8, page 1

2054, Chap. 8, page 1 2054, Chap. 8, page 1 I. Metabolism: Energetics, Enzymes, and Regulation (Chapter 8) A. Energetics and work 1. overview a. energy = ability to do work (1) chemical, transport, mechanical (2) ultimate source

More information

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc.

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc. Lecture Presentation Chapter 20 James F. Kirby Quinnipiac University Hamden, CT is the study of the relationships between electricity and chemical reactions. It includes the study of both spontaneous and

More information

Principles of Bioenergetics. Lehninger 3 rd ed. Chapter 14

Principles of Bioenergetics. Lehninger 3 rd ed. Chapter 14 1 Principles of Bioenergetics Lehninger 3 rd ed. Chapter 14 2 Metabolism A highly coordinated cellular activity aimed at achieving the following goals: Obtain chemical energy. Convert nutrient molecules

More information

Biology Reading Assignments:

Biology Reading Assignments: Biology 205 5.13.08 Reading Assignments: Chapter 3 Energy, Catalysis and Biosynthesis pgs. 83-94; 106-116 (Note the various roles of nucleotide based carrier molecules); work questions 3-2 and 3-3 Chapter

More information

Lecture 7: Enzymes and Energetics

Lecture 7: Enzymes and Energetics Lecture 7: Enzymes and Energetics I. Biological Background A. Biological work requires energy 1. Energy is the capacity to do work a. Energy is expressed in units of work (kilojoules) or heat energy (kilocalories)

More information

Metabolic diversity is based on the Electron donors, acceptors, and carbon sources available - thermodynamics

Metabolic diversity is based on the Electron donors, acceptors, and carbon sources available - thermodynamics To date you have covered microbial community sampling using molecular techniques to identify who is present in the environment. You have also looked at various genetic mechanisms to understand how organisms

More information

Announcements 2,9,10,11,13,17,22,29,31,38,40,44,46,50,53,58,62,64,65,70,7 2,73,82,85,87. Laboratory Presentation March 11 at 7:30AM sharp

Announcements 2,9,10,11,13,17,22,29,31,38,40,44,46,50,53,58,62,64,65,70,7 2,73,82,85,87. Laboratory Presentation March 11 at 7:30AM sharp Announcements Moving on to Chapter 21 Electrochemistry in Silberberg today. Skoog has a similar Chapter but Silberberg is better for you guys as it assumes no previous knowledge. Do Problems: 2,9,10,11,13,17,22,29,31,38,40,44,46,50,53,58,62,64,65,70,7

More information

Energy and Cells. Appendix 1. The two primary energy transformations in plants are photosynthesis and respiration.

Energy and Cells. Appendix 1. The two primary energy transformations in plants are photosynthesis and respiration. Energy and Cells Appendix 1 Energy transformations play a key role in all physical and chemical processes that occur in plants. Energy by itself is insufficient to drive plant growth and development. Enzymes

More information

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education Lecture Presentation Chapter 20 James F. Kirby Quinnipiac University Hamden, CT is the study of the relationships between electricity and chemical reactions. It includes the study of both spontaneous and

More information

METABOLISM CHAPTER 04 BIO 211: ANATOMY & PHYSIOLOGY I. Dr. Lawrence G. Altman Some illustrations are courtesy of McGraw-Hill.

METABOLISM CHAPTER 04 BIO 211: ANATOMY & PHYSIOLOGY I. Dr. Lawrence G. Altman  Some illustrations are courtesy of McGraw-Hill. BIO 211: ANATOMY & PHYSIOLOGY I CHAPTER 04 1 Please wait 20 seconds before starting slide show. Mouse click or Arrow keys to navigate. Hit ESCAPE Key to exit. CELLULAR METABOLISM Dr. Lawrence G. Altman

More information

CELL METABOLISM OVERVIEW Keep the big picture in mind as we discuss the particulars!

CELL METABOLISM OVERVIEW Keep the big picture in mind as we discuss the particulars! BIO 211: ANATOMY & PHYSIOLOGY I CHAPTER 04 CELLULAR METABOLISM 1 Please wait 20 seconds before starting slide show. Mouse click or Arrow keys to navigate. Hit ESCAPE Key to exit. Dr. Lawrence G. Altman

More information

Chemistry 102 Chapter 19 OXIDATION-REDUCTION REACTIONS

Chemistry 102 Chapter 19 OXIDATION-REDUCTION REACTIONS OXIDATION-REDUCTION REACTIONS Some of the most important reaction in chemistry are oxidation-reduction (redox) reactions. In these reactions, electrons transfer from one reactant to the other. The rusting

More information

How Cells Work. Learning Objectives

How Cells Work. Learning Objectives How Cells Work Chapter 5 Learning Objectives 1. Physics tells us that in any energy transformation: a) energy is neither created nor destroyed, and b) there is always some energy lost in an unusable form

More information

The Periodic Table - Grade 10 [CAPS] *

The Periodic Table - Grade 10 [CAPS] * OpenStax-CNX module: m38133 1 The Periodic Table - Grade 10 [CAPS] * Free High School Science Texts Project This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License

More information

2 4 Chemical Reactions and Enzymes Chemical Reactions

2 4 Chemical Reactions and Enzymes Chemical Reactions Chemical Reactions A chemical reaction occurs when chemical bonds are broken and reformed. Rust forms very slowly, while rocket fuel combustion is explosive! The significance of this comparison is that

More information

Chemistry: The Central Science. Chapter 20: Electrochemistry

Chemistry: The Central Science. Chapter 20: Electrochemistry Chemistry: The Central Science Chapter 20: Electrochemistry Redox reaction power batteries Electrochemistry is the study of the relationships between electricity and chemical reactions o It includes the

More information

The products have more enthalpy and are more ordered than the reactants.

The products have more enthalpy and are more ordered than the reactants. hapters 7 & 10 Bioenergetics To live, organisms must obtain energy from their environment and use it to do the work of building and organizing cell components such as proteins, enzymes, nucleic acids,

More information

Redox Reactions. the loss of electrons by another chemical, oxidation, so both are found together. You must remember

Redox Reactions. the loss of electrons by another chemical, oxidation, so both are found together. You must remember Redox Reactions You are full of redox reactions. The redox reaction respiration releases the energy you need to live, and the food you eat ultimately comes from the redox reaction photosynthesis. Around

More information

Ch/APh2 Bioenergetics Section Lecture of May 14, The thermodynamics of biological energy production.

Ch/APh2 Bioenergetics Section Lecture of May 14, The thermodynamics of biological energy production. Ch/APh2 Bioenergetics Section Lecture of May 14, 2009 Introduction to bioenergetics. The thermodynamics of biological energy production. Kinetic aspects of bioenergetic processes. The molecular and cellular

More information

Photosynthetic autotrophs use the energy of sunlight to convert low-g CO 2 and H 2 O into energy-rich complex sugar molecules.

Photosynthetic autotrophs use the energy of sunlight to convert low-g CO 2 and H 2 O into energy-rich complex sugar molecules. Chapters 7 & 10 Bioenergetics To live, organisms must obtain energy from their environment and use it to do the work of building and organizing cell components such as proteins, enzymes, nucleic acids,

More information

17.1 Redox Chemistry Revisited

17.1 Redox Chemistry Revisited Chapter Outline 17.1 Redox Chemistry Revisited 17.2 Electrochemical Cells 17.3 Standard Potentials 17.4 Chemical Energy and Electrical Work 17.5 A Reference Point: The Standard Hydrogen Electrode 17.6

More information

Unit 5 Part 2: Redox Reactions and Electrochemistry

Unit 5 Part 2: Redox Reactions and Electrochemistry Unit 5 Part 2: Redox Reactions and Electrochemistry Oxidation Numbers Oxidizing and Reducing Agents Balancing Redox Reactions Acidic solutions Basic solutions Galvanic Cells Nernst Equation This reaction

More information

Outline. Metabolism: Energy and Enzymes. Forms of Energy. Chapter 6

Outline. Metabolism: Energy and Enzymes. Forms of Energy. Chapter 6 Metabolism: Energy and Enzymes Chapter 6 Forms of Energy Outline Laws of Thermodynamics Metabolic Reactions ATP Metabolic Pathways Energy of Activation Enzymes Photosynthesis Cellular Respiration 1 2 Forms

More information

Review Questions - Lecture 5: Metabolism, Part 1

Review Questions - Lecture 5: Metabolism, Part 1 Review Questions - Lecture 5: Metabolism, Part 1 Questions: 1. What is metabolism? 2. What does it mean to say that a cell has emergent properties? 3. Define metabolic pathway. 4. What is the difference

More information

Human Biology Chapter 2.2: The Building Blocks of Molecules *

Human Biology Chapter 2.2: The Building Blocks of Molecules * OpenStax-CNX module: m57963 1 Human Biology Chapter 2.2: The Building Blocks of Molecules * Willy Cushwa Based on The Building Blocks of Molecules by OpenStax This work is produced by OpenStax-CNX and

More information

Oxidation-Reduction Review. Electrochemistry. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions. Sample Problem.

Oxidation-Reduction Review. Electrochemistry. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions. Sample Problem. 1 Electrochemistry Oxidation-Reduction Review Topics Covered Oxidation-reduction reactions Balancing oxidationreduction equations Voltaic cells Cell EMF Spontaneity of redox reactions Batteries Electrolysis

More information

Physical and Chemical change: Conservation of matter *

Physical and Chemical change: Conservation of matter * OpenStax-CNX module: m38711 1 Physical and Chemical change: Conservation of matter * Free High School Science Texts Project This work is produced by OpenStax-CNX and licensed under the Creative Commons

More information

Chapter 6- An Introduction to Metabolism*

Chapter 6- An Introduction to Metabolism* Chapter 6- An Introduction to Metabolism* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. The Energy of Life

More information

Unit 3: Cellular Energetics Guided Reading Questions (50 pts total)

Unit 3: Cellular Energetics Guided Reading Questions (50 pts total) AP Biology Biology, Campbell and Reece, 10th Edition Adapted from chapter reading guides originally created by Lynn Miriello Name: Chapter 8 An Introduction to Metabolism Unit 3: Cellular Energetics Guided

More information

Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species.

Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species. Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species. The species that loses the electron is oxidized. The species that gains the electron is reduced.

More information

Redox and Electrochemistry

Redox and Electrochemistry Redox and Electrochemistry 1 Electrochemistry in Action! 2 Rules for Assigning Oxidation Numbers The oxidation number of any uncombined element is 0. The oxidation number of a monatomic ion equals the

More information

*The entropy of a system may decrease, but the entropy of the system plus its surroundings must always increase

*The entropy of a system may decrease, but the entropy of the system plus its surroundings must always increase AP biology Notes: Metabolism Metabolism = totality of an organism's chemical process concerned with managing cellular resources. Metabolic reactions are organized into pathways that are orderly series

More information

Assigning Oxidation Numbers:

Assigning Oxidation Numbers: Assigning Oxidation Numbers: 1. Oxidation number of a free element or diatomic molecule is zero. Ex: Na(s), Cu(s), H 2 (g), F 2 (g) 2. In most cases the oxidation number of hydrogen is +1, oxygen is -2,

More information

Be sure to understand:

Be sure to understand: Learning Targets & Focus Questions for Unit 6: Bioenergetics Chapter 8: Thermodynamics Chapter 9: Cell Resp Focus Q Ch. 10: Photosynthesis Chapter 8 (141-150) 1. I can explain how living systems adhere

More information

General Chemistry 1412 Spring 2008 Instructor: Dr. Shawn Amorde Website:

General Chemistry 1412 Spring 2008 Instructor: Dr. Shawn Amorde Website: General Chemistry 1412 Spring 2008 Instructor: Dr. Shawn Amorde Website: www.austincc.edu/samorde Email: samorde@austincc.edu Lecture Notes Chapter 21 (21.1-21.25) Suggested Problems () Outline 1. Introduction

More information

Metabolism, Energy and Life - 1

Metabolism, Energy and Life - 1 Metabolism, Energy and Life - 1 Thousands of chemical reactions occur in our cells and tissues to keep us alive (and hopefully healthy). Monomers are assembled into the macromolecules we need for cell

More information

Giving you the energy you need!

Giving you the energy you need! Giving you the energy you need! Use your dominant hand Open and close the pin (with your thumb and forefinger) as many times as you can for 20 seconds while holding the other fingers straight out! Repeat

More information

Lecture Presentation. Chapter 18. Electrochemistry. Sherril Soman Grand Valley State University Pearson Education, Inc.

Lecture Presentation. Chapter 18. Electrochemistry. Sherril Soman Grand Valley State University Pearson Education, Inc. Lecture Presentation Chapter 18 Electrochemistry Sherril Soman Grand Valley State University Harnessing the Power in Nature The goal of scientific research is to understand nature. Once we understand the

More information

The atom: Ionisation energy and the periodic table (Grade 10) [NCS]

The atom: Ionisation energy and the periodic table (Grade 10) [NCS] OpenStax-CNX module: m39969 1 The atom: Ionisation energy and the periodic table (Grade 10) [NCS] Free High School Science Texts Project This work is produced by OpenStax-CNX and licensed under the Creative

More information

Energetics Free Energy and Spontaneity. Fueling Life

Energetics Free Energy and Spontaneity. Fueling Life Energetics Free Energy and Spontaneity Fueling Life Energy takes various forms MECHANICALL Energy, regardless of the form, can exist in two states potential kinetic Photosynthesis makes energy available

More information

Electrochemical Reactions

Electrochemical Reactions 1 of 20 4/11/2016 1:00 PM Electrochemical Reactions Electrochemical Reactions Electrical Work From Spontaneous Oxidation- Reduction Reactions Predicting Spontaneous Redox Reactions from the Sign of E Line

More information

Biological Chemistry and Metabolic Pathways

Biological Chemistry and Metabolic Pathways Biological Chemistry and Metabolic Pathways 1. Reaction a. Thermodynamics b. Kinetics 2. Enzyme a. Structure and Function b. Regulation of Activity c. Kinetics d. Inhibition 3. Metabolic Pathways a. REDOX

More information

Oxidation-reduction (redox) reactions

Oxidation-reduction (redox) reactions Oxidation-reduction (redox) reactions Reactions in which there are changes in oxidation state (oxidation number) between reactants and products 2 MnO 4- + 10 Br - + 16 H + 2 Mn 2+ + 5 Br 2 + 8 H 2 O One

More information

of catabolic processes, like glycolysis and the Krebs cycle, as hydride ions (H ). This free energy is used to regenerate ATP in the matrix.

of catabolic processes, like glycolysis and the Krebs cycle, as hydride ions (H ). This free energy is used to regenerate ATP in the matrix. Biochemistry I Oxidative Phosphorylation I. MITOCHONDRIA Mitochondria are cellular organelles which have two bilayer membranes, and two compartments defined by those membranes. Mitochondria are completely

More information

Chapter 8: Energy and Metabolism

Chapter 8: Energy and Metabolism Chapter 8: Energy and Metabolism Why do organisms need energy? How do organisms manage their energy needs? Defining terms and issues: energy and thermodynamics metabolic reactions and energy transfers

More information

General Chemistry Notes Name

General Chemistry Notes Name Bio Honors General Chemistry Notes Name Directions: Carefully read the following information. Look for the ** directions in italics** for prompts where you can do some work. Use the information you have

More information

Chapter 19: Electrochemistry

Chapter 19: Electrochemistry Chapter 19: Electrochemistry Overview of the Chapter review oxidation-reduction chemistry basics galvanic cells spontaneous chemical reaction generates a voltage set-up of galvanic cell & identification

More information

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions.

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. In electrochemical reactions, electrons are transferred from one species to another. Learning goals and

More information

Electrochemical Cells: Virtual Lab

Electrochemical Cells: Virtual Lab Electrochemical Cells: Virtual Lab Electrochemical cells involve the transfer of electrons from one species to another. In these chemical systems, the species that loses electrons is said to be oxidized

More information

Pathways that Harvest and Store Chemical Energy

Pathways that Harvest and Store Chemical Energy 6 Pathways that Harvest and Store Chemical Energy Energy is stored in chemical bonds and can be released and transformed by metabolic pathways. Chemical energy available to do work is termed free energy

More information

General Chemistry I. Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University

General Chemistry I. Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University General Chemistry I Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University Module 7: Oxidation-reduction reactions and transformation of chemical energy Oxidation-reduction reactions

More information

An oxidation-reduction (redox) reaction involves the transfer of electrons (e - ). Sodium transfers its electrons to chlorine

An oxidation-reduction (redox) reaction involves the transfer of electrons (e - ). Sodium transfers its electrons to chlorine Oxidation-Reduction An oxidation-reduction (redox) reaction involves the transfer of electrons (e - ). Sodium transfers its electrons to chlorine 2 Chemists need a way to keep track of what happens in

More information

Ground Rules of Metabolism CHAPTER 6

Ground Rules of Metabolism CHAPTER 6 Ground Rules of Metabolism CHAPTER 6 Antioxidants You ve heard the term. What s the big deal? Found naturally in many fruits and vegetables Added to many products What do they actually do? Antioxidants

More information

The SUN Project Tray as Mitochondrion

The SUN Project Tray as Mitochondrion The SUN Project Tray as Mitochondrion Ann Batiza, Ph.D. and Mary Gruhl, Ph.D, MATRIX Outer membrane (brown tray) Carbon compound INTERMEMBRANE SPACE Inner membrane (gray tray) Proton Electron ATP ADP P

More information

Zn+2 (aq) + Cu (s) Oxidation: An atom, ion, or molecule releases electrons and is oxidized. The oxidation number of the atom oxidized increases.

Zn+2 (aq) + Cu (s) Oxidation: An atom, ion, or molecule releases electrons and is oxidized. The oxidation number of the atom oxidized increases. Oxidation-Reduction Page 1 The transfer of an electron from one compound to another results in the oxidation of the electron donor and the reduction of the electron acceptor. Loss of electrons (oxidation)

More information

To determine relative oxidizing and reducing strengths of a series of metals and ions.

To determine relative oxidizing and reducing strengths of a series of metals and ions. Redox Reactions PURPOSE To determine relative oxidizing and reducing strengths of a series of metals and ions. GOALS 1 To explore the relative oxidizing and reducing strengths of different metals. 2 To

More information

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Sixth Edition by Charles H. Corwin Oxidation and Reduction by Christopher Hamaker 1 Oxidation Reduction Reactions Oxidation reduction reactions are

More information

Chapter 18. Electrochemistry

Chapter 18. Electrochemistry Chapter 18 Electrochemistry Section 17.1 Spontaneous Processes and Entropy Section 17.1 http://www.bozemanscience.com/ap-chemistry/ Spontaneous Processes and Entropy Section 17.1 Spontaneous Processes

More information

Periodic Variations in Element Properties

Periodic Variations in Element Properties OpenStax-CNX module: m51042 1 Periodic Variations in Element Properties OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 By the end

More information

Assigning Oxidation Numbers

Assigning Oxidation Numbers RULES Assigning Oxidation Numbers Examples 1. Each Uncombined Element has an 2Na + Cl 2 2NaCl oxidation number = 0 Na = 0 or written Na 0 Cl 2 = 0 or written Cl 0 Monatomic ions have an oxidation number

More information

Oxidation-Reduction Reactions

Oxidation-Reduction Reactions Oxidation-Reduction Reactions What is an Oxidation-Reduction, or Redox, reaction? Oxidation-reduction reactions, or redox reactions, are technically defined as any chemical reaction in which the oxidation

More information

Chemistry 1011 TOPIC TEXT REFERENCE. Electrochemistry. Masterton and Hurley Chapter 18. Chemistry 1011 Slot 5 1

Chemistry 1011 TOPIC TEXT REFERENCE. Electrochemistry. Masterton and Hurley Chapter 18. Chemistry 1011 Slot 5 1 Chemistry 1011 TOPIC Electrochemistry TEXT REFERENCE Masterton and Hurley Chapter 18 Chemistry 1011 Slot 5 1 18.5 Electrolytic Cells YOU ARE EXPECTED TO BE ABLE TO: Construct a labelled diagram to show

More information

HW #5: 5.28, 5.34, 5.36, 5.38, 5.46, 5.52, 5.54, 5.58, 5.68, 5.72, 5.74, 5.76, 5.78, 5.80

HW #5: 5.28, 5.34, 5.36, 5.38, 5.46, 5.52, 5.54, 5.58, 5.68, 5.72, 5.74, 5.76, 5.78, 5.80 Chemistry 121 Lectures 11 & 12: Chemical Equations; Balancing Chemical Equations; Classes of Chemical Reactions: Precipitation, Acid-Base, and Redox Reactions Chapter 5 in McMurry, Ballantine, et. al.

More information

Energy Exchanges Exam: What to Study

Energy Exchanges Exam: What to Study Energy Exchanges Exam: What to Study Here s what you will need to make sure you understand in order to prepare for our exam: Free Energy Conceptual understanding of free energy as available energy in a

More information

Structure & properties of water

Structure & properties of water OCN 623 Chemical Oceanography Reading: Libes, Chapter 7 Structure & properties of water Water accounts for 96.5 weight percent of seawater Innate characteristics affect nearly all properties of seawater

More information

I. Enzymes as Catalysts Chapter 4

I. Enzymes as Catalysts Chapter 4 8/29/11 I. Enzymes as Catalysts Chapter 4 Enzymes and Energy Lecture PowerPoint Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Enzymes Activation Energy A class

More information

Four elements make up about 90% of the mass of organisms O, C, H, and N

Four elements make up about 90% of the mass of organisms O, C, H, and N Chapter 2 Chemistry of Life 2-1 Composition of Matter -Mass- quantity of matter- use a balance to measure mass -Weight- pull of gravity on an object- use a scale Elements -cannot be broken down into simpler

More information

Derived copy of Electric Potential Energy: Potential Difference *

Derived copy of Electric Potential Energy: Potential Difference * OpenStax-CNX module: m60491 1 Derived copy of Electric Potential Energy: Potential Difference * Albert Hall Based on Electric Potential Energy: Potential Dierence by OpenStax This work is produced by OpenStax-CNX

More information

Chapter 5: Photosynthesis: The Energy of Life pg : Pathways of Photosynthesis pg

Chapter 5: Photosynthesis: The Energy of Life pg : Pathways of Photosynthesis pg UNIT 2: Metabolic Processes Chapter 5: Photosynthesis: The Energy of Life pg. 210-240 5.2: Pathways of Photosynthesis pg. 220-228 Light Dependent Reactions Photosystem II and I are the two light capturing

More information

Lecture Series 9 Cellular Pathways That Harvest Chemical Energy

Lecture Series 9 Cellular Pathways That Harvest Chemical Energy Lecture Series 9 Cellular Pathways That Harvest Chemical Energy Reading Assignments Review Chapter 3 Energy, Catalysis, & Biosynthesis Read Chapter 13 How Cells obtain Energy from Food Read Chapter 14

More information

Biology 12 Chapter: 1.4 Unit 1: Metabolic processes Course: 16

Biology 12 Chapter: 1.4 Unit 1: Metabolic processes Course: 16 Biology 12 Chapter: 1.4 Unit 1: Metabolic processes Course: 16 1- Exergonic reactions 2- Enzymes 1. Describe the structure and function of the macromolecules and the role of enzymes in maintaining normal

More information

Chapter 20 Electrochemistry

Chapter 20 Electrochemistry Chapter 20 Electrochemistry Learning goals and key skills: Identify oxidation, reduction, oxidizing agent, and reducing agent in a chemical equation Complete and balance redox equations using the method

More information

Electron Transfer Reactions

Electron Transfer Reactions ELECTROCHEMISTRY 1 Electron Transfer Reactions 2 Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation of an electric current (electricity) or be caused by

More information

Cellular Energy: Photosythesis

Cellular Energy: Photosythesis Cellular Energy: hotosythesis Cellular respiration and photosynthesis are chemical reactions that provide kinetic and potential energy for cells Sunlight energy hotosynthesis in chloroplasts Glucose +

More information

Supplementary thermodynamics as applied to biosystems

Supplementary thermodynamics as applied to biosystems Supplementary thermodynamics as applied to biosystems Glucose is transferred to glucose-6-phosphate, abbreviated here to G6P. The reaction may be written Glucose + phosphate G6P + H 2 O G o = 13.8kJ/mol

More information

Sample Question Solutions for the Chemistry of Life Topic Test

Sample Question Solutions for the Chemistry of Life Topic Test Sample Question Solutions for the Chemistry of Life Topic Test 1. Enzymes play a crucial role in biology by serving as biological catalysts, increasing the rates of biochemical reactions by decreasing

More information

Chapter 18 Electrochemistry

Chapter 18 Electrochemistry Chapter 18 Electrochemistry Definition The study of the interchange of chemical and electrical energy in oxidation-reduction (redox) reactions This interchange can occur in both directions: 1. Conversion

More information

Electrochem 1 Electrochemistry Some Key Topics Conduction metallic electrolytic Electrolysis effect and stoichiometry Galvanic cell Electrolytic cell Electromotive Force (potential in volts) Electrode

More information

C. Incorrect! Catalysts themselves are not altered or consumed during the reaction.

C. Incorrect! Catalysts themselves are not altered or consumed during the reaction. Human Physiology - Problem Drill 04: Enzymes and Energy Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully, (2) Work the problems on paper as needed, (3) Pick the answer,

More information

Cellular Energy: Respiration. Goals: Anaerobic respiration

Cellular Energy: Respiration. Goals: Anaerobic respiration Cellular Energy: Respiration Anaerobic respiration Goals: Define and describe the 3 sets of chemical reactions that comprise aerobic cellular respiration Describe the types of anaerobic respiration Compare

More information

Chapter 18 Electrochemistry. Electrochemical Cells

Chapter 18 Electrochemistry. Electrochemical Cells Chapter 18 Electrochemistry Chapter 18 1 Electrochemical Cells Electrochemical Cells are of two basic types: Galvanic Cells a spontaneous chemical reaction generates an electric current Electrolytic Cells

More information

20. Electron Transport and Oxidative Phosphorylation

20. Electron Transport and Oxidative Phosphorylation 20. Electron Transport and Oxidative Phosphorylation 20.1 What Role Does Electron Transport Play in Metabolism? Electron transport - Role of oxygen in metabolism as final acceptor of electrons - In inner

More information

Chemistry Review. Chapter 18 Review Questions Will be EXTRA CREDIT

Chemistry Review. Chapter 18 Review Questions Will be EXTRA CREDIT Chemistry Review Chapter 18 Review Questions Will be EXTRA CREDIT Two Types of Reactions Acid-Base reactions Oxidation-Reduction reactions Acid-Base Reactions Transfer of hydrogen ions protons Makes water

More information

MitoSeminar II: Some calculations in bioenergetics

MitoSeminar II: Some calculations in bioenergetics MitoSeminar II: Some calculations in bioenergetics MUDr. Jan Pláteník, PhD. Ústav lékařské biochemie 1.LF UK Helpful comments of Prof. MUDr. Jiří Kraml, DrSc., are acknowledged. 1 Respiratory chain and

More information