Bis2A: 2.3 Interpreting Chemical Reactions

Size: px
Start display at page:

Download "Bis2A: 2.3 Interpreting Chemical Reactions"

Transcription

1 OpenStax-CNX module: m Bis2A: 2.3 Interpreting Chemical Reactions The BIS2A Team This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract This module will discuss the overall methods to reading and interpreting chemical reactions. The main goal for this section is to draw connections between energy, electronegativity, functional groups and the synthesis or degradation of macromolecules and other compounds in the cell. Section Summary Chemical reactions are molecular transformations that begin with reactants and end with products. Almost all biological transformation that take place in a cell involve chemical reactions between various small molecules and some of the major categories of macromolecules found in the cell; proteins, carbohydrates, nucleic acids, and lipids. Understanding the basis for the assembly and disassembly of biomolecules is therefore key to developing a functional knowledge of biological processes. 1 Characteristics of Chemical Reactions All chemical reactions begin with a reactant, the general term for the one or more substances that enter into the reaction. Sodium and chloride ions, for example, are the reactants in the production of table salt. The one or more substances produced by a chemical reaction are called the product. **Note that there is some "hidden" excitement in the story about table salt involving water that we'll see soon.** In chemical reactions, the atoms and elements present in the reactant(s) must all also be present in the product(s). Similarly, there can be nothing present in the products that was not present in the reactants. This is because chemical reactions are governed by the law of conservation of mass, which states that matter cannot be created or destroyed in a chemical reaction. This means when you examine a chemical reaction you must try to account for everything that goes in AND make sure you can nd it all in the stu the comes out! Just as you can express mathematical calculations in equations such as = 9, you can use chemical equations to show how reactants become products. By convention, chemical equations are typically read or written from left to right. Reactants on the left are separated form products on the right by an single or double-headed arrow indicating the direction in which the chemical reaction proceeds. For example, the chemical reaction in which one atom of nitrogen and three atoms of hydrogen produce ammonia would be written as N + 3H NH 3. Correspondingly, the breakdown of ammonia into its components would be written as NH 3 N + 3H. Version 1.1: Jan 2, :19 pm

2 OpenStax-CNX module: m Note that in either direction you nd 1 N and 3 Hs on both sides of the equation. Reversability In theory, any chemical reaction can proceed in either direction under the right conditions. Reactants may synthesize into a product that is later revert back to a reactant. Reversibility is also a quality of exchange reactions. For instance, A + BC AB + C could then reverse to AB + C A + BC. This reversibility of a chemical reaction is indicated with a double arrow: A + BC[U+21C4]AB + C. So, if reactants become products that can revert to the reactant form how do you know what is a reactant and what is a product? It's a bit confusing. FILL IN HERE Synthesis Reactions Many macromolecules are made from smaller subunits, or building blocks, called monomers. Monomers covalently link to form larger molecules known as polymers. Often the synthesis of polymers from monomers will also produce water molecules as products of the reaction. This type of reaction is known as dehydration synthesis or condensation reaction. Figure 1: In the dehydration synthesis reaction depicted above, two molecules of glucose are linked together to form the disaccharide maltose. In the process, a water molecule is formed. note: Try to complete the parts of an Energy Story for the reaction above that have to do with the accounting of mass. We will begin learning how to ll in the energy and mechanism components later. See if together you can craft statements that are both accurate and concise. In a dehydration synthesis reaction (Figure 1), the hydrogen of one monomer combines with the hydroxyl group of another monomer, releasing a molecule of water. At the same time, the monomers share electrons and form covalent bonds. As additional monomers join, this chain of repeating monomers forms a polymer. Dierent types of monomers can combine in many congurations, giving rise to a diverse group of macromolecules. Even one kind of monomer can combine in a variety of ways to form several dierent polymers: for example, glucose monomers are the constituents of starch, glycogen, and cellulose. In the carbohydrate monomer example above the polymer is formed by a dehydration reaction, this type of reaction is also used to add amino acids to a growing peptide chain, and nucleotides to the growing DNA or RNA polymer. Visit the modules on Amino Acids, Lipids, and Nucleic Acids to see if you can identify the water molecules that are removed when a monomer is added to the growing polymer. Hydrolysis Reactions Polymers are broken down into monomers in a reaction known as hydrolysis. A hydrolysis reaction includes a water molecule as a reactant(figure 2). During these reactions, a polymer can be broken into two components: one product carries a hydrogen atom (H+) from the water while the second product carries the water's remaining hydroxyl group (OH).

3 OpenStax-CNX module: m Figure 2: In the hydrolysis reaction shown here, the disaccharide maltose is broken down to form two glucose monomers with the addition of a water molecule. Note that this reaction is the reverse of the synthesis reaction shown in gure 1 above. Dehydration synthesis and hydrolysis reactions are catalyzed, or sped up, by specic enzymes. Note that both dehydration synthesis and hydrolysis reactions involve the making and breaking of bonds between the reactants - a reorganization of how the atoms in the reactants are bonded together. In biological systems (our bodies included), food in the form of molecular polymers is hydrolyzed into smaller molecules by water and enzymes in the digestive system. This allows for the smaller nutrients to be absorbed and reused for a variety of purposes. In the cell, monomers derived from food may then be reassembled into larger polymers that serve new functions. For Additional Information: Visit this site 1 to see visual representations of dehydration synthesis and hydrolysis. Example of Hydrolysis with Enzyme Action is shown in this 3 minute video entitled: hydrolysis of sucrose by sucrase

4 OpenStax-CNX module: m The Three Fundamental Chemical Reactions Figure 3: The atoms and molecules involved in the three fundamental chemical reactions can be imagined as words. A synthesis reaction (a) is a chemical reaction that results in the synthesis (joining) of components that were formerly separate. A hydrolysis reaction (b) is a chemical reaction that breaks down or lyses something larger into its constituent parts. An exchange reaction (c) in which both synthesis and hydrolysis can occur, chemical bonds are both formed and broken, and energy is redistributed. The gure above represents a synthesis reaction (a), a hydrolysis reaction (b) and a third type of reaction, an exchange reaction (c). An exchange reaction is a chemical reaction in which both synthesis and hydrolysis can occur, chemical bonds are both formed and broken, and chemical energy is absorbed, stored, and released. The simplest form of an exchange reaction might be: A + BC AB + C. Notice that, to produce these products, B and C had to break apart in a decomposition reaction, whereas A and B had to bond in a synthesis reaction. A more complex exchange reaction might be:ab + CD AC + BD. Another example might be: AB + CD AD + BC. 2 Review Questions Exercise 1 (Solution on p. 7.) What role do electrons play in dehydration synthesis and hydrolysis? 3 Energy in Chemical Reactions Chemical reactions typically involve a redistribution of energy within the chemical reactants and products and with their environment. So, like it or not, we need to develop some models that can describe where energy is in a system (perhaps how it is stored) and how it can be moved around sets of molecules. The models we develop will not be overly detailed - in the sense that they would satisfy a hard-core chemist or physicist with technical detail - but we expect that they should still be technically correct and help to not start forming incorrect mental models that will make getting the "renements" down later. In this respect, one of the key concepts to understand is that we are going to view energy as something that is transferred

5 OpenStax-CNX module: m between things in a system. It is NOT transformed into dierent things. Transfer vs. transform - that's important. The latter gives the impression that energy is something which exists in dierent forms, that it gets reshaped somehow. No. It's hard to deal with something that is being conserved in a process if it constantly changing form. Those two ideas are inconsistent. So, we are going to transfer energy between dierent things instead and that it can be stored dierent places. That'll hopefully make the accounting easier. Since we are will often be dealing with transformations of biomolecules we can start by thinking about where energy can be found/stored in these systems. We'll start with a couple of ideas and add more to them later. Let us propose that one place that energy can be stored is in the motion of matter. For brevity we'll give the energy stored in motion a name: kinetic energy. Molecules in biology are in constant motion and therefore have a certain amount of kinetic energy (energy stored in motion) associated with them. Let us also propose that there is a certain amount of energy stored in the biomolecules themselves and that the amount of energy stored in those molecules is associated with the types and numbers of atoms in the molecules and the their organization (the number and types of bonds between them). The discussion of exactly where the energy is stored in the molecules is beyond the scope of this class but we can approximate it by suggesting that a good proxy is in the bonds. Dierent types of bonds may be associated with storing dierent amounts of energy. In some contexts this type of energy storage could be labeled potential energy or chemical energy. With this view, one of the things that happens during the making and breaking of bonds in a chemical reaction is that the energy is transferred about the system into dierent types of bonds. In the context of an Energy Story one could theoretically count the amount of energy stored in the bonds and motion of the reactants and the energy stored in the bonds and energy of the products. In some cases you might nd that when you add up the energy stored in the products and the energy stored in the reactants that these sums are not equal. If the energy in the reactants is greater than the products where did this energy go? It had to get transferred to something else. Some will certainly have moved into other parts of the system stored in the motion of other molecules (warming the environment) or perhaps in the energy associated with photons of light. One good real life example is the chemical reaction between wood and oxygen in the air and it's conversion to carbon dioxide and water. At the beginning, the energy in the system is largely in the molecular bonds of oxygen and the wood (reactants). There is still energy left in the carbon dioxide and water (products) but less than at the beginning. We all appreciate that some of that energy was transferred to the energy in light and heat. This reaction where energy is transferred to the environment is termed exothermic. By contrast, in some reactions energy will transfer in from the environment. These reactions are called endothermic. The transfer of energy in or out of the reaction from the environment is NOT the only thing that determines whether a reaction will be spontaneous or not. We'll discuss that soon. For the moment, it is important to get comfortable with the idea that energy can be transferred between dierent components of a system during a reaction and that you should be able to envision tracking it. 4 Enzymes and Catalysts For a chemical reaction to happen the substrates must rst nd one another in space. In fact, in many cases it's more complicated. Not only do the substrates need to run into one another but they need to come into contact in a specic orientation. Since chemicals don't "plan" these collisions need to happen relatively randomly. If reactants are very dilute the rate of the reaction will be slow - collisions will happen infrequently. Increasing the concentrations will increase the rate of productive collisions. Another way to change the rate of reaction is to increase the rate of collisions by increasing the rate at which the reactants explore the reaction space - by increasing the velocity of the molecules or their kinetic energy. This can be accomplished by transferring heat into the system. Those two are sometimes decent strategies for increasing

6 OpenStax-CNX module: m the rates of chemical reactions that happen in a tube. However, in the cell the transfer of heat may not be practical (it may damage cellular components) and lead to death. Cells sometimes use mechanisms to increase concentrations of reactants (we'll see some examples) but this is rarely sucient to drive reaction rates in a biologically relevant regime. That is where catalysts come in. A catalyst is a something that helps increases the rate of a chemical reaction without itself undergoing any change. You can think of a catalyst as a chemical change agent. The most important catalysts in biology are called enzymes. An enzyme is a protein catalyst. Other cellular catalysts include molecules called ribozymes. A ribozyme is a catalyst composed of a ribonucleic acid (RNA). Both of these will be discussed in more detail later in the course. Like all catalysts, enzymes work by lowering the level of energy that needs to be transferred into a chemical reaction to make it happen. A chemical reaction's activation energy is the threshold level of energy needed to initiate the reaction. Figure 4: Enzymes decrease the activation energy required to initiate a given chemical reaction. (a) Without an enzyme, the energy input needed for a reaction to begin is high. (b) With the help of an enzyme, less energy is needed for a reaction to begin. note: Can you create a very basic energy story for the generic reaction above? Practice going through the list of steps. You may need to make up or simplify things - for instance you might need to say that the mass of the reactants at the start is split between two forms and at the end the mass has combined into one form. Make up other ideas that make sense if you need to. note: Look at gure 4. What do you think the units are on the x-axis? Time would be one guess. However, if you compare the gures it appears that the products are formed at the same time whether the activation energy barrier is high or low. Wasn't the point of this gure to illustrate that reactions with high activation energy barriers were slower than those with low activation energy barriers? What's going on?

7 OpenStax-CNX module: m Solutions to Exercises in this Module to Exercise (p. 4) In a dehydration synthesis reaction, the hydrogen of one monomer combines with the hydroxyl group of another monomer, releasing a molecule of water. This creates an opening in the outer shells of atoms in the monomers, which can share electrons and form covalent bonds.

Synthesis of Biological Macromolecules

Synthesis of Biological Macromolecules OpenStax-CNX module: m44397 1 Synthesis of Biological Macromolecules OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of

More information

Study Guide: Basic Chemistry, Water, Life Compounds and Enzymes

Study Guide: Basic Chemistry, Water, Life Compounds and Enzymes Study Guide: Basic Chemistry, Water, Life Compounds and Enzymes 1. Lipids are good energy-storage molecules because a) the can absorb a large amount of energy while maintaining a constant temperature b)

More information

the spatial arrangement of atoms in a molecule and the chemical bonds that hold the atoms together Chemical structure Covalent bond Ionic bond

the spatial arrangement of atoms in a molecule and the chemical bonds that hold the atoms together Chemical structure Covalent bond Ionic bond Chemical structure the spatial arrangement of atoms in a molecule and the chemical bonds that hold the atoms together Covalent bond bond formed by the sharing of valence electrons between atoms Ionic bond

More information

2/18/2013 CHEMISTRY OF CELLS. Carbon Structural Formations. 4 Classes of Organic Compounds (biomolecules)

2/18/2013 CHEMISTRY OF CELLS. Carbon Structural Formations. 4 Classes of Organic Compounds (biomolecules) CHEMISTRY OF CELLS 11 elements make up all organisms C, O, N, H: 96% weight of human body ORGANIC CHEMISTRY Organic compounds: contain C Inorganic compounds: no C Bonding and Structural Formulas H and

More information

2.1 The Nature of Matter

2.1 The Nature of Matter 2.1 The Nature of Matter Lesson Objectives Identify the three subatomic particles found in atoms. Explain how all of the isotopes of an element are similar and how they are different. Explain how compounds

More information

A Brief Overview of Biochemistry. And I mean BRIEF!

A Brief Overview of Biochemistry. And I mean BRIEF! A Brief Overview of Biochemistry And I mean BRIEF! Introduction A. Chemistry deals with the composition of substances and how they change. B. A knowledge of chemistry is necessary for the understanding

More information

Biology Unit 2 Chemistry of Life (Ch. 6) Guided Notes

Biology Unit 2 Chemistry of Life (Ch. 6) Guided Notes Name Biology Unit 2 Chemistry of Life (Ch. 6) Guided Notes Atoms, Elements, and Chemical Bonding I can draw atom models and identify the # protons, # neutrons, and # electrons in an atom. I can identify

More information

Chapter 2. Introduction: Chapter Chemical Basis of Life. Structure of Matter:

Chapter 2. Introduction: Chapter Chemical Basis of Life. Structure of Matter: Chapter 2.1-2.2 Read text 2.1 and describe why chemistry is important in understanding life. Read text 2.2 and discuss how atomic structure determines how atoms interact. Also describe the types of chemical

More information

2.1 Atoms, Ions, and Molecules

2.1 Atoms, Ions, and Molecules 2.1 Atoms, Ions, and Molecules Living things consist of atoms of different elements. An atom is the smallest basic unit of matter. An element is one type of atom. 6 elements make up 99% of all living things

More information

Unit 2: The Properties of Water, Organic Macromolecules, Enzymes, Digestion (questions)

Unit 2: The Properties of Water, Organic Macromolecules, Enzymes, Digestion (questions) Table 1: ph Values of Common Substances 1. Observe Table 1, which substance has the highest concentration of H+ ions? a. Water b. Baking soda solution c. Lemon juice d. Sodium hydroxide solution 2. Which

More information

2.1 Atoms, Ions, and Molecules. 2.1 Atoms, Ions, and Molecules. 2.1 Atoms, Ions, and Molecules. 2.1 Atoms, Ions, and Molecules

2.1 Atoms, Ions, and Molecules. 2.1 Atoms, Ions, and Molecules. 2.1 Atoms, Ions, and Molecules. 2.1 Atoms, Ions, and Molecules All living things are based on atoms and their interactions. Living things consist of atoms of different elements. An atom is the smallest basic unit of matter. An element is one type of atom. ydrogen

More information

What are the building blocks of life?

What are the building blocks of life? Why? What are the building blocks of life? From the smallest single-celled organism to the tallest tree, all life depends on the properties and reactions of four classes of organic (carbon-based) compounds

More information

Chapter 6 The Chemistry of Life

Chapter 6 The Chemistry of Life Chapter 6 The Chemistry of Life Atoms: The Building Blocks of Life Both living and non-living things have atoms Everything, living and non, is made of Atoms. An elements is something you can break down

More information

UNIT 1: BIOCHEMISTRY

UNIT 1: BIOCHEMISTRY UNIT 1: BIOCHEMISTRY UNIT 1: Biochemistry Chapter 6.1: Chemistry of Life I. Atoms, Ions, and Molecules A. Living things consist of atoms of different elements 1. An atom is the smallest basic unit of matter

More information

U2.1.1: Molecular biology explains living processes in terms of the chemical substances involved (Oxford Biology Course Companion page 62).

U2.1.1: Molecular biology explains living processes in terms of the chemical substances involved (Oxford Biology Course Companion page 62). Unit 11: Biochemistry Study Guide U2.1.1: Molecular biology explains living processes in terms of the chemical substances involved (Oxford Biology Course Companion page 62). 1. Define molecular biology.

More information

Chapter 6 Chemistry in Biology

Chapter 6 Chemistry in Biology Section 1: Atoms, Elements, and Compounds Section 2: Chemical Reactions Section 3: Water and Solutions Section 4: The Building Blocks of Life Click on a lesson name to select. 6.1 Atoms, Elements, and

More information

Chemistry in Biology. Section 1. Atoms, Elements, and Compounds

Chemistry in Biology. Section 1. Atoms, Elements, and Compounds Section 1 Atoms, Elements, and Compounds Atoms! Chemistry is the study of matter.! Atoms are the building blocks of matter.! Neutrons and protons are located at the center of the atom.! Protons are positively

More information

NORTH CENTRAL HIGH SCHOOL NOTE & STUDY GUIDE. Honors Biology I

NORTH CENTRAL HIGH SCHOOL NOTE & STUDY GUIDE. Honors Biology I NOTE/STUDY GUIDE: Unit 1-2, Biochemistry Honors Biology I, Mr. Doc Miller, M.Ed. North Central High School Name: Period: Seat #: Date: NORTH CENTRAL HIGH SCHOOL NOTE & STUDY GUIDE Honors Biology I Unit

More information

Chemical Basis of Life

Chemical Basis of Life Chemical Basis of Life Jan 30 11:42 AM In order to understand digestion and nutrition, we need some basic biochemistry Chemistry studies the composition of matter and its changes as well as the change

More information

2/25/2013. Electronic Configurations

2/25/2013. Electronic Configurations 1 2 3 4 5 Chapter 2 Chemical Principles The Structure of Atoms Chemistry is the study of interactions between atoms and molecules The atom is the smallest unit of matter that enters into chemical reactions

More information

BIOCHEMISTRY 10/9/17 CHEMISTRY OF LIFE. Elements: simplest form of a substance - cannot be broken down any further without changing what it is

BIOCHEMISTRY 10/9/17 CHEMISTRY OF LIFE. Elements: simplest form of a substance - cannot be broken down any further without changing what it is BIOCHEMISTRY CHEMISTRY OF LIFE Elements: simplest form of a substance - cannot be broken down any further without changing what it is THE ATOM Just like cells are the basic unit of life, the ATOM is the

More information

BIOCHEMISTRY The Chemistry of Living Things

BIOCHEMISTRY The Chemistry of Living Things BIOCHEMISTRY The Chemistry of Living Things Biochemistry, an area that many students find pretty challenging (difficult). While the ideas are abstract, much of the material boils down to memorization.

More information

is a substance that reduces the activity of an enzyme by entering the active site in place of the substrate whose structure it mimics.

is a substance that reduces the activity of an enzyme by entering the active site in place of the substrate whose structure it mimics. is a substance that reduces the activity of an enzyme by entering the active site in place of the substrate whose structure it mimics. Competitive Inhibitor Identify the following molecule: Polysaccharide

More information

Biology Keystone (PA Core) Quiz The Chemical Basis for Life - (BIO.A ) Water Properties, (BIO.A ) Carbon, (BIO.A.2.2.

Biology Keystone (PA Core) Quiz The Chemical Basis for Life - (BIO.A ) Water Properties, (BIO.A ) Carbon, (BIO.A.2.2. Biology Keystone (PA Core) Quiz The Chemical Basis for Life - (BIO.A.2.1.1 ) Water Properties, (BIO.A.2.2.1 ) Carbon, (BIO.A.2.2.2 ) Macromolecules Student Name: Teacher Name: Jared George 1) The first

More information

Guided Notes Unit 1: Biochemistry

Guided Notes Unit 1: Biochemistry Name: Date: Block: Chapter 2: The Chemistry of Life I. Concept 2.1: Atoms, Ions, and Molecules a. Atoms Guided Notes Unit 1: Biochemistry i. Atom: _ ii. (They are SUPER small! It would take 3 million carbon

More information

`1AP Biology Study Guide Chapter 2 v Atomic structure is the basis of life s chemistry Ø Living and non- living things are composed of atoms Ø

`1AP Biology Study Guide Chapter 2 v Atomic structure is the basis of life s chemistry Ø Living and non- living things are composed of atoms Ø `1AP Biology Study Guide Chapter 2 v Atomic structure is the basis of life s chemistry Ø Living and non- living things are composed of atoms Ø Element pure substance only one kind of atom Ø Living things

More information

Chemical Reactions. Bởi: OpenStaxCollege

Chemical Reactions. Bởi: OpenStaxCollege Chemical Reactions Bởi: OpenStaxCollege One characteristic of a living organism is metabolism, which is the sum total of all of the chemical reactions that go on to maintain that organism s health and

More information

Biology 30 The Chemistry of Living Things

Biology 30 The Chemistry of Living Things Biology 30 The Chemistry of Living Things Hierarchy of organization: Chemistry: MATTER: Periodic Table: ELEMENT: Ex. oxygen, gold, copper, carbon COMPOUND: Ex. salt (NaCl), H 2 O ELEMENTS ESSENTIAL TO

More information

Chapter 02 - Life, Matter, and Energy. Multiple Choice Questions

Chapter 02 - Life, Matter, and Energy. Multiple Choice Questions Essentials of Anatomy and Physiology 1st Edition Saladin TEST BANK Full clear download (no formatting errors) at: https://testbankreal.com/download/essentials-anatomy-physiology-1stedition-saladin-test-bank/

More information

The Chemical Level of Organization

The Chemical Level of Organization Scuola di Ingegneria Industriale e dell Informazione Course 096125 (095857) Introduction to Green and Sustainable Chemistry The Chemical Level of Organization Prof. (and Ada Truscello) Dept. CMIC http://iscamap.chem.polimi.it/citterio/education/course-topics/

More information

Chapter 2 The Chemistry of Biology. Dr. Ramos BIO 370

Chapter 2 The Chemistry of Biology. Dr. Ramos BIO 370 Chapter 2 The Chemistry of Biology Dr. Ramos BIO 370 2 Atoms, Bonds, and Molecules Matter - all materials that occupy space and have mass Matter is composed of atoms. Atom simplest form of matter not divisible

More information

Biology Chapter 2: The Chemistry of Life. title 4 pictures, with color (black and white don t count!)

Biology Chapter 2: The Chemistry of Life. title 4 pictures, with color (black and white don t count!) 33 Biology Chapter 2: The Chemistry of Life title 4 pictures, with color (black and white don t count!) 34 Chapter 2: The Chemistry of Life Goals Highlight all unknown words 35-36 Chapter 2: The Chemistry

More information

Unit 5 Test. Name: Score: 37 / 37 points (100%)

Unit 5 Test. Name: Score: 37 / 37 points (100%) Name: Score: 37 / 37 points (100%) Unit 5 Test Matching (1 point each) Match each item with the correct statement below a activity series j product b chemical equation k reactant c coefficient l reduction

More information

Elements and Isotopes

Elements and Isotopes Section 2-1 Notes Atoms Life depends on chemistry. The basic unit of matter is the atom. Atoms are incredibly small The subatomic particles that make up atoms are protons, neutrons, and electrons. Parts

More information

Unit Two Chemistry of the Human Body

Unit Two Chemistry of the Human Body I. Introduction to atoms Unit Two Chemistry of the Human Body A. Chemistry is the branch of science that concerns itself with the structure of matter, including the interaction between atoms. 1. Atoms-

More information

Biology Unit 4. Chemistry of Life

Biology Unit 4. Chemistry of Life Biology Unit 4 Chemistry of Life Elements Everything in our universe that has a mass and a volume is made of matter. Matter in its purest form is an element. There are 118 elements on the periodic table,

More information

Full file at https://fratstock.eu

Full file at https://fratstock.eu VanMeter: Microbiology for the Healthcare Professional Chapter 02: Chemistry of Life Test Bank MULTIPLE CHOICE 1. The atomic number equals the number of a. Protons b. Neutrons c. Electrons d. Protons and

More information

Chapter Two Test Chemistry. 1. If an atom contains 11 protons and 12 neutrons, its atomic number is A. 1 C. 12 B. 11 D. 23

Chapter Two Test Chemistry. 1. If an atom contains 11 protons and 12 neutrons, its atomic number is A. 1 C. 12 B. 11 D. 23 Name Chapter Two Test Chemistry 1. If an atom contains 11 protons and 12 neutrons, its atomic number is A. 1 C. 12 B. 11 D. 23 2. The nucleus is made up of all of the following: A. Electrons C. Protons

More information

Nature of matter. Chemical bond is a force that joins atoms

Nature of matter. Chemical bond is a force that joins atoms Nature of matter Atom the smallest unit of matter that cannot be broken down by chemical means The subatomic particles of an atom consist of protons, neutrons and electrons Element is a pure substance

More information

Chemistry of Life. Chapter Two

Chemistry of Life. Chapter Two Chemistry of Life Chapter Two 1 Biology and Chemistry Biology = study of life Chemistry = study of matter and the changes it undergoes Matter anything that takes up space and has mass Life is made up of

More information

Chapter 02 Chemical Basis of Life. Multiple Choice Questions

Chapter 02 Chemical Basis of Life. Multiple Choice Questions Seeleys Essentials of Anatomy and Physiology 8th Edition VanPutte Test Bank Full Download: http://testbanklive.com/download/seeleys-essentials-of-anatomy-and-physiology-8th-edition-vanputte-test-bank/

More information

Understanding Chemistry in 3D

Understanding Chemistry in 3D Contents 1 Understanding Chemistry in 3D 2 Organic Chemistry 2.1 So how do cells keep from falling apart in a water environment? 2.2 How are macromolecules assembled? 3 Where do we find macromolecules?

More information

The Chemistry of Life

The Chemistry of Life The Chemistry of Life Things you should be able to do 1. Describe how the unique properties of water support life on Earth. 2. Explain how carbon is uniquely suited to form biological macromolecules. 3.

More information

Matter and Substances Section 3-1

Matter and Substances Section 3-1 Matter and Substances Section 3-1 Key Idea: All matter is made up of atoms. An atom has a positively charges core surrounded by a negatively charged region. An atom is the smallest unit of matter that

More information

Review_Unit 2 Biochemistry

Review_Unit 2 Biochemistry Review_Unit 2 Biochemistry Basic Chemistry 1. What is an element? A substance that cannot be broken down into smaller particles. 2. What are atoms? The smallest part of an element that still maintains

More information

BIOCHEMISTRY NOTES - UNIT 2-

BIOCHEMISTRY NOTES - UNIT 2- BIOCHEMISTRY NOTES - UNIT 2- ATOMS - the basic unit of matter. Contains subatomic particles o (+ charge) o (no charge/neutral) o (- charge) Protons and neutrons have about the same mass. Electrons are

More information

Biology Chapter 2 The Chemistry of Life Mr. Hines

Biology Chapter 2 The Chemistry of Life Mr. Hines Biology Chapter 2 The Chemistry of Life Mr. Hines Chapter 2.1 The nature of Matter Learning Target 1 List and describe the four things in the universe and their relationship 2 Explain what matter is. 3

More information

Chapter 2 Chemistry of Life

Chapter 2 Chemistry of Life Chapter 2 Chemistry of Life Section 2.1 Atoms, Ions and Molecules Section 2.2 Properties of water Section 2.3 Carbon-based Molecules Section 2.4 Chemical Reactions Section 2.5 - Enzymes 1 Atoms, Ions and

More information

2.1 The Nature of Matter

2.1 The Nature of Matter 2.1 The Nature of Matter Lesson Objectives Identify the three subatomic particles found in atoms. Explain how all of the isotopes of an element are similar and how they are different. Explain how compounds

More information

The Chemistry and Energy of Life

The Chemistry and Energy of Life 2 The Chemistry and Energy of Life Chapter 2 The Chemistry and Energy of Life Key Concepts 2.1 Atomic Structure Is the Basis for Life s Chemistry 2.2 Atoms Interact and Form Molecules 2.3 Carbohydrates

More information

chapter A solution is a mixture composed of two or more substances that are physically blended but not chemically combined.

chapter A solution is a mixture composed of two or more substances that are physically blended but not chemically combined. chapter 02 True / False Questions 1. Minerals are organic elements extracted from the soil by plants. True False 2. Molecules composed of two or more atoms are called compounds. True False 3. Hydrogen,

More information

Biomolecules. Energetics in biology. Biomolecules inside the cell

Biomolecules. Energetics in biology. Biomolecules inside the cell Biomolecules Energetics in biology Biomolecules inside the cell Energetics in biology The production of energy, its storage, and its use are central to the economy of the cell. Energy may be defined as

More information

Name Biology Chapter 2 Note-taking worksheet

Name Biology Chapter 2 Note-taking worksheet Name Biology Chapter 2 Note-taking worksheet The Nature of Matter 1. Life depends on Atoms 1. The study of chemistry starts with the basic unit of matter, the. 2. The atom was first used by the Greek philosopher

More information

2 4 Chemical Reactions and Enzymes

2 4 Chemical Reactions and Enzymes 2 4 Chemical Reactions and Enzymes THINK ABOUT IT Living things are made up of chemical compounds, but chemistry isn t just what life is made of chemistry is also what life does. Everything that happens

More information

Chapter 2 Chemical Aspects of Life

Chapter 2 Chemical Aspects of Life Chapter 2 Chemical Aspects of Life Multiple Choice Questions 1. Anything that has weight and occupies space can be described as A. an atom. B. matter. C. a compound. D. a molecule. #1 Learning Outcome:

More information

MULTIPLE CHOICE. Circle the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Circle the one alternative that best completes the statement or answers the question. Summer Work Quiz - Molecules and Chemistry Name MULTIPLE CHOICE. Circle the one alternative that best completes the statement or answers the question. 1) The four most common elements in living organisms

More information

Ch 3: Chemistry of Life. Chemistry Water Macromolecules Enzymes

Ch 3: Chemistry of Life. Chemistry Water Macromolecules Enzymes Ch 3: Chemistry of Life Chemistry Water Macromolecules Enzymes Chemistry Atom = smallest unit of matter that cannot be broken down by chemical means Element = substances that have similar properties and

More information

AP Biology. Metabolism & Enzymes

AP Biology. Metabolism & Enzymes Metabolism & Enzymes From food webs to the life of a cell energy energy energy Flow of energy through life: Life is built on chemical reactions transforming energy from one form to another organic molecules

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Figure 2.1 Using Figure 2.1, match the following: 1) Lipid. 2) Functional protein. 3) Nucleotide.

More information

Chapter 2: Chemistry. What does chemistry have to do with biology? Vocabulary BIO 105

Chapter 2: Chemistry. What does chemistry have to do with biology? Vocabulary BIO 105 Chapter 2: Chemistry What does chemistry have to do with biology? BIO 105 Vocabulary 1. Matter anything that takes up space and has mass Atoms are the smallest units of matter that can participate in chemical

More information

EH1008 : Biology for Public Health : Biomolecules and Metabolism

EH1008 : Biology for Public Health : Biomolecules and Metabolism EH1008 : Biology for Public Health : Biomolecules and Metabolism Biochemistry: The chemistry of living things What has this got to do with Epidemiology & Public Health? Aims of 'Epidemiology & Public Health:

More information

Teacher Instructions

Teacher Instructions Teacher Instructions To print handouts for students Go to File print, change Print what: to handouts, change # per page if desired to enlarge slides on page Change Print range to slides and type in slide

More information

6. Reaction Chemistry

6. Reaction Chemistry 6. Reaction Chemistry 6.1 Chemical Elements 6.2 Chemical Bonding 6.3 Chemical Reactions 6.4 Thermodynamics 6.5 Properties of Water 6.6 Important Biomolecules 6.1 Chemical Elements It is common for elements

More information

Unit 1: Chemistry - Guided Notes

Unit 1: Chemistry - Guided Notes Scientific Method Notes: Unit 1: Chemistry - Guided Notes 1 Common Elements in Biology: Atoms are made up of: 1. 2. 3. In order to be stable, an atom of an element needs a full valence shell of electrons.

More information

Chapter 2 The Chemistry of Life

Chapter 2 The Chemistry of Life Chapter 2 The Chemistry of Life I. Water Liquid Naturally occurring It expands liquid to solid Covers more than 75% of our surface Most abundant in living organisms most important inorganic compound for

More information

Chemistry in Biology Section 1 Atoms, Elements, and Compounds

Chemistry in Biology Section 1 Atoms, Elements, and Compounds Name Chemistry in Biology Section 1 Atoms, Elements, and Compounds Date Main Idea Details Scan the headings and boldfaced words in Section 1 of the chapter. Predict two things that you think might be discussed.

More information

Biology of Humans: Concepts, Applications, and Issues, 6e (Goodenough) Chapter 2 Chemistry Comes to Life

Biology of Humans: Concepts, Applications, and Issues, 6e (Goodenough) Chapter 2 Chemistry Comes to Life Biology of Humans: Concepts, Applications, and Issues, 6e (Goodenough) Chapter 2 Chemistry Comes to Life 2.1 Multiple Choice Questions 1) A neutral atom must contain. A) an equal number of protons and

More information

EVPP 110 Lecture Exam #1 Study Questions Fall 2003 Dr. Largen

EVPP 110 Lecture Exam #1 Study Questions Fall 2003 Dr. Largen EVPP 110 Lecture Exam #1 Study Questions Fall 2003 Dr. Largen These study questions are meant to focus your study of the material for the first exam. The absence here of a topic or point covered in lecture

More information

Name: Block: Date: Microbiology Chapters 1 and 2 Review

Name: Block: Date: Microbiology Chapters 1 and 2 Review Name: Block: Date: Microbiology Chapters 1 and 2 Review Complete the following short answer questions. 1. Define microbiology. The study of microorganisms. 2. What are the six major groups of organisms

More information

1.Matter and Organic Compounds Matter =

1.Matter and Organic Compounds Matter = The Chemistry of Life Notes Unit 2 1.Matter and Organic Compounds Matter = All things are made of matter Name Matter is made up of substances Chemical substance = definite composition throughout Either

More information

Name: Date: Period: Biology Notes: Biochemistry Directions: Fill this out as we cover the following topics in class

Name: Date: Period: Biology Notes: Biochemistry Directions: Fill this out as we cover the following topics in class Name: Date: Period: Biology Notes: Biochemistry Directions: Fill this out as we cover the following topics in class Part I. Water Water Basics Polar: part of a molecule is slightly, while another part

More information

Biochemistry. Basic Chemistry Review, ph, Water, Organic Molecules

Biochemistry. Basic Chemistry Review, ph, Water, Organic Molecules Biochemistry Basic Chemistry Review, ph, Water, Organic Molecules Basic Chemistry Review Basic Atomic Structure H T T P : / / W W W. Y O U T U B E. C O M / W A T C H? V = L P 5 7 G E W C I S Y Atomic Structure

More information

Chapter 2: Fundamentals of Chemistry. Question Type: Multiple Choice. 1) Which of the following pairs is mismatched?

Chapter 2: Fundamentals of Chemistry. Question Type: Multiple Choice. 1) Which of the following pairs is mismatched? Microbiology Principles and Explorations 9th Edition Black TEST BANK Full clear download at: https://testbankreal.com/download/microbiology-principles-explorations- 9th-edition-black-test-bank/ Microbiology

More information

Mr. Carpenter s Biology Biochemistry. Name Pd

Mr. Carpenter s Biology Biochemistry. Name Pd Mr. Carpenter s Biology Biochemistry Name Pd Chapter 2 Vocabulary Atom Element Compound Molecule Ion Cohesion Adhesion Solution Acid Base Carbohydrate Monosaccharide Lipid Protein Amino acid Nucleic acid

More information

Physical and Chemical change: Conservation of matter *

Physical and Chemical change: Conservation of matter * OpenStax-CNX module: m38711 1 Physical and Chemical change: Conservation of matter * Free High School Science Texts Project This work is produced by OpenStax-CNX and licensed under the Creative Commons

More information

Basic Chemistry. Chapter 2 BIOL1000 Dr. Mohamad H. Termos

Basic Chemistry. Chapter 2 BIOL1000 Dr. Mohamad H. Termos Basic Chemistry Chapter 2 BIOL1000 Dr. Mohamad H. Termos Chapter 2 Objectives Following this chapter, you should be able to describe: - Atoms, molecules, and ions - Composition and properties - Types of

More information

Atomic weight = Number of protons + neutrons

Atomic weight = Number of protons + neutrons 1 BIOLOGY Elements and Compounds Element is a substance that cannot be broken down to other substances by chemical reactions. Essential elements are chemical elements required for an organism to survive,

More information

1) What are the four major elements found in the chemicals that comprise the human body?

1) What are the four major elements found in the chemicals that comprise the human body? Package Title: Testbank Course Title: PAP14 Chapter Number: 02 Question type: Multiple Choice 1) What are the four major elements found in the chemicals that comprise the human body? a) nitrogen, oxygen,

More information

12U Biochemistry Unit Test

12U Biochemistry Unit Test 1 12U Biology: Biochemistry Test 12U Biochemistry Unit Test Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true.

More information

The Chemistry of Microbiology

The Chemistry of Microbiology PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University C H A P T E R 2 The Chemistry of Microbiology Atoms Matter anything that takes up space and has mass

More information

Describe how proteins and nucleic acids (DNA and RNA) are related to each other.

Describe how proteins and nucleic acids (DNA and RNA) are related to each other. Name Date Molecular Biology Review Part 1 IB Papers Topic 2.1 Molecules to Metabolism Living organisms control their composition by a complex web of chemical interactions. Be able to: Explain how molecular

More information

Unit 2: Part 1 Matter & Energy in Ecosystems What elements am I made of?

Unit 2: Part 1 Matter & Energy in Ecosystems What elements am I made of? Unit 2: Part 1 Matter & Energy in Ecosystems What elements am I made of? I. Introduction: Matter in Ecosystems A. Organisms are composed of matter (anything that takes up space and has mass) B. Organisms

More information

file:///biology Exploring Life/BiologyExploringLife04/

file:///biology Exploring Life/BiologyExploringLife04/ Objectives Identify carbon skeletons and functional groups in organic molecules. Relate monomers and polymers. Describe the processes of building and breaking polymers. Key Terms organic molecule inorganic

More information

Atoms. Atoms 9/9/2015

Atoms. Atoms 9/9/2015 The Chemistry of Life The Nature of Matter, Water,Carbon Compounds, Chemical Reactions and Enzymes The Nature of Matter B.1.9 Both living and nonliving things are composed of compounds, which are themselves

More information

Chapter 1 Annotating Outline Honors Biology

Chapter 1 Annotating Outline Honors Biology Chapter 1 Annotating Outline Honors Biology Name: Pd: As you read the textbook, paragraph by paragraph, please annotate in the spaces below. You ll have to answer related questions as you read as well.

More information

B DAYS BIOCHEMISTRY UNIT GUIDE Due 9/13/16 Monday Tuesday Wednesday Thursday Friday 8/22 - A 8/23 - B

B DAYS BIOCHEMISTRY UNIT GUIDE Due 9/13/16 Monday Tuesday Wednesday Thursday Friday 8/22 - A 8/23 - B B DAYS BIOCHEMISTRY UNIT GUIDE Due 9/13/16 Monday Tuesday Wednesday Thursday Friday 8/22 - A 8/23 - B 8/24 - A 8/25 - B 8/26 - A 8/29 - B *Hydrolysis and dehydration synthesis *Macromolecule active reading

More information

Chapter 2: The Chemical Basis of Life

Chapter 2: The Chemical Basis of Life Chapter 2: The Chemical Basis of Life I. Basic Chemistry A. Matter, Mass, and Weight 1. All living and nonliving things are composed of 2. represents the amount of matter. 3. is caused by the gravitational

More information

MODULE 2: BIOLOGICAL MOLECULES

MODULE 2: BIOLOGICAL MOLECULES PEER-LED TEAM LEARNING INTRDUCTRY BILGY MDULE 2: BILGICAL MLECULES JSEP GRISWLD, + DEAN STETLER,* AND MICAEL GAINES, ( + City College of New York, *University of Kansas, Univ. of Miami;) I. Introduction

More information

Activating Strategy. AP Lesson #10. EQ: What is metabolism and what role does energy play in metabolism? How does energy move through an environment?

Activating Strategy. AP Lesson #10. EQ: What is metabolism and what role does energy play in metabolism? How does energy move through an environment? Activating Strategy Belief or Disbelief 1. 1 st Law of thermodynamics states that energy can be created and destroyed. 2. Anabolic reactions are reactions that break bonds between molecules. 3. Exergonic

More information

Biology. Chapter 2 Notes

Biology. Chapter 2 Notes Biology Chapter 2 Notes Section 1: Nature of Matter Objectives: 1) Differentiate between atoms and elements 2) Analyze how compounds are formed 3) Distinguish between covalent bonds, hydrogen bonds and

More information

Name Class Date. KEY CONCEPT All living things are based on atoms and their interactions. atom ion molecule

Name Class Date. KEY CONCEPT All living things are based on atoms and their interactions. atom ion molecule Section 1: Atoms, Ions, and Molecules KEY CONCEPT All living things are based on atoms and their interactions. VOCABULARY atom ion molecule element ionic bond compound covalent bond MAIN IDEA: Living things

More information

Living and nonliving things are all made of elements. It is the way that atoms combine that give every element a different characteristic.

Living and nonliving things are all made of elements. It is the way that atoms combine that give every element a different characteristic. Living and nonliving things are all made of elements. It is the way that atoms combine that give every element a different characteristic. 98% of the body is made of only 6 elements The 6 elements are:

More information

PENNSYLVANIA. Explain the nature of the carbon atom and how organic molecules are important to organisms. Page 1 of B.A7.

PENNSYLVANIA. Explain the nature of the carbon atom and how organic molecules are important to organisms. Page 1 of B.A7. Know: Understand: Do: S11.C.1.1.1 -- Essential Explain that matter is made of particles called atoms and that atoms are composed of even smaller particles (e.g., proton, neutrons, electrons). S11.C.1.1.2

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A neutral atom must contain. A) an equal number of protons, neutrons, and electrons B) an equal

More information

ALE 4. Effect of Temperature and Catalysts on the Rate of a Chemical Reaction

ALE 4. Effect of Temperature and Catalysts on the Rate of a Chemical Reaction Name Chem 163 Section: Team Number: ALE 4. Effect of Temperature and Catalysts on the Rate of a Chemical Reaction (Reference: 16.5 16.6 & 16.8 Silberberg 5 th edition) Why do reaction rates increase as

More information

Chapter 2. Chemical Basis of Life

Chapter 2. Chemical Basis of Life hapter 2 hemical Basis of Life opyright The McGrawill ompanies, Inc. Permission required for reproduction or display. Introduction: A. hemistry deals with the composition of matter and how it changes.

More information

PRE- AP BIOCHEMISTRY UNIT GUIDE Due Thursday, 9/10. Monday Tuesday Wednesday Thursday Friday 8/24

PRE- AP BIOCHEMISTRY UNIT GUIDE Due Thursday, 9/10. Monday Tuesday Wednesday Thursday Friday 8/24 PRE- AP BIOCHEMISTRY UNIT GUIDE Due Thursday, 9/10 Monday Tuesday Wednesday Thursday Friday 8/24 8/25 8/26 8/27 8/28 *Ice- breaker *Cube Inquiry Activity *Syllabus Scavenger hunt *Assign sec. 2.1 & 2.2

More information

How do we get the energy, building blocks, and important molecules out of our food?

How do we get the energy, building blocks, and important molecules out of our food? Why do we need to eat food? To get a source of energy To get building blocks (raw materials) for growth/repair/maintenance/ energy storage To get the homeostasis molecules needed to keep our body "machinery"

More information

Hole s Human Anatomy and Physiology Eleventh Edition. Chapter 2

Hole s Human Anatomy and Physiology Eleventh Edition. Chapter 2 Hole s Human Anatomy and Physiology Eleventh Edition Shier Butler Lewis Chapter 2 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. CHAPTER 2 CHEMICAL BASIS OF

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. AP Biology Exam 1: The Chemistry of Life Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Matter A) has mass. B) All of the choices are correct.

More information