Chapter 18. Electrochemistry

Size: px
Start display at page:

Download "Chapter 18. Electrochemistry"

Transcription

1 Chapter 18 Electrochemistry

2 Section 17.1 Spontaneous Processes and Entropy

3 Section Spontaneous Processes and Entropy

4 Section 17.1 Spontaneous Processes and Entropy

5 Section 18.1 Balancing Oxidation-Reduction Equations Review of Terms Electrochemistry the study of the interchange of chemical and electrical energy Oxidation reduction (redox) reaction involves a transfer of electrons from the reducing agent to the oxidizing agent Oxidation loss of electrons Reduction gain of electrons Reducing agent electron donor Oxidizing agent electron acceptor Copyright Cengage Learning. All rights reserved 5

6 Section 18.1 Balancing Oxidation-Reduction Equations Half Reactions The overall reaction is split into two half reactions, one involving oxidation and one involving reduction. 8H + + MnO 4 + 5Fe 2+ Mn Fe H 2 O Reduction: 8H + + MnO 4 + 5e Oxidation: 5Fe 2+ 5Fe e Mn H 2 O Copyright Cengage Learning. All rights reserved 6

7 Section 18.1 Balancing Oxidation-Reduction Equations The Half Reaction Method for Balancing Equations for Oxidation Reduction Reactions Occurring in Acidic Solution 1. Write separate equations for the oxidation and reduction half reactions. 2. For each half reaction: A. Balance all the elements except H and O. B. Balance O using H 2 O. C. Balance H using H +. D. Balance the charge using electrons. Copyright Cengage Learning. All rights reserved 7

8 Section 18.1 Balancing Oxidation-Reduction Equations The Half Reaction Method for Balancing Equations for Oxidation Reduction Reactions Occurring in Acidic Solution 3. If necessary, multiply one or both balanced half reactions by an integer to equalize the number of electrons transferred in the two half reactions. 4. Add the half reactions, and cancel identical species. 5. Check that the elements and charges are balanced. Copyright Cengage Learning. All rights reserved 8

9 Section 18.1 Balancing Oxidation-Reduction Equations The Half Reaction Method for Balancing Equations for Oxidation Reduction Reactions Occurring in Acidic Solution Copyright Cengage Learning. All rights reserved 9

10 Section 18.1 Balancing Oxidation-Reduction Equations Cr 2 O 7 2- (aq) + SO 3 2- (aq) Cr 3+ (aq) + SO 4 2- (aq) How can we balance this equation? First Steps: Separate into half-reactions. Balance elements except H and O. Copyright Cengage Learning. All rights reserved 10

11 Section 18.1 Balancing Oxidation-Reduction Equations Method of Half Reactions Cr 2 O 7 2- (aq) 2Cr 3+ (aq) SO 3 2- (aq) SO 4 2- (aq) How many electrons are involved in each half reaction? Copyright Cengage Learning. All rights reserved 11

12 Section 18.1 Balancing Oxidation-Reduction Equations Method of Half Reactions (continued) 6e - + Cr 2 O 2-7 (aq) 2Cr 3+ (aq) SO 2-3 (aq) + SO 2-4 (aq) + 2e - How can we balance the oxygen atoms? Copyright Cengage Learning. All rights reserved 12

13 Section 18.1 Balancing Oxidation-Reduction Equations Method of Half Reactions (continued) 6e - + Cr 2 O 2-7 (aq) Cr 3+ (aq) + 7H 2 O H 2 O +SO 2-3 (aq) + SO 2-4 (aq) + 2e - How can we balance the hydrogen atoms? Copyright Cengage Learning. All rights reserved 13

14 Section 18.1 Balancing Oxidation-Reduction Equations Method of Half Reactions (continued) This reaction occurs in an acidic solution. 14H + + 6e - + Cr 2 O 2-7 2Cr H 2 O H 2 O +SO 2-3 SO e - + 2H + How can we balance the electrons? Copyright Cengage Learning. All rights reserved 14

15 Section 18.1 Balancing Oxidation-Reduction Equations Method of Half Reactions (continued) 14H + + 6e - + Cr 2 O 7 2-2Cr H 2 O 3[H 2 O +SO 3 2- SO e - + 2H + ] Final Balanced Equation: Cr 2 O SO H + 2Cr SO H 2 O Copyright Cengage Learning. All rights reserved 15

16 Section 18.1 Balancing Oxidation-Reduction Equations EXERCISE! Balance the following oxidation reduction reaction that occurs in acidic solution. Br (aq) + MnO 4 (aq) Br 2 (l)+ Mn 2+ (aq) 10Br (aq) + 16H + (aq) + 2MnO 4 (aq) 5Br 2 (l)+ 2Mn 2+ (aq) + 8H 2 O(l) Copyright Cengage Learning. All rights reserved 16

17 Section 18.1 Balancing Oxidation-Reduction Equations The Half Reaction Method for Balancing Equations for Oxidation Reduction Reactions Occurring in Basic Solution 1. Use the half reaction method as specified for acidic solutions to obtain the final balanced equation as if H + ions were present. 2. To both sides of the equation obtained above, add a number of OH ions that is equal to the number of H + ions. (We want to eliminate H + by forming H 2 O.) Copyright Cengage Learning. All rights reserved 17

18 Section 18.1 Balancing Oxidation-Reduction Equations The Half Reaction Method for Balancing Equations for Oxidation Reduction Reactions Occurring in Basic Solution 3. Form H 2 O on the side containing both H + and OH ions, and eliminate the number of H 2 O molecules that appear on both sides of the equation. 4. Check that elements and charges are balanced. Copyright Cengage Learning. All rights reserved 18

19 Section 18.1 Balancing Oxidation-Reduction Equations The Half Reaction Method for Balancing Equations for Oxidation Reduction Reactions Occurring in Basic Solution Copyright Cengage Learning. All rights reserved 19

20 Section 18.2 Galvanic Cells Galvanic Cell Device in which chemical energy is changed to electrical energy. Uses a spontaneous redox reaction to produce a current that can be used to do work. Copyright Cengage Learning. All rights reserved 20

21 Section 18.2 Galvanic Cells A Galvanic Cell Copyright Cengage Learning. All rights reserved 21

22 Section 18.2 Galvanic Cells Galvanic Cell Oxidation occurs at the anode. Reduction occurs at the cathode. Salt bridge or porous disk devices that allow ions to flow without extensive mixing of the solutions. Salt bridge contains a strong electrolyte held in a Jello like matrix. Porous disk contains tiny passages that allow hindered flow of ions. Copyright Cengage Learning. All rights reserved 22

23 Section 18.2 Galvanic Cells Cell Potential A galvanic cell consists of an oxidizing agent in one compartment that pulls electrons through a wire from a reducing agent in the other compartment. The pull, or driving force, on the electrons is called the cell potential ( E cell ), or the electromotive force (emf) of the cell. Unit of electrical potential is the volt (V). 1 joule of work per coulomb of charge transferred. Copyright Cengage Learning. All rights reserved 23

24 Section 18.2 Galvanic Cells Voltaic Cell: Cathode Reaction To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: CLICK HERE Copyright Cengage Learning. All rights reserved 24

25 Section 18.2 Galvanic Cells Voltaic Cell: Anode Reaction To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: CLICK HERE Copyright Cengage Learning. All rights reserved 25

26 Section 18.3 Standard Reduction Potentials Galvanic Cell All half-reactions are given as reduction processes in standard tables. Table M, 1atm, 25 C When a half-reaction is reversed, the sign of E is reversed. When a half-reaction is multiplied by an integer, E remains the same. A galvanic cell runs spontaneously in the direction that gives a positive value for E cell. Copyright Cengage Learning. All rights reserved 26

27 Section 18.3 Standard Reduction Potentials Example: Fe 3+ (aq) + Cu(s) Cu 2+ (aq) + Fe 2+ (aq) Half-Reactions: Fe 3+ + e Fe 2+ E = 0.77 V Cu e Cu E = 0.34 V To balance the cell reaction and calculate the cell potential, we must reverse reaction 2. Cu Cu e E = 0.34 V Each Cu atom produces two electrons but each Fe 3+ ion accepts only one electron, therefore reaction 1 must be multiplied by 2. 2Fe e 2Fe 2+ E = 0.77 V Copyright Cengage Learning. All rights reserved 27

28 Section 18.3 Standard Reduction Potentials Overall Balanced Cell Reaction 2Fe e 2Fe 2+ E = 0.77 V (cathode) Cu Cu e E = 0.34 V (anode) Balanced Cell Reaction: Cu + 2Fe 3+ Cu Fe 2+ Cell Potential: E cell = E (cathode) E (anode) E cell = 0.77 V 0.34 V = 0.43 V Copyright Cengage Learning. All rights reserved 28

29 Section 18.3 Standard Reduction Potentials CONCEPT CHECK! Order the following from strongest to weakest oxidizing agent and justify. Of those you cannot order, explain why. Fe Na F - Na + Cl 2

30 Section 18.3 Standard Reduction Potentials Line Notation Used to describe electrochemical cells. Anode components are listed on the left. Cathode components are listed on the right. Separated by double vertical lines which indicated salt bridge or porous disk. The concentration of aqueous solutions should be specified in the notation when known. Example: Mg(s) Mg 2+ (aq) Al 3+ (aq) Al(s) Mg Mg e (anode) Al e Al (cathode) Copyright Cengage Learning. All rights reserved 30

31 Section 18.3 Standard Reduction Potentials Description of a Galvanic Cell The cell potential (always positive for a galvanic cell where E cell = E (cathode) E (anode)) and the balanced cell reaction. The direction of electron flow, obtained by inspecting the half reactions and using the direction that gives a positive E cell. Copyright Cengage Learning. All rights reserved 31

32 Section 18.3 Standard Reduction Potentials Description of a Galvanic Cell Designation of the anode and cathode. The nature of each electrode and the ions present in each compartment. A chemically inert conductor is required if none of the substances participating in the half reaction is a conducting solid. Copyright Cengage Learning. All rights reserved 32

33 Section 18.3 Standard Reduction Potentials CONCEPT CHECK! Sketch a cell using the following solutions and electrodes. Include: The potential of the cell The direction of electron flow Labels on the anode and the cathode a) Ag electrode in 1.0 M Ag + (aq) and Cu electrode in 1.0 M Cu 2+ (aq) Copyright Cengage Learning. All rights reserved 33

34 Section 18.3 Standard Reduction Potentials CONCEPT CHECK! Sketch a cell using the following solutions and electrodes. Include: The potential of the cell The direction of electron flow Labels on the anode and the cathode b) Zn electrode in 1.0 M Zn 2+ (aq) and Cu electrode in 1.0 M Cu 2+ (aq) Copyright Cengage Learning. All rights reserved 34

35 Section 18.3 Standard Reduction Potentials CONCEPT CHECK! Consider the cell from part b. What would happen to the potential if you increase the [Cu 2+ ]? Explain. The cell potential should increase. Copyright Cengage Learning. All rights reserved 35

36 Section 18.4 Cell Potential, Electrical Work, and Free Energy Work Work is never the maximum possible if any current is flowing. In any real, spontaneous process some energy is always wasted the actual work realized is always less than the calculated maximum. Copyright Cengage Learning. All rights reserved 36

37 Section 18.4 Cell Potential, Electrical Work, and Free Energy Maximum Cell Potential Directly related to the free energy difference between the reactants and the products in the cell. ΔG = nfe F = 96,485 C/mol e Copyright Cengage Learning. All rights reserved 37

38 Section 18.5 Dependence of Cell Potential on Concentration A Concentration Cell Copyright Cengage Learning. All rights reserved 38

39 Section 18.5 Dependence of Cell Potential on Concentration Nernst Equation The relationship between cell potential and concentrations of cell components At 25 C: E = E log Q n or E = log K n (at equilibrium) Copyright Cengage Learning. All rights reserved 39

40 Section 18.5 Dependence of Cell Potential on Concentration CONCEPT CHECK! Explain the difference between E and E. When is E equal to zero? When the cell is in equilibrium ("dead" battery). When is E equal to zero? E is equal to zero for a concentration cell. Copyright Cengage Learning. All rights reserved 40

41 Section 18.5 Dependence of Cell Potential on Concentration EXERCISE! A concentration cell is constructed using two nickel electrodes with Ni 2+ concentrations of 1.0 M and M in the two half-cells. Calculate the potential of this cell at 25 C V Copyright Cengage Learning. All rights reserved 41

42 Section 18.5 Dependence of Cell Potential on Concentration CONCEPT CHECK! You make a galvanic cell at 25 C containing: A nickel electrode in 1.0 M Ni 2+ (aq) A silver electrode in 1.0 M Ag + (aq) Sketch this cell, labeling the anode and cathode, showing the direction of the electron flow, and calculate the cell potential V Copyright Cengage Learning. All rights reserved 42

43 Section 18.6 Batteries One of the Six Cells in a 12 V Lead Storage Battery Copyright Cengage Learning. All rights reserved 43

44 Section 18.6 Batteries A Common Dry Cell Battery

45 Section 18.6 Batteries A Mercury Battery Copyright Cengage Learning. All rights reserved 45

46 Section 18.6 Batteries Schematic of the Hydrogen-Oxygen Fuel Cell

47 Section 18.7 Corrosion Process of returning metals to their natural state the ores from which they were originally obtained. Involves oxidation of the metal. Copyright Cengage Learning. All rights reserved 47

48 Section 18.7 Corrosion The Electrochemical Corrosion of Iron Copyright Cengage Learning. All rights reserved 48

49 Section 18.7 Corrosion Corrosion Prevention Application of a coating (like paint or metal plating) Galvanizing Alloying Cathodic Protection Protects steel in buried fuel tanks and pipelines. Copyright Cengage Learning. All rights reserved 49

50 Section 18.7 Corrosion Cathodic Protection Copyright Cengage Learning. All rights reserved 50

51 Section 18.8 Electrolysis Forcing a current through a cell to produce a chemical change for which the cell potential is negative. Copyright Cengage Learning. All rights reserved 51

52 Section 18.8 Electrolysis Stoichiometry of Electrolysis How much chemical change occurs with the flow of a given current for a specified time? current and time moles of electrons grams of analyte quantity of charge moles of analyte Copyright Cengage Learning. All rights reserved 52

53 Section 18.8 Electrolysis Stoichiometry of Electrolysis current and time quantity of charge Coulombs of charge = amps (C/s) seconds (s) quantity of charge moles of electrons 1 mol e mol e = Coulombs of charge 96,485 C Copyright Cengage Learning. All rights reserved 53

54 Section 18.8 Electrolysis CONCEPT CHECK! An unknown metal (M) is electrolyzed. It took 52.8 sec for a current of 2.00 amp to plate g of the metal from a solution containing M(NO 3 ) 3. What is the metal? gold (Au) Copyright Cengage Learning. All rights reserved 54

55 Section 18.8 Electrolysis CONCEPT CHECK! Consider a solution containing 0.10 M of each of the following: Pb 2+, Cu 2+, Sn 2+, Ni 2+, and Zn 2+. Predict the order in which the metals plate out as the voltage is turned up from zero. Cu 2+, Pb 2+, Sn 2+, Ni 2+, Zn 2+ Do the metals form on the cathode or the anode? Explain. Copyright Cengage Learning. All rights reserved 55

56 Section 18.9 Commercial Electrolytic Processes Production of aluminum Purification of metals Metal plating Electrolysis of sodium chloride Production of chlorine and sodium hydroxide Copyright Cengage Learning. All rights reserved 56

57 Section 18.9 Commercial Electrolytic Processes Producing Aluminum by the Hall-Heroult Process Copyright Cengage Learning. All rights reserved 57

58 Section 18.9 Commercial Electrolytic Processes Electroplating a Spoon Copyright Cengage Learning. All rights reserved 58

59 Section 18.9 Commercial Electrolytic Processes The Downs Cell for the Electrolysis of Molten Sodium Chloride Copyright Cengage Learning. All rights reserved 59

CHAPTER 17: ELECTROCHEMISTRY. Big Idea 3

CHAPTER 17: ELECTROCHEMISTRY. Big Idea 3 CHAPTER 17: ELECTROCHEMISTRY Big Idea 3 Electrochemistry Conversion of chemical to electrical energy (discharge). And its reverse (electrolysis). Both subject to entropic caution: Convert reversibly to

More information

Chapter 17 Electrochemistry

Chapter 17 Electrochemistry Chapter 17 Electrochemistry 17.1 Galvanic Cells A. Oxidation-Reduction Reactions (Redox Rxns) 1. Oxidation = loss of electrons a. the substance oxidized is the reducing agent 2. Reduction = gain of electrons

More information

Chapter 17. Electrochemistry

Chapter 17. Electrochemistry Chapter 17 Electrochemistry Contents Galvanic cells Standard reduction potentials Cell potential, electrical work, and free energy Dependence of cell potential on concentration Batteries Corrosion Electrolysis

More information

Oxidation-Reduction Review. Electrochemistry. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions. Sample Problem.

Oxidation-Reduction Review. Electrochemistry. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions. Sample Problem. 1 Electrochemistry Oxidation-Reduction Review Topics Covered Oxidation-reduction reactions Balancing oxidationreduction equations Voltaic cells Cell EMF Spontaneity of redox reactions Batteries Electrolysis

More information

Chapter 20 Electrochemistry

Chapter 20 Electrochemistry Chapter 20 Electrochemistry Learning goals and key skills: Identify oxidation, reduction, oxidizing agent, and reducing agent in a chemical equation Complete and balance redox equations using the method

More information

CHEMISTRY 13 Electrochemistry Supplementary Problems

CHEMISTRY 13 Electrochemistry Supplementary Problems 1. When the redox equation CHEMISTRY 13 Electrochemistry Supplementary Problems MnO 4 (aq) + H + (aq) + H 3 AsO 3 (aq) Mn 2+ (aq) + H 3 AsO 4 (aq) + H 2 O(l) is properly balanced, the coefficients will

More information

ELECTROCHEMISTRY OXIDATION-REDUCTION

ELECTROCHEMISTRY OXIDATION-REDUCTION ELECTROCHEMISTRY Electrochemistry involves the relationship between electrical energy and chemical energy. OXIDATION-REDUCTION REACTIONS SPONTANEOUS REACTIONS Can extract electrical energy from these.

More information

Electrochemistry Pulling the Plug on the Power Grid

Electrochemistry Pulling the Plug on the Power Grid Electrochemistry 18.1 Pulling the Plug on the Power Grid 18.3 Voltaic (or Galvanic) Cells: Generating Electricity from Spontaneous Chemical Reactions 18.4 Standard Electrode Potentials 18.7 Batteries:

More information

Electrochemistry. Chapter 18. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Electrochemistry. Chapter 18. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Electrochemistry Chapter 18 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Electrochemical processes are oxidation-reduction reactions in which: the energy

More information

Chapter 20. Electrochemistry

Chapter 20. Electrochemistry Chapter 20. Electrochemistry 20.1 Oxidation-Reduction Reactions Oxidation-reduction reactions = chemical reactions in which the oxidation state of one or more substance changes (redox reactions). Recall:

More information

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions.

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. In electrochemical reactions, electrons are transferred from one species to another. Learning goals and

More information

Electrochem: It s Got Potential!

Electrochem: It s Got Potential! Electrochem: It s Got Potential! Presented by: Denise DeMartino Westlake High School, Eanes ISD Pre-AP, AP, and Advanced Placement are registered trademarks of the College Board, which was not involved

More information

Dr. Anand Gupta

Dr. Anand Gupta By Dr Anand Gupta Mr. Mahesh Kapil Dr. Anand Gupta 09356511518 09888711209 anandu71@yahoo.com mkapil_foru@yahoo.com Electrochemistry Electrolysis Electric energy Chemical energy Galvanic cell 2 Electrochemistry

More information

Chapter 18 Electrochemistry

Chapter 18 Electrochemistry Chapter 18 Electrochemistry Definition The study of the interchange of chemical and electrical energy in oxidation-reduction (redox) reactions This interchange can occur in both directions: 1. Conversion

More information

Electrochemistry 1 1

Electrochemistry 1 1 Electrochemistry 1 1 Half-Reactions 1. Balancing Oxidation Reduction Reactions in Acidic and Basic Solutions Voltaic Cells 2. Construction of Voltaic Cells 3. Notation for Voltaic Cells 4. Cell Potential

More information

Electrochemistry Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry

Electrochemistry Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry 2012 Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry Electricity from Chemistry Many chemical reactions involve the transfer of electrons between atoms or ions electron transfer

More information

Chapter 19 ElectroChemistry

Chapter 19 ElectroChemistry Chem 1046 General Chemistry by Ebbing and Gammon, 9th Edition George W.J. Kenney, Jr, Professor of Chemistry Last Update: 11July2009 Chapter 19 ElectroChemistry These Notes are to SUPPLIMENT the Text,

More information

Chapter 20. Electrochemistry Recommendation: Review Sec. 4.4 (oxidation-reduction reactions) in your textbook

Chapter 20. Electrochemistry Recommendation: Review Sec. 4.4 (oxidation-reduction reactions) in your textbook Chapter 20. Electrochemistry Recommendation: Review Sec. 4.4 (oxidation-reduction reactions) in your textbook 20.1 Oxidation-Reduction Reactions Oxidation-reduction reactions = chemical reactions in which

More information

Part One: Introduction. a. Chemical reactions produced by electric current. (electrolysis)

Part One: Introduction. a. Chemical reactions produced by electric current. (electrolysis) CHAPTER 19: ELECTROCHEMISTRY Part One: Introduction A. Terminology. 1. Electrochemistry deals with: a. Chemical reactions produced by electric current. (electrolysis) b. Production of electric current

More information

Chapter 18 Electrochemistry. Electrochemical Cells

Chapter 18 Electrochemistry. Electrochemical Cells Chapter 18 Electrochemistry Chapter 18 1 Electrochemical Cells Electrochemical Cells are of two basic types: Galvanic Cells a spontaneous chemical reaction generates an electric current Electrolytic Cells

More information

Guide to Chapter 18. Electrochemistry

Guide to Chapter 18. Electrochemistry Guide to Chapter 18. Electrochemistry We will spend three lecture days on this chapter. During the first class meeting we will review oxidation and reduction. We will introduce balancing redox equations

More information

Electrochemistry. A. Na B. Ba C. S D. N E. Al. 2. What is the oxidation state of Xe in XeO 4? A +8 B +6 C +4 D +2 E 0

Electrochemistry. A. Na B. Ba C. S D. N E. Al. 2. What is the oxidation state of Xe in XeO 4? A +8 B +6 C +4 D +2 E 0 Electrochemistry 1. Element M reacts with oxygen to from an oxide with the formula MO. When MO is dissolved in water, the resulting solution is basic. Element M is most likely: A. Na B. Ba C. S D. N E.

More information

Electrochemical Cells

Electrochemical Cells Electrochemistry Electrochemical Cells The Voltaic Cell Electrochemical Cell = device that generates electricity through redox rxns 1 Voltaic (Galvanic) Cell An electrochemical cell that produces an electrical

More information

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education Lecture Presentation Chapter 20 James F. Kirby Quinnipiac University Hamden, CT is the study of the relationships between electricity and chemical reactions. It includes the study of both spontaneous and

More information

Electrochemistry objectives

Electrochemistry objectives Electrochemistry objectives 1) Understand how a voltaic and electrolytic cell work 2) Be able to tell which substance is being oxidized and reduced and where it is occuring the anode or cathode 3) Students

More information

Redox reactions & electrochemistry

Redox reactions & electrochemistry Redox reactions & electrochemistry Electrochemistry Electrical energy ; Chemical energy oxidation/reduction = redox reactions Electrochemistry Zn + Cu 2+ º Zn 2+ + Cu Oxidation-reduction reactions always

More information

Chapter Nineteen. Electrochemistry

Chapter Nineteen. Electrochemistry Chapter Nineteen Electrochemistry 1 Electrochemistry The study of chemical reactions through electrical circuits. Monitor redox reactions by controlling electron transfer REDOX: Shorthand for REDuction-OXidation

More information

Ch 18 Electrochemistry OIL-RIG Reactions

Ch 18 Electrochemistry OIL-RIG Reactions Ch 18 Electrochemistry OIL-RIG Reactions Alessandro Volta s Invention Modified by Dr. Cheng-Yu Lai Daily Electrochemistry Appliactions Electrochemistry: The area of chemistry that examines the transformations

More information

Oxidation number. The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred.

Oxidation number. The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred. Oxidation number The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred. 1. Free elements (uncombined state) have an oxidation number of zero. Na,

More information

Electrochemistry. Outline

Electrochemistry. Outline Electrochemistry Outline 1. Oxidation Numbers 2. Voltaic Cells 3. Calculating emf or Standard Cell Potential using Half-Reactions 4. Relationships to Thermo, Equilibrium, and Q 5. Stoichiometry 6. Balancing

More information

AP CHEMISTRY NOTES 12-1 ELECTROCHEMISTRY: ELECTROCHEMICAL CELLS

AP CHEMISTRY NOTES 12-1 ELECTROCHEMISTRY: ELECTROCHEMICAL CELLS AP CHEMISTRY NOTES 12-1 ELECTROCHEMISTRY: ELECTROCHEMICAL CELLS Review: OXIDATION-REDUCTION REACTIONS the changes that occur when electrons are transferred between reactants (also known as a redox reaction)

More information

Name AP CHEM / / Collected Essays Chapter 17

Name AP CHEM / / Collected Essays Chapter 17 Name AP CHEM / / Collected Essays Chapter 17 1980 - #2 M(s) + Cu 2+ (aq) M 2+ (aq) + Cu(s) For the reaction above, E = 0.740 volt at 25 C. (a) Determine the standard electrode potential for the reaction

More information

Chapter 20. Electrochemistry

Chapter 20. Electrochemistry Chapter 20. Electrochemistry 20.1 OxidationReduction Reactions Oxidationreduction reactions = chemical reactions in which the oxidation state of one or more substance changes (redox reactions). Recall:

More information

CHEM Principles of Chemistry II. Chapter 17 - Electrochemistry

CHEM Principles of Chemistry II. Chapter 17 - Electrochemistry CHEM 1212 - Principles of Chemistry II Chapter 17 - Electrochemistry electrochemistry is best defined as the study of the interchange of chemical and electrical energy 17.1 Galvanic Cells an oxidation-reduction

More information

Chemistry 1011 TOPIC TEXT REFERENCE. Electrochemistry. Masterton and Hurley Chapter 18. Chemistry 1011 Slot 5 1

Chemistry 1011 TOPIC TEXT REFERENCE. Electrochemistry. Masterton and Hurley Chapter 18. Chemistry 1011 Slot 5 1 Chemistry 1011 TOPIC Electrochemistry TEXT REFERENCE Masterton and Hurley Chapter 18 Chemistry 1011 Slot 5 1 18.5 Electrolytic Cells YOU ARE EXPECTED TO BE ABLE TO: Construct a labelled diagram to show

More information

1.In which of the following is the oxidation number of the underlined element given incorrectly? oxidation number

1.In which of the following is the oxidation number of the underlined element given incorrectly? oxidation number General Chemistry II Exam 4 Practice Problems 1 1.In which of the following is the oxidation number of the underlined element given incorrectly? oxidation number a. K 2 Cr 2 O 7 +6 b. NaAl(OH) 4 +3 c.

More information

Electrochemistry. Review oxidation reactions and how to assign oxidation numbers (Ch 4 Chemical Reactions).

Electrochemistry. Review oxidation reactions and how to assign oxidation numbers (Ch 4 Chemical Reactions). Electrochemistry Oxidation-Reduction: Review oxidation reactions and how to assign oxidation numbers (Ch 4 Chemical Reactions). Half Reactions Method for Balancing Redox Equations: Acidic solutions: 1.

More information

SHOCK TO THE SYSTEM! ELECTROCHEMISTRY

SHOCK TO THE SYSTEM! ELECTROCHEMISTRY SHOCK TO THE SYSTEM! ELECTROCHEMISTRY REVIEW I. Re: Balancing Redox Reactions. A. Every redox reaction requires a substance to be... 1. oxidized (loses electrons). a.k.a. reducing agent 2. reduced (gains

More information

25. A typical galvanic cell diagram is:

25. A typical galvanic cell diagram is: Unit VI(6)-III: Electrochemistry Chapter 17 Assigned Problems Answers Exercises Galvanic Cells, Cell Potentials, Standard Reduction Potentials, and Free Energy 25. A typical galvanic cell diagram is: The

More information

Oxidation-Reduction (Redox)

Oxidation-Reduction (Redox) Oxidation-Reduction (Redox) Electrochemistry involves the study of the conversions between chemical and electrical energy. Voltaic (galvanic) cells use chemical reactions to produce an electric current.

More information

Electrochemistry Worksheets

Electrochemistry Worksheets Electrochemistry Worksheets Donald Calbreath, Ph.D. Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive

More information

Chemistry: The Central Science. Chapter 20: Electrochemistry

Chemistry: The Central Science. Chapter 20: Electrochemistry Chemistry: The Central Science Chapter 20: Electrochemistry Redox reaction power batteries Electrochemistry is the study of the relationships between electricity and chemical reactions o It includes the

More information

Redox Reactions and Electrochemistry

Redox Reactions and Electrochemistry Redox Reactions and Electrochemistry Redox Reactions and Electrochemistry Redox Reactions (19.1) Galvanic Cells (19.2) Standard Reduction Potentials (19.3) Thermodynamics of Redox Reactions (19.4) The

More information

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc.

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc. Lecture Presentation Chapter 20 James F. Kirby Quinnipiac University Hamden, CT is the study of the relationships between electricity and chemical reactions. It includes the study of both spontaneous and

More information

Chapter 18. Electrochemistry

Chapter 18. Electrochemistry Chapter 18 Electrochemistry Oxidation-Reduction Reactions Review of Terms Oxidation-reduction (redox) reactions always involve a transfer of electrons from one species to another. Oxidation number - the

More information

Chapter 18 problems (with solutions)

Chapter 18 problems (with solutions) Chapter 18 problems (with solutions) 1) Assign oxidation numbers for the following species (for review see section 9.4) a) H2SO3 H = +1 S = +4 O = -2 b) Ca(ClO3)2 Ca = +2 Cl = +5 O = -2 c) C2H4 C = -2

More information

Chemistry 102 Chapter 19 OXIDATION-REDUCTION REACTIONS

Chemistry 102 Chapter 19 OXIDATION-REDUCTION REACTIONS OXIDATION-REDUCTION REACTIONS Some of the most important reaction in chemistry are oxidation-reduction (redox) reactions. In these reactions, electrons transfer from one reactant to the other. The rusting

More information

Name Date Class ELECTROCHEMICAL CELLS

Name Date Class ELECTROCHEMICAL CELLS 21.1 ELECTROCHEMICAL CELLS Section Review Objectives Use the activity series to identify which metal in a pair is more easily oxidized Identify the source of electrical energy in a voltaic cell Describe

More information

ELECTROCHEMISTRY INVOLVES TWO MAIN TYPES OF PROCESSES:

ELECTROCHEMISTRY INVOLVES TWO MAIN TYPES OF PROCESSES: ELECTROCHEMISTRY Terms to Know: Electrochemistry the study of the interchange of chemical and electrical energy OIL RIG oxidation is loss, reduction is gain (of electrons) Oxidation the loss of electrons,

More information

CHAPTER 5 REVIEW. C. CO 2 D. Fe 2 O 3. A. Fe B. CO

CHAPTER 5 REVIEW. C. CO 2 D. Fe 2 O 3. A. Fe B. CO CHAPTER 5 REVIEW 1. The following represents the process used to produce iron from iron III oxide: Fe 2 O 3 + 3CO 2Fe + 3CO 2 What is the reducing agent in this process? A. Fe B. CO C. CO 2 D. Fe 2 O 3

More information

Chapter 20. Electrochemistry

Chapter 20. Electrochemistry Chapter 20. Electrochemistry Sample Exercise 20.1 (p. 845) The nickelcadmium (nicad) battery, a rechargeable dry cell used in batteryoperated devices, uses the following redox reaction to generate electricity:

More information

Chpt 20: Electrochemistry

Chpt 20: Electrochemistry Cell Potential and Free Energy When both reactants and products are in their standard states, and under constant pressure and temperature conditions where DG o = nfe o DG o is the standard free energy

More information

Reducing Agent = a substance which "gives" electrons to another substance causing that substance to be reduced; a reducing agent is itself oxidized.

Reducing Agent = a substance which gives electrons to another substance causing that substance to be reduced; a reducing agent is itself oxidized. Oxidation = a loss of electrons; an element which loses electrons is said to be oxidized. Reduction = a gain of electrons; an element which gains electrons is said to be reduced. Oxidizing Agent = a substance

More information

Unit 12 Redox and Electrochemistry

Unit 12 Redox and Electrochemistry Unit 12 Redox and Electrochemistry Review of Terminology for Redox Reactions OXIDATION loss of electron(s) by a species; increase in oxidation number. REDUCTION gain of electron(s); decrease in oxidation

More information

Electrochemistry. Galvanic Cell. Page 1. Applications of Redox

Electrochemistry. Galvanic Cell. Page 1. Applications of Redox Electrochemistry Applications of Redox Review Oxidation reduction reactions involve a transfer of electrons. OIL- RIG Oxidation Involves Loss Reduction Involves Gain LEO-GER Lose Electrons Oxidation Gain

More information

Electrochem 1 Electrochemistry Some Key Topics Conduction metallic electrolytic Electrolysis effect and stoichiometry Galvanic cell Electrolytic cell Electromotive Force (potential in volts) Electrode

More information

Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species.

Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species. Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species. The species that loses the electron is oxidized. The species that gains the electron is reduced.

More information

Zn+2 (aq) + Cu (s) Oxidation: An atom, ion, or molecule releases electrons and is oxidized. The oxidation number of the atom oxidized increases.

Zn+2 (aq) + Cu (s) Oxidation: An atom, ion, or molecule releases electrons and is oxidized. The oxidation number of the atom oxidized increases. Oxidation-Reduction Page 1 The transfer of an electron from one compound to another results in the oxidation of the electron donor and the reduction of the electron acceptor. Loss of electrons (oxidation)

More information

Chapter 19: Oxidation - Reduction Reactions

Chapter 19: Oxidation - Reduction Reactions Chapter 19: Oxidation - Reduction Reactions 19-1 Oxidation and Reduction I. Oxidation States A. The oxidation rules (as summarized by Mr. Allan) 1. In compounds, hydrogen has an oxidation # of +1. In compounds,

More information

Oxidation-reduction reactions = chemical reactions in which the oxidation state of one or more substance changes (redox reactions).

Oxidation-reduction reactions = chemical reactions in which the oxidation state of one or more substance changes (redox reactions). Chapter 20. Electrochemistry Common Student Misconceptions Students should be encouraged to review section 4.4. Students often think that oxidation must necessarily mean adding oxygen. Students often have

More information

Practice Exam Topic 9: Oxidation & Reduction

Practice Exam Topic 9: Oxidation & Reduction Name Practice Exam Topic 9: Oxidation & Reduction 1. What are the oxidation numbers of the elements in sulfuric acid, H 2 SO 4? Hydrogen Sulfur Oxygen A. +1 +6 2 B. +1 +4 2 C. +2 +1 +4 D. +2 +6 8 2. Consider

More information

(for tutoring, homework help, or help with online classes)

(for tutoring, homework help, or help with online classes) www.tutor-homework.com (for tutoring, homework help, or help with online classes) 1. chem10b 20.4-3 In a voltaic cell electrons flow from the anode to the cathode. Value 2. chem10b 20.1-35 How many grams

More information

Electron Transfer Reactions

Electron Transfer Reactions ELECTROCHEMISTRY 1 Electron Transfer Reactions 2 Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation of an electric current (electricity) or be caused by

More information

Lecture Presentation. Chapter 18. Electrochemistry. Sherril Soman Grand Valley State University Pearson Education, Inc.

Lecture Presentation. Chapter 18. Electrochemistry. Sherril Soman Grand Valley State University Pearson Education, Inc. Lecture Presentation Chapter 18 Electrochemistry Sherril Soman Grand Valley State University Harnessing the Power in Nature The goal of scientific research is to understand nature. Once we understand the

More information

Chapter 19: Electrochemistry

Chapter 19: Electrochemistry Chapter 19: Electrochemistry Overview of the Chapter review oxidation-reduction chemistry basics galvanic cells spontaneous chemical reaction generates a voltage set-up of galvanic cell & identification

More information

AP Chemistry: Electrochemistry Multiple Choice Answers

AP Chemistry: Electrochemistry Multiple Choice Answers AP Chemistry: Electrochemistry Multiple Choice Answers 14. Questions 14-17 The spontaneous reaction that occurs when the cell in the picture operates is as follows: 2Ag + + Cd (s) à 2 Ag (s) + Cd 2+ (A)

More information

We can use chemistry to generate electricity... this is termed a Voltaic (or sometimes) Galvanic Cell

We can use chemistry to generate electricity... this is termed a Voltaic (or sometimes) Galvanic Cell Unit 6 Electrochemistry Chemistry 020, R. R. Martin Electrochemistry Electrochemistry is the study of the interconversion of electrical and chemical energy. We can use chemistry to generate electricity...

More information

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education Lecture Presentation Chapter 20 James F. Kirby Quinnipiac University Hamden, CT is the study of the relationships between electricity and chemical reactions. It includes the study of both spontaneous and

More information

SCHOOL YEAR CH- 19 OXIDATION-REDUCTION REACTIONS SUBJECT: CHEMISTRY GRADE: 12

SCHOOL YEAR CH- 19 OXIDATION-REDUCTION REACTIONS SUBJECT: CHEMISTRY GRADE: 12 SCHOOL YEAR 2017-18 NAME: CH- 19 OXIDATION-REDUCTION REACTIONS SUBJECT: CHEMISTRY GRADE: 12 TEST A Choose the best answer from the options that follow each question. 1. During oxidation, one or more electrons

More information

REVIEW QUESTIONS Chapter 19

REVIEW QUESTIONS Chapter 19 Chemistry 10 ANSWER KEY REVIEW QUESTIONS Chapter 19 1. For each of the following unbalanced equations, (i) write the half-reactions for oxidation and reduction, and (ii) balance the overall equation in

More information

Electrochemical System

Electrochemical System Electrochemical System Topic Outcomes Week Topic Topic Outcomes 8-10 Electrochemical systems It is expected that students are able to: Electrochemical system and its thermodynamics Chemical reactions in

More information

Redox and Electrochemistry

Redox and Electrochemistry Redox and Electrochemistry 1 Electrochemistry in Action! 2 Rules for Assigning Oxidation Numbers The oxidation number of any uncombined element is 0. The oxidation number of a monatomic ion equals the

More information

17.1 Redox Chemistry Revisited

17.1 Redox Chemistry Revisited Chapter Outline 17.1 Redox Chemistry Revisited 17.2 Electrochemical Cells 17.3 Standard Potentials 17.4 Chemical Energy and Electrical Work 17.5 A Reference Point: The Standard Hydrogen Electrode 17.6

More information

Introduction to electrochemistry

Introduction to electrochemistry Introduction to electrochemistry Oxidation reduction reactions involve energy changes. Because these reactions involve electronic transfer, the net release or net absorption of energy can occur in the

More information

Chapter 19 - Electrochemistry. the branch of chemistry that examines the transformations between chemical and electrical energy

Chapter 19 - Electrochemistry. the branch of chemistry that examines the transformations between chemical and electrical energy Chapter 19 - Electrochemistry the branch of chemistry that examines the transformations between chemical and electrical energy 19.1 Redox Chemistry Revisited A Spontaneous Redox Reaction Znº(s) + Cu 2+

More information

Review. Chapter 17 Electrochemistry. Outline. Voltaic Cells. Electrochemistry. Mnemonic

Review. Chapter 17 Electrochemistry. Outline. Voltaic Cells. Electrochemistry. Mnemonic Review William L Masterton Cecile N. Hurley Edward J. Neth cengage.com/chemistry/masterton Chapter 17 Electrochemistry Oxidation Loss of electrons Occurs at electrode called the anode Reduction Gain of

More information

Lecture 14. Thermodynamics of Galvanic (Voltaic) Cells.

Lecture 14. Thermodynamics of Galvanic (Voltaic) Cells. Lecture 14 Thermodynamics of Galvanic (Voltaic) Cells. 51 52 Ballard PEM Fuel Cell. 53 Electrochemistry Alessandro Volta, 1745-1827, Italian scientist and inventor. Luigi Galvani, 1737-1798, Italian scientist

More information

CHAPTER 17 ELECTROCHEMISTRY

CHAPTER 17 ELECTROCHEMISTRY Advanced Chemistry Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 17 ELECTROCHEMISTRY Day Plans for the day Assignment(s) for the day 17.1 Galvanic Cells Assignment

More information

Homework 11. Electrochemical Potential, Free Energy, and Applications

Homework 11. Electrochemical Potential, Free Energy, and Applications HW11 Electrochemical Poten!al, Free Energy, and Applica!ons Homework 11 Electrochemical Potential, Free Energy, and Applications Question 1 What is the E for Zn(s) Zn (aq) Ce (aq) Ce (aq) + cell + 4+ 3+

More information

Electrochemistry C020. Electrochemistry is the study of the interconversion of electrical and chemical energy

Electrochemistry C020. Electrochemistry is the study of the interconversion of electrical and chemical energy Electrochemistry C020 Electrochemistry is the study of the interconversion of electrical and chemical energy Using chemistry to generate electricity involves using a Voltaic Cell or Galvanic Cell (battery)

More information

ELECTROCHEMISTRY. Electrons are transferred from Al to Cu 2+. We can re write this equation as two separate half reactions:

ELECTROCHEMISTRY. Electrons are transferred from Al to Cu 2+. We can re write this equation as two separate half reactions: ELECTROCHEMISTRY A. INTRODUCTION 1. Electrochemistry is the branch of chemistry which is concerned with the conversion of chemical energy to electrical energy, and vice versa. Electrochemical reactions

More information

AP Questions: Electrochemistry

AP Questions: Electrochemistry AP Questions: Electrochemistry I 2 + 2 S 2O 2-3 2 I - + S 4O 2-6 How many moles of I 2 was produced during the electrolysis? The hydrogen gas produced at the cathode during the electrolysis was collected

More information

mccord (pmccord) HW12 Electrochemistry II mccord (51520) 1

mccord (pmccord) HW12 Electrochemistry II mccord (51520) 1 mccord (pmccord) HW12 Electrochemistry II mccord (51520) 1 This print-out should have 25 questions. Multiple-choice questions may continue on the next column or page find all choices before answering.

More information

Spontaneous Redox Between Zinc Metal and Copper(II) Ions. Zn 2+ Zn + 2e- Cu 2+ NO 3

Spontaneous Redox Between Zinc Metal and Copper(II) Ions. Zn 2+ Zn + 2e- Cu 2+ NO 3 Spontaneous Redox Between Zinc Metal and Copper(II) Ions Zn 2+ Cu 2+ NO 3 _ Zn + 2e- Cu Zn 0 + Cu 2+ º Zn 2+ + Cu 0 spontaneous red 1 ox 2 ox 1 red 2 Spontaneous Redox Between Copper Metal and Silver Ions

More information

18.3 Electrolysis. Dr. Fred Omega Garces. Chemistry 201. Driving a non-spontaneous Oxidation-Reduction Reaction. Miramar College.

18.3 Electrolysis. Dr. Fred Omega Garces. Chemistry 201. Driving a non-spontaneous Oxidation-Reduction Reaction. Miramar College. 18.3 Electrolysis Driving a non-spontaneous Oxidation-Reduction Reaction Dr. Fred Omega Garces Chemistry 201 Miramar College 1 Electrolysis Voltaic Vs. Electrolytic Cells Voltaic Cell Energy is released

More information

Chapter 20. Electrochemistry. Chapter 20 Problems. Electrochemistry 7/3/2012. Problems 15, 17, 19, 23, 27, 29, 33, 39, 59

Chapter 20. Electrochemistry. Chapter 20 Problems. Electrochemistry 7/3/2012. Problems 15, 17, 19, 23, 27, 29, 33, 39, 59 Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 20 John D. Bookstaver St. Charles Community College Cottleville, MO Chapter 20 Problems

More information

CHEM 1423 Chapter 21 Homework Questions TEXTBOOK HOMEWORK

CHEM 1423 Chapter 21 Homework Questions TEXTBOOK HOMEWORK CHEM 1423 Chapter 21 Homework Questions TEXTBOOK HOMEWORK 21.5 Consider the following balanced redox reaction: 16 H + (aq) + 2 MnO 4- (aq) + 10 Cl - (aq) 2 Mn 2+ (aq) + 5 Cl 2 (g) + 8 H 2 O(l) (a) Which

More information

Oxidation reduction reactions involve a. transfer of electrons. OIL - RiG. - Reduction Involves Gain (of electrons) LEO - GER

Oxidation reduction reactions involve a. transfer of electrons. OIL - RiG. - Reduction Involves Gain (of electrons) LEO - GER -Gain Electrons Reduction (rhe study of the inserciianq. of chemical and eledncal energy.) Applications of Redox - Reduction Involves Gain (of electrons) -Lose Electrons Oxidation LEO - GER Chapter 17:

More information

Chapter 12 Redox reactions and Electrochemistry

Chapter 12 Redox reactions and Electrochemistry Chapter 12 Redox reactions and Electrochemistry 11 Balancing Redox Equations 12 Electrochemical Cells 13 Stoichiometry in Electrochemical Cells 14 (Skip) Metals and Metallurgy 15 (Skip) Electrometallurgy

More information

General Chemistry 1412 Spring 2008 Instructor: Dr. Shawn Amorde Website:

General Chemistry 1412 Spring 2008 Instructor: Dr. Shawn Amorde Website: General Chemistry 1412 Spring 2008 Instructor: Dr. Shawn Amorde Website: www.austincc.edu/samorde Email: samorde@austincc.edu Lecture Notes Chapter 21 (21.1-21.25) Suggested Problems () Outline 1. Introduction

More information

Electrochemistry. The study of the interchange of chemical and electrical energy.

Electrochemistry. The study of the interchange of chemical and electrical energy. Electrochemistry The study of the interchange of chemical and electrical energy. Oxidation-reduction (redox) reaction: involves a transfer of electrons from the reducing agent to the oxidizing agent. oxidation:

More information

BATTERIES AND ELECTROLYTIC CELLS. Practical Electrochemistry

BATTERIES AND ELECTROLYTIC CELLS. Practical Electrochemistry BATTERIES AND ELECTROLYTIC CELLS Practical Electrochemistry How Batteries Work One of the most practical applications of spontaneous redox reactions is making batteries. In a battery, a spontaneous electron

More information

Sample Exercise 20.2 Practice Exercise 1 with feedback

Sample Exercise 20.2 Practice Exercise 1 with feedback Homework Chapter 20 Due: 11:59pm on Wednesday, November 16, 2016 You will receive no credit for items you complete after the assignment is due. Grading Policy Sample Exercise 20.2 Practice Exercise 1 with

More information

Oxidation-Reduction Reactions and Introduction to Electrochemistry

Oxidation-Reduction Reactions and Introduction to Electrochemistry ADVANCED PLACEMENT CHEMISTRY Oxidation-Reduction Reactions and Introduction to Electrochemistry Students will be able to: identify oxidation and reduction of chemical species; identify oxidants and reductants

More information

Q1. Why does the conductivity of a solution decrease with dilution?

Q1. Why does the conductivity of a solution decrease with dilution? Q1. Why does the conductivity of a solution decrease with dilution? A1. Conductivity of a solution is the conductance of ions present in a unit volume of the solution. On dilution the number of ions per

More information

DO NOT USE A CALCULATOR.

DO NOT USE A CALCULATOR. Practice Test 20.1 (va pg 1 of 5) This is practice - Do NOT cheat yourself of finding out what you are capable of doing. Be sure you follow the testing conditions outlined below. DO NOT USE A CALCULATOR.

More information

17.1 Redox Reactions. Oxidation Numbers. Assigning Oxidation Numbers. Redox Reactions. Ch. 17: Electrochemistry 12/14/2017. Creative Commons License

17.1 Redox Reactions. Oxidation Numbers. Assigning Oxidation Numbers. Redox Reactions. Ch. 17: Electrochemistry 12/14/2017. Creative Commons License Ch. 17: Electrochemistry Electric vehicles contain batteries that can be recharged, thereby using electric energy to bring about a chemical change and vice versa. (credit: modification of work by Robert

More information

Electrochemistry. 1. Determine the oxidation states of each element in the following compounds. (Reference: Ex. 4:16) a. N 2 N: b.

Electrochemistry. 1. Determine the oxidation states of each element in the following compounds. (Reference: Ex. 4:16) a. N 2 N: b. Name: Electrochemistry Two of the most common types of chemical reactions are acid-base reactions in which protons are transferred between two reactants and oxidation-reduction reactions in which electrons

More information

Standard reduction potentials are established by comparison to the potential of which half reaction?

Standard reduction potentials are established by comparison to the potential of which half reaction? HW10 Electrochemical Poten al, Free Energy, and Applica ons This is a preview of the draft version of the quiz Started: Nov 8 at 5:51pm Quiz Instruc ons Question 1 What is the E for cell + 4+ 3+ Zn(s)

More information

Study Guide for Module 17 Oxidation-Reduction Reactions and Electrochemistry

Study Guide for Module 17 Oxidation-Reduction Reactions and Electrochemistry Chemistry 1020, Module 17 Name Study Guide for Module 17 Oxidation-Reduction Reactions and Electrochemistry Reading Assignment: Chapter 17 in Chemistry, 6th Edition by Zumdahl. Guide for Your Lecturer:

More information