XMVB 3.0 A Right Way To Do Valence Bond Calculations. Zhenhua Chen Xiamen University

Size: px
Start display at page:

Download "XMVB 3.0 A Right Way To Do Valence Bond Calculations. Zhenhua Chen Xiamen University"

Transcription

1 XMVB 3.0 A Right Way To Do Valence Bond Calculations Zhenhua Chen Xiamen University

2 XMVB 3.0 Xiamen Valence Bond An Ab Initio Non-orthogonal Valence Bond Program Version 3.0 Lingchun Song, Zhenhua Chen, Fuming Ying, Jinshuai Song, Xun Chen, Peifeng Su, Yirong Mo, Qianer Zhang, Wei Wu* Center for Theoretical Chemistry, State Key laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry Xiamen University, Xiamen Fujian 36005, CHINA

3 History pregnancy of the program Algorithms: SGA, PPD etc. 999 Xiamen-99 VBSCF, BOVB, VBCI 003 XMVB Version.0 was released VBPT, DFVB, VBPCM, Parallelization, Modularization, RDM 0 XMVB Version.0 was released RDM, AFCG, icvbpt, CD Int, SN In 07, XMVB Version 3.0 was released 3

4 Abilities VB structure set: Covalent and ionic structures for the active electrons VBCI +CI HAOs Breathing Orbitals BOVB icvbpt +ic VBPT +PT +CASSCF VBSCF +DFT +QMC DFVB VBSCF(CAS) VB-QMC +PCM Add-ons for Condensed Phases: +SM +MM +EFP VBPCM VBSM VB/MM VBEFP All classical VB methods are available! 4

5 What s New in Version 3.0? Integrals can be calculated directly. More basis sets and elements are supported. Cholesky decomposition for ERI is available. Tensor transformation is implemented for RDM-based approach. Seniority number truncated VBSCF method 5

6 Abilities VB structure set: Covalent and ionic structures for the active electrons CD-VBSCF +CD VBCI +CI HAOs Breathing Orbitals BOVB snvb icvbpt +SN +ic VBPT +PT +CASSCF VBSCF +DFT +QMC DFVB VBSCF(CAS) VB-QMC +PCM Add-ons for Condensed Phases: +SM +MM +EFP VBPCM VBSM VB/MM VBEFP All classical VB methods are available! 6

7 Useful documents XMVB manual Online Tutorials 7

8 Distributions of XMVB 3.0 Stand-alone distribution A stand-alone program can be used to do most VB calculations. Module distribution A module embedded in GAMESS-US can be used to accomplish VB calculations in condense phase 8

9 How to Run An XMVB Job? For Stand-alone distribution For jobs use the same integrals.. Compose job.inp. Run preint job.inp 3. Compose job.xmi 4. Run XMVB job.xmi. job.xmi += job.inp. Run XMVB job.xmi To get /-electron integrals xe.int, xe.int do VB calculation to get XMVB output files: job.xmo, job.orb, job.den, job.xdat For jobs have large number of basis functions. 9

10 Part. How to compose input files? 0

11 Main structure of XMI file $BFI $GEO $FRAG $CTRL $STR $ORB Optional Essential $GUS

12 How to write INT File H cc-pvdz 0 H H preint H.inp Job name; basis set Charge; multiplicity Elements and Cartesian coordinates job.xmi += job.inp $GEO $END

13 $ctrl frgtyp=sao orbtyp=hao nstr=3 iscf=5 nao= nae= $frag spz spz $orb $str Example. H molecule $ctrl frgtyp=sao orbtyp=hao nstr=3 iscf=5 nao= nae= $str $frag spz spz $orb Flexible format 3

14 $ctrl frgtyp=sao orbtyp=hao nstr=3 iscf=5 nao= nae= $frag spz spz $orb $str Example. H molecule How to compose an input file? Ø Obtain molecular geometry Ø Divide molecule into fragments Ø Specify orbitals on each fragment Ø Distribute electrons on the orbitals to give structures. H H H H H H 4

15 $ctrl frgtyp=sao orbtyp=hao nstr=3 iscf=5 nao= nae= $frag spz Fragments are a series of basis function sets. frgtyp=atom or frgtyp=sao, fragments are defined with symmetrized atomic orbitals. orbtyp=hao, the hybrid atomic orbitals are used. spz MO Basis functions $orb H S H S H S H S 3 H X Frag orb 3 H X H Y H Y 5 H Z H Z 6 H S H S $str 7 H S H S 8 H X H X Frag orb 9 H Y H Z H Y 0 H Z 5

16 $ctrl frgtyp=sao orbtyp=hao nstr=3 iscf=5 nao= nae= Fragments are a series of basis function sets. frgtyp=sao, fragments are defined with symmetrized atomic orbitals. $frag $frag: description for fragments Line : the number of atoms in each fragment. spz Line specifies which atoms and their basis functions: spz atom, and the s and pz types basis functions. Line 3 : the basis functions of s and pz types in atom. $orb $orb: description for VB orbitals Line : the number of fragments in each orbital. Line specifies orbital is localized on which fragments: fragment. $str Line 3 denotes orbital is localized on fragment. 6

17 $ctrl frgtyp=sao orbtyp=hao nstr=3 iscf=5 nao= nae= $frag spz spz $orb $str H Fragments are a series of basis function sets. frgtyp=sao, fragments are defined with symmetrized atomic orbitals. $frag: description for fragments Line : the number of atoms in each fragment. Line : the basis functions of s and pz types in atom. Line 3 : the basis functions of s and pz types in atom. $orb: description for VB orbitals Line : the number of fragments in each orbital. Line : orbital is localized on fragment. Line 3: orbital is localized on fragment. covalent ionic ionic H H H H H nstr =3, the number of structures In $str, a typical structure is written as: i i j j k k m n i j k: doubly occupied inactive orbitals. m n: variable occupied active orbitals.

18 Orbital optimization algorithms for VBSCF and BOVB: iscf options. $ctrl frgtyp=sao orbtyp=hao nstr=3 iscf=5 nao= nae= $frag spz spz $orb $str When iscf=5, the two keywords are necessary. nao: number of active orbitals nae: number of active electrons iscf Gradient Performance Numerical Slow Analytical Fast, but some time not stable 3 Numerical Slow 4 Numerical Very slow 5 Analytical Very Fast, but not for BOVB 6 Full Hessian Slow, quadratically converged

19 Summary () Ø $GEO Obtain molecular geometry Ø $FRA Divide molecule into fragments Ø $ORB Specify orbitals on each fragment Ø $STR Distribute electrons on the orbitals to give structures Ø $CTRL Assign an algorithm (i.e. iscf=5) to do the orbital optimization in valence bond calculation. Run the job by: XMVB job.xmi 9

20 Summary () Ø $GEO Obtain molecular geometry Ø $FRA Divide molecule into fragments Ø $ORB Specify orbitals on each fragment Ø $STR Distribute electrons on the orbitals to give structures Ø $CTRL Assign an algorithm (i.e. iscf=5) to do the orbital optimization in valence bond calculation. Run the job by: XMVB job.xmi Make modifications until XMVB terminates graciously. 0

21 Example. HF molecule hf.inp HF 6-3G 0 H F

22 HF molecule, 3 structures $ctrl frgtyp=atom orbtyp=hao str=full iscf=5 nae= nao= iprint=3 guess=mo $orb $str? hf.xmi orbtyp=hao Line gives numbers of fragments for six orbitals. The first 5 orbitals are localized on the second fragment of F atom. The last orbital is localized on the first fragment of H atom. frgtyp=atom The fragments of system are defined with atoms. By Default, each atom forms one fragment. basis function H S H S 3 F S 4 F S 5 F X 6 F Y 7 F Z 8 F S 9 F X 0 F Y F Z Frag Frag BO(H) s (F) px(f) py(f) s(f) BO(F)

23 HF molecule, 3 structures $ctrl frgtyp=atom orbtyp=hao str=full iscf=5 nae= nao= iprint=3 guess=mo $orb $str? hf.xmi orbtyp=hao Line gives numbers of fragments for six orbitals. The first 5 orbitals are localized on the second fragment of F atom. The last orbital is localized on the first fragment of H atom. If keyword str is used, XMVB will automatically generate structures. str = full => all VB structures cov => only covalent ion => only ionic structures $STR section can be absent. frgtyp=atom The fragments of system are defined with atoms. By Default, each atom forms one fragment. basis function H S H S 3 F S 4 F S 5 F X 6 F Y 7 F Z 8 F S 9 F X 0 F Y F Z Frag Frag BO(H) s (F) px(f) py(f) s(f) BO(F) 3

24 HF molecule, 3 structures $ctrl frgtyp=atom orbtyp=hao str=full iscf=5 nae= nao= iprint=3 guess=mo $orb $gus hf.xmi Iprint=3, full print-out message. guess=mo: Molecular Orbitals will be used as the initial guess for VB orbitals. VB orb MO s orbital of F atom s orbital of F atom 3 px pair of F atom 4 4 py pair of F atom 5 5 H-F bonding orbital on F atom 3 6 H-F bonding orbital on H atom 3 XMVB hf.xmi A A A A A H S H S F S F S F X F Y F Z F S F X F Y F Z

25 HF molecule, 3 structures $ctrl orbtyp=hao frgtyp=atom str=full bovb iscf= guess=read nae= nao= iprint=3 $orb Example b. L-BOVB calculation for HF For BOVB calculations, iscf= is most efficient; iscf = 4, 5, 6 are not available. Using VBSCF orbitals as guess orbitals for BOVB calculation by: cp hf.orb hf-bovb.gus XMVB hf-bovb.xmi 5

26 Summary (). Generate structures by str.. Set the fragment by FrgTyp=atom. 3. Set orbital guess by guess=mo and edit $gus. 4. Use VBSCF orbital as guess for BOVB calculation, and set guess=read. 6

27 ben.inp Example 3, benzene molecule C6H6 6-3G* 0 C C C C C C H H H H H H

28 The benzene molecule locates on the XY plane. Only the π bonds are explored in VB manner. The σ electrons/orbitals can be treated in MO way. Only one fragment is assigned for σ-part. For π -part, pz-type basis functions on each atom forms one fragment. Frag 3 Frag 4 Frag Frag 5 Frag 7 Frag 6 Frag 8

29 ben.xmi (part) benzene $ctrl frgtyp=sao orbtyp=hao str=full iscf=5 nao=6 nae=6 iprint=3 guess=auto $frag *6 spxydxxyyzzxy - pzdxzyz pzdxzyz E pzdxzyz 3 pzdxzyz 4 pzdxzyz 5 pzdxzyz 6 nao=6, the 6 π-orbitals are selected as active orbitals. nae=6, the number of active VB electrons str = full => generate all VB structures cov => only covalence Ion => only ionic structures frgtyp=sao, fragments are defined with symmetrized atomic orbitals. All σ-type basis function of all atoms (-) form the first fragment. Here, pxy is a short hand notation of px and py; and dxxyyzzxy means Dxx, Dyy, Dzz, Dxy. pz-type basis functions (pz, dxz, dyz) on each atom forms one fragment. 9

30 $orb *8 * E ben.xmi (part) There are 4 VB orbitals, the first 8 orbitals are localized on frag ; the remain 6 orbitals are localized on frag to frag 7 respectively. 30

31 Part 3. How to get information from output files? 3

32 Information of XMO file Input message SCF iterative procedure (final energy) Basic Input, Integrals, Guess etc Iteration ** E = **.** DE = ** VBSCF converged in ** iterations Total Energy: ** S ij and H ij Matrices Information of VB wavefunction Coefficients and Weights of structures Optimized orbitals Properties Bond order, atomic charge, dipole moments Optional Default 3

33 hf.xmo Total Energy: First Excited: The Last Change in Energy: Number of Iteration: 3 SCF procedures (final energy) ****** MATRIX OF OVERLAP ****** ****** MATRIX OF HAMILTONIAN ****** S ij and H ij matrices ****** WEIGHTS OF STRUCTURES ****** ****** : ****** : ****** :4 6 6 Weights of VB structures 33

34 Optimized orbitals ****** POPULATION AND CHARGE ****** ATOM MULL.POP. CHARGE LOW.POP. CHARGE H F ****** BOND ORDER ****** XMVB atomic population analysis ATOM ATOM DIST BOND ORDER H F

35 Availability of XMVB package To performs ab initio valence bond calculations XMVB version 3.0 is free. Send signed license agreement to: Professor Wei Wu Department of Chemistry Xiamen University, Xiamen, Fujian P. R. China Tel: Fax:

36 Thank you for your attentions!

E-VB satellite of the 16 th ICQC June 2018, Marseille, France. Content

E-VB satellite of the 16 th ICQC June 2018, Marseille, France. Content E-VB workshop @VALBO satellite of the 16 th ICQC 27-29 June 2018, Marseille, France VB with XMVB Content STARTING WITH XMVB 2 VB COMPUTER EXERCISES 5 Exercise 1. The HF molecule. 5 Exercise 2. Ozone and

More information

Xiamen Valence Bond An ab initio Non-orthogonal Valence Bond Program

Xiamen Valence Bond An ab initio Non-orthogonal Valence Bond Program Xiamen Valence Bond An ab initio Non-orthogonal Valence Bond Program Version 2.1 Lingchun Song, Zhenhua Chen, Fuming Ying, Jinshuai Song, Xun Chen, Peifeng Su, Yirong Mo, Qianer Zhang, Wei Wu Center for

More information

Advanced Valence Bond Theory

Advanced Valence Bond Theory Advanced Valence Bond Theory Wei Wu Deartment of Chemistry Xiamen University July 7, 05 Xiamen Outlines Second uantization in VB theory Correlation in VB theory VB methods for condensed hase systems lectronic

More information

CASSCF and NEVPT2 calculations: Ground and excited states of multireference systems. A case study of Ni(CO)4 and the magnetic system NArO

CASSCF and NEVPT2 calculations: Ground and excited states of multireference systems. A case study of Ni(CO)4 and the magnetic system NArO CASSCF and NEVPT2 calculations: Ground and excited states of multireference systems. A case study of Ni(CO)4 and the magnetic system NArO The ground states of many molecules are often well described by

More information

A CHEMIST'S GUIDE TO VALENCE BOND THEORY

A CHEMIST'S GUIDE TO VALENCE BOND THEORY A CHEMIST'S GUIDE TO VALENCE BOND THEORY Sason Shaik The Hebrew University Jerusalem, Israel Philippe C. Hiberty Universite de Paris-Sud Orsay, France BICENTENNIAL 3ICCNTENNIAL WILEY-INTERSCIENCE A JOHN

More information

eight-valence electron species

eight-valence electron species DOI: 0.038/NCHEM.263 Quadruple bonding in C 2 and analogous eight-valence electron species Sason Shaik*, David Danovich, Wei Wu 2, Peifeng Su 2, Henry Rzepa 3, Philippe C. Hiberty 4. Institute of Chemistry

More information

Molecular Orbitals for Ozone

Molecular Orbitals for Ozone Molecular Orbitals for Ozone Purpose: In this exercise you will do semi-empirical molecular orbital calculations on ozone with the goal of understanding the molecular orbital print out provided by Spartan

More information

MRCI calculations in MOLPRO

MRCI calculations in MOLPRO 1 MRCI calculations in MOLPRO Molpro is a software package written in Fortran and maintained by H.J. Werner and P.J. Knowles. It is often used for performing sophisticated electronic structure calculations,

More information

NPA/NBO-Analysis. Examples POP =

NPA/NBO-Analysis. Examples POP = NPA/NBO-Analysis Examples POP = NBO Requests a full Natural Bond Orbital analysis, using NBO version 3 NPA Requests just the Natural Population Analysis phase of NBO. NBORead Requests a full NBO analysis,

More information

1s atomic orbital 2s atomic orbital 2s atomic orbital (with node) 2px orbital 2py orbital 2pz orbital

1s atomic orbital 2s atomic orbital 2s atomic orbital (with node) 2px orbital 2py orbital 2pz orbital Atomic Orbitals 1s atomic orbital 2s atomic orbital 2s atomic orbital (with node) 2px orbital 2py orbital 2pz orbital Valence Bond Theory and ybridized Atomic Orbitals Bonding in 2 1s 1s Atomic Orbital

More information

Beyond the Hartree-Fock Approximation: Configuration Interaction

Beyond the Hartree-Fock Approximation: Configuration Interaction Beyond the Hartree-Fock Approximation: Configuration Interaction The Hartree-Fock (HF) method uses a single determinant (single electronic configuration) description of the electronic wavefunction. For

More information

UNIT III Chemical Bonding There are two basic approaches to chemical bonding based on the results of quantum mechanics. These are the Valence Bond

UNIT III Chemical Bonding There are two basic approaches to chemical bonding based on the results of quantum mechanics. These are the Valence Bond UNIT III Chemical Bonding There are two basic approaches to chemical bonding based on the results of quantum mechanics. These are the Valence Bond Theory (VB) and the Molecular Orbital theory (MO). 1)

More information

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. Dr. V.M. Williamson Texas A & M University Student Version

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. Dr. V.M. Williamson Texas A & M University Student Version Molecular Geometry Dr. V.M. Williamson Texas A & M University Student Version Valence Shell Electron Pair Repulsion- VSEPR 1. Valence e- to some extent 2. Electron pairs move as far away as possible to

More information

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. VSEPR: Electronic Geometries VSEPR

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. VSEPR: Electronic Geometries VSEPR Molecular Geometry Dr. V.M. Williamson Texas A & M University Student Version Valence Shell Electron Pair Repulsion- VSEPR 1. Valence e- to some extent 2. Electron pairs move as far away as possible to

More information

Lec20 Fri 3mar17

Lec20 Fri 3mar17 564-17 Lec20 Fri 3mar17 [PDF]GAUSSIAN 09W TUTORIAL www.molcalx.com.cn/wp-content/uploads/2015/01/gaussian09w_tutorial.pdf by A Tomberg - Cited by 8 - Related articles GAUSSIAN 09W TUTORIAL. AN INTRODUCTION

More information

General Chemistry I (2012) Lecture by B. H. Hong

General Chemistry I (2012) Lecture by B. H. Hong 3.8 The Limitations of Lewis's Theory 3.9 Molecular Orbitals The valence-bond (VB) and molecular orbital (MO) theories are both procedures for constructing approximate wavefunctions of electrons. The MO

More information

Citation for the original published paper (version of record):

Citation for the original published paper (version of record): http://www.diva-portal.org Postprint This is the accepted version of a paper published in Chemical Society Reviews. This paper has been peer-reviewed but does not include the final publisher proof-corrections

More information

BONDING THEORIES Chapter , Carey

BONDING THEORIES Chapter , Carey BONDING THEORIES Chapter 10.6-10.7, Carey The Covalent Chemical Bond (9.2) FIG I Potential Energy Change to Form H2 What is a chemical bond? Why do chemical bonds occur? Descriptions of bonding: Valence

More information

The MCSCF Method *, Molecular Orbitals, Reference Spaces and COLUMBUS Input

The MCSCF Method *, Molecular Orbitals, Reference Spaces and COLUMBUS Input The MCSCF Method *, Molecular Orbitals, Reference Spaces and COLUMBUS Input Hans Lischka University of Vienna *Excerpt of a course presented by R. Shepard, Argonne National Laboratory, at the Workshop

More information

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij )

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij ) MO Calculation for a Diatomic Molecule Introduction The properties of any molecular system can in principle be found by looking at the solutions to the corresponding time independent Schrodinger equation

More information

Chemistry 4560/5560 Molecular Modeling Fall 2014

Chemistry 4560/5560 Molecular Modeling Fall 2014 Final Exam Name:. User s guide: 1. Read questions carefully and make sure you understand them before answering (if not, ask). 2. Answer only the question that is asked, not a different question. 3. Unless

More information

Practical Advice for Quantum Chemistry Computations. C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology

Practical Advice for Quantum Chemistry Computations. C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology Practical Advice for Quantum Chemistry Computations C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology Choice of Basis Set STO-3G is too small 6-31G* or 6-31G** 6 probably

More information

arxiv: v2 [physics.chem-ph] 11 Mar 2011

arxiv: v2 [physics.chem-ph] 11 Mar 2011 Quantum Monte Carlo with Jastrow-Valence-Bond wave functions Benoît Braïda 1, Julien Toulouse 1, Michel Caffarel 2, and C. J. Umrigar 3 1 Laboratoire de Chimie Théorique, Université Pierre et Marie Curie

More information

Q-Chem 5: Facilitating Worldwide Scientific Breakthroughs

Q-Chem 5: Facilitating Worldwide Scientific Breakthroughs Q-Chem 5: Facilitating Worldwide Scientific Breakthroughs Founded in 1993, Q-Chem strives to bring its customers state-ofthe-art methods and algorithms for performing quantum chemistry calculations. Cutting-edge

More information

We can model covalent bonding in molecules in essentially two ways:

We can model covalent bonding in molecules in essentially two ways: CHEM 2060 Lecture 22: VB Theory L22-1 PART FIVE: The Covalent Bond We can model covalent bonding in molecules in essentially two ways: 1. Localized Bonds (retains electron pair concept of Lewis Structures)

More information

The wavefunction that describes a bonding pair of electrons:

The wavefunction that describes a bonding pair of electrons: 4.2. Molecular Properties from VB Theory a) Bonding and Bond distances The wavefunction that describes a bonding pair of electrons: Ψ b = a(h 1 ) + b(h 2 ) where h 1 and h 2 are HAOs on adjacent atoms

More information

Application and development of quantum chemical methods. Density functional theory and valence bond theory. Fuming Ying

Application and development of quantum chemical methods. Density functional theory and valence bond theory. Fuming Ying Application and development of quantum chemical methods. Density functional theory and valence bond theory Fuming Ying Theoretical Chemistry School of Biotechnology Royal Institute of Technology Stockholm

More information

Molecular Orbital Theory

Molecular Orbital Theory Molecular Orbital Theory 1. MO theory suggests that atomic orbitals of different atoms combine to create MOLECULAR ORBITALS 2. Electrons in these MOLECULAR ORBITALS belong to the molecule as whole 3. This

More information

Fragmentation methods

Fragmentation methods Fragmentation methods Scaling of QM Methods HF, DFT scale as N 4 MP2 scales as N 5 CC methods scale as N 7 What if we could freeze the value of N regardless of the size of the system? Then each method

More information

Lecture 10. Born-Oppenheimer approximation LCAO-MO application to H + The potential energy surface MOs for diatomic molecules. NC State University

Lecture 10. Born-Oppenheimer approximation LCAO-MO application to H + The potential energy surface MOs for diatomic molecules. NC State University Chemistry 431 Lecture 10 Diatomic molecules Born-Oppenheimer approximation LCAO-MO application to H + 2 The potential energy surface MOs for diatomic molecules NC State University Born-Oppenheimer approximation

More information

Introduction to Hartree-Fock calculations in Spartan

Introduction to Hartree-Fock calculations in Spartan EE5 in 2008 Hannes Jónsson Introduction to Hartree-Fock calculations in Spartan In this exercise, you will get to use state of the art software for carrying out calculations of wavefunctions for molecues,

More information

Molecular Orbital Theory. WX AP Chemistry Chapter 9 Adapted from: Luis Bonilla Abel Perez University of Texas at El Paso

Molecular Orbital Theory. WX AP Chemistry Chapter 9 Adapted from: Luis Bonilla Abel Perez University of Texas at El Paso Molecular Orbital Theory WX AP Chemistry Chapter 9 Adapted from: Luis Bonilla Abel Perez University of Texas at El Paso Molecular Orbital Theory The goal of molecular orbital theory is to describe molecules

More information

Last Name or Student ID

Last Name or Student ID 11/05/18, Chem433 Exam # 2 Last ame or Student ID 1. (2 pts) 2. (9 pts) 3. (2 pts) 4. (2 pts) 5. (2 pts) 6. (2 pts) 7. (2 pts) 8. (4 pts) 9. (14 pts) 10. (10 pts) 11. (26/31 pts) 12. (25/27 pts) Extra

More information

Analysis Of Chemical Bonding Using Ab Initio Valence Bond Theory

Analysis Of Chemical Bonding Using Ab Initio Valence Bond Theory Analysis Of Chemical Bonding Using Ab Initio Valence Bond Theory Analyse van chemische bindingen met ab initio valentiebindingstheorie (met een samenvatting in het Nederlands) Proefschrift ter verkrijging

More information

4 Post-Hartree Fock Methods: MPn and Configuration Interaction

4 Post-Hartree Fock Methods: MPn and Configuration Interaction 4 Post-Hartree Fock Methods: MPn and Configuration Interaction In the limit of a complete basis, the Hartree-Fock (HF) energy in the complete basis set limit (ECBS HF ) yields an upper boundary to the

More information

Page III-8-1 / Chapter Eight Lecture Notes MAR. Two s orbitals overlap. One s & one p. overlap. Two p orbitals. overlap MAR

Page III-8-1 / Chapter Eight Lecture Notes MAR. Two s orbitals overlap. One s & one p. overlap. Two p orbitals. overlap MAR Bonding and Molecular Structure: Orbital ybridization and Molecular Orbitals Chapter 8 Page III-8-1 / Chapter Eight Lecture Notes Advanced Theories of Chemical Bonding Chemistry 222 Professor Michael Russell

More information

5.61 Physical Chemistry Exam III 11/29/12. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry Chemistry Physical Chemistry.

5.61 Physical Chemistry Exam III 11/29/12. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry Chemistry Physical Chemistry. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry Chemistry - 5.61 Physical Chemistry Exam III (1) PRINT your name on the cover page. (2) It is suggested that you READ THE ENTIRE EXAM before

More information

Learning to Use Scigress Wagner, Eugene P. (revised May 15, 2018)

Learning to Use Scigress Wagner, Eugene P. (revised May 15, 2018) Learning to Use Scigress Wagner, Eugene P. (revised May 15, 2018) Abstract Students are introduced to basic features of Scigress by building molecules and performing calculations on them using semi-empirical

More information

Electron Correlation Methods

Electron Correlation Methods Electron Correlation Methods HF method: electron-electron interaction is replaced by an average interaction E HF c = E 0 E HF E 0 exact ground state energy E HF HF energy for a given basis set HF E c

More information

NMR and IR spectra & vibrational analysis

NMR and IR spectra & vibrational analysis Lab 5: NMR and IR spectra & vibrational analysis A brief theoretical background 1 Some of the available chemical quantum methods for calculating NMR chemical shifts are based on the Hartree-Fock self-consistent

More information

Lecture 16 C1403 October 31, Molecular orbital theory: molecular orbitals and diatomic molecules

Lecture 16 C1403 October 31, Molecular orbital theory: molecular orbitals and diatomic molecules Lecture 16 C1403 October 31, 2005 18.1 Molecular orbital theory: molecular orbitals and diatomic molecules 18.2 Valence bond theory: hybridized orbitals and polyatomic molecules Bond order, bond lengths,

More information

IFM Chemistry Computational Chemistry 2010, 7.5 hp LAB2. Computer laboratory exercise 1 (LAB2): Quantum chemical calculations

IFM Chemistry Computational Chemistry 2010, 7.5 hp LAB2. Computer laboratory exercise 1 (LAB2): Quantum chemical calculations Computer laboratory exercise 1 (LAB2): Quantum chemical calculations Introduction: The objective of the second computer laboratory exercise is to get acquainted with a program for performing quantum chemical

More information

A Computer Study of Molecular Electronic Structure

A Computer Study of Molecular Electronic Structure A Computer Study of Molecular Electronic Structure The following exercises are designed to give you a brief introduction to some of the types of information that are now readily accessible from electronic

More information

Valence bond theory accounts, at least qualitatively, for the stability of the covalent bond in terms of overlapping atomic orbitals.

Valence bond theory accounts, at least qualitatively, for the stability of the covalent bond in terms of overlapping atomic orbitals. Molecular Orbital Theory Valence bond theory accounts, at least qualitatively, for the stability of the covalent bond in terms of overlapping atomic orbitals. Using the concept of hybridization, valence

More information

2~:J~ -ryej- r- 2 Jr. A - f3. sr(djk nv~tor rn~ +~ rvjs (::-CJ) ::;-1-.'--~ -. rhd. ('-.Ji.L.~ )- r'-d)c, -r/~ JJr - 2~d ~2-Jr fn'6.

2~:J~ -ryej- r- 2 Jr. A - f3. sr(djk nv~tor rn~ +~ rvjs (::-CJ) ::;-1-.'--~ -. rhd. ('-.Ji.L.~ )- r'-d)c, -r/~ JJr - 2~d ~2-Jr fn'6. .~, ~ I, sr(djk nv~tor rn~ +~ rvjs (::-CJ) ::;-1-.'--~ -. rhd. ('-.Ji.L.~ )- r'-d)c, -r/~ JJr - 2~d ~2-Jr fn'6.)1e'" 21t-ol Je C'...-------- lj-vi, J? Jr Jr \Ji 2~:J~ -ryej- r- 2 Jr A - f3 c _,~,= ~,.,w._..._.

More information

Chemical Bonding & Structure

Chemical Bonding & Structure Chemical Bonding & Structure Further aspects of covalent bonding and structure Hybridization Ms. Thompson - HL Chemistry Wooster High School Topic 14.2 Hybridization A hybrid orbital results from the mixing

More information

Hybridization of Atomic Orbitals. (Chapter 1 in the Klein text)

Hybridization of Atomic Orbitals. (Chapter 1 in the Klein text) Hybridization of Atomic Orbitals (Chapter 1 in the Klein text) Basic Ideas The atomic structures, from the Periodic Table, of atoms such as C, N, and O do not adequately explain how these atoms use orbitals

More information

Contents. 1. Basic Concepts. 2. The Covalent Bond. 3. The Valence-Shell Electron-Pair Repulsion Models 4. Bond theories. 5. The Metallic Bond.

Contents. 1. Basic Concepts. 2. The Covalent Bond. 3. The Valence-Shell Electron-Pair Repulsion Models 4. Bond theories. 5. The Metallic Bond. Chemical Bonding (II) Topic 4. Chemical Bonding (II) (II) 1 Contents 1. Basic Concepts. a) Molecular parameters b) Lewis Dot Symbols 2. The Covalent Bond a) Polar Covalent Bond b) Formal Charge c) Exceptions

More information

C:\Users\Leonardo\Desktop\README_ELMO_NOTES.txt Montag, 7. Juli :48

C:\Users\Leonardo\Desktop\README_ELMO_NOTES.txt Montag, 7. Juli :48 *********** * Input * *********** Besides the normal GAMESS-UK input directives, to perform an ELMO calculation one needs to specify the elmo keyword and to provide additional instructions that are contained

More information

Same idea for polyatomics, keep track of identical atom e.g. NH 3 consider only valence electrons F(2s,2p) H(1s)

Same idea for polyatomics, keep track of identical atom e.g. NH 3 consider only valence electrons F(2s,2p) H(1s) XIII 63 Polyatomic bonding -09 -mod, Notes (13) Engel 16-17 Balance: nuclear repulsion, positive e-n attraction, neg. united atom AO ε i applies to all bonding, just more nuclei repulsion biggest at low

More information

Correlation in correlated materials (mostly transition metal oxides) Lucas K. Wagner University of Illinois at Urbana-Champaign

Correlation in correlated materials (mostly transition metal oxides) Lucas K. Wagner University of Illinois at Urbana-Champaign Correlation in correlated materials (mostly transition metal oxides) Lucas K. Wagner University of Illinois at Urbana-Champaign Understanding of correlated materials is mostly phenomenological FN- DMC

More information

Hints on Using the Orca Program

Hints on Using the Orca Program Computational Chemistry Workshops West Ridge Research Building-UAF Campus 9:00am-4:00pm, Room 009 Electronic Structure - July 19-21, 2016 Molecular Dynamics - July 26-28, 2016 Hints on Using the Orca Program

More information

Charge Analysis: Atoms in Molecules

Charge Analysis: Atoms in Molecules Daubechies Wavelets in Electronic Structure Calculation: BigDFT Code Tutorial CECAM - GRENOBLE : Atoms in Molecules Ali Sadeghi Basel University 21 November 2011 An output of electronic structure calculations

More information

Symmetry and Molecular Orbitals (I)

Symmetry and Molecular Orbitals (I) Symmetry and Molecular Orbitals (I) Simple Bonding Model http://chiuserv.ac.nctu.edu.tw/~htchiu/chemistry/fall-2005/chemical-bonds.htm Lewis Structures Octet Rule Resonance Formal Charge Oxidation Number

More information

PAPER No. 7: Inorganic chemistry II MODULE No. 5: Molecular Orbital Theory

PAPER No. 7: Inorganic chemistry II MODULE No. 5: Molecular Orbital Theory Subject Chemistry Paper No and Title Module No and Title Module Tag 7, Inorganic chemistry II 5, Molecular Orbital Theory CHE_P7_M5 TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction to Ligand Field

More information

General and Inorganic Chemistry I.

General and Inorganic Chemistry I. General and Inorganic Chemistry I. Lecture 1 István Szalai Eötvös University István Szalai (Eötvös University) Lecture 1 1 / 29 Outline István Szalai (Eötvös University) Lecture 1 2 / 29 Lewis Formulas

More information

5.111 Lecture Summary #13 Monday, October 6, 2014

5.111 Lecture Summary #13 Monday, October 6, 2014 5.111 Lecture Summary #13 Monday, October 6, 2014 Readings for today: Section 3.8 3.11 Molecular Orbital Theory (Same in 5 th and 4 th ed.) Read for Lecture #14: Sections 3.4, 3.5, 3.6 and 3.7 Valence

More information

Bonding/Lewis Dots Lecture Page 1 of 12 Date. Bonding. What is Coulomb's Law? Energy Profile: Covalent Bonds. Electronegativity and Linus Pauling

Bonding/Lewis Dots Lecture Page 1 of 12 Date. Bonding. What is Coulomb's Law? Energy Profile: Covalent Bonds. Electronegativity and Linus Pauling Bonding/Lewis Dots Lecture Page 1 of 12 Date Bonding What is Coulomb's Law? Energy Profile: Covalent Bonds Electronegativity and Linus Pauling 2.1 H 1.0 Li 0.9 Na 0.8 K 0.8 Rb 0.7 Cs 0.7 Fr 1.5 Be 1.2

More information

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS CHAPTER TEN CHEMICAL BONDING II: AND HYBRIDIZATION O ATOMIC ORBITALS V S E P R VSEPR Theory In VSEPR theory, multiple bonds behave like a single electron pair Valence shell electron pair repulsion (VSEPR)

More information

Practical Issues on the Use of the CASPT2/CASSCF Method in Modeling Photochemistry: the Selection and Protection of an Active Space

Practical Issues on the Use of the CASPT2/CASSCF Method in Modeling Photochemistry: the Selection and Protection of an Active Space Practical Issues on the Use of the CASPT2/CASSCF Method in Modeling Photochemistry: the Selection and Protection of an Active Space Roland Lindh Dept. of Chemistry Ångström The Theoretical Chemistry Programme

More information

An Introduction to Quantum Chemistry and Potential Energy Surfaces. Benjamin G. Levine

An Introduction to Quantum Chemistry and Potential Energy Surfaces. Benjamin G. Levine An Introduction to Quantum Chemistry and Potential Energy Surfaces Benjamin G. Levine This Week s Lecture Potential energy surfaces What are they? What are they good for? How do we use them to solve chemical

More information

Convergence of valence bond theory in trans-butadiene molecule

Convergence of valence bond theory in trans-butadiene molecule Revista Brasileira de Física, Vol. 21, no 1, 1991 Convergence of valence bond theory in trans-butadiene molecule E'. E. Jorge Departamento de Fásica e Química, Universidade Federal do Espírito Santo, 29069,

More information

Using Web-Based Computations in Organic Chemistry

Using Web-Based Computations in Organic Chemistry 10/30/2017 1 Using Web-Based Computations in Organic Chemistry John Keller UAF Department of Chemistry & Biochemistry The UAF WebMO site Practical aspects of computational chemistry theory and nomenclature

More information

A One-Slide Summary of Quantum Mechanics

A One-Slide Summary of Quantum Mechanics A One-Slide Summary of Quantum Mechanics Fundamental Postulate: O! = a! What is!?! is an oracle! operator wave function (scalar) observable Where does! come from?! is refined Variational Process H! = E!

More information

Lecture 16 February 20 Transition metals, Pd and Pt

Lecture 16 February 20 Transition metals, Pd and Pt Lecture 16 February 20 Transition metals, Pd and Pt Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Course

More information

Chemistry 1B, Fall 2012 Lectures 15-16

Chemistry 1B, Fall 2012 Lectures 15-16 Chemistry 1B Fall 2012 Quantum Mechanics of the Covalent Bond for chapter 14 animations and links see: http://switkes.chemistry.ucsc.edu/teaching/chem1b/www_other_links/ch14_links.htm 1 LISTEN UP!!! WE

More information

Molecular Orbital Theory (MOT)

Molecular Orbital Theory (MOT) Molecular Orbital Theory (MOT) In this section, There are another approach to the bonding in metal complexes: the use of molecular orbital theory (MOT). In contrast to crystal field theory, the molecular

More information

Appendix D Simulating Spectroscopic Bands Using Gaussian and PGopher

Appendix D Simulating Spectroscopic Bands Using Gaussian and PGopher 429 Appendix D Simulating Spectroscopic Bands Using Gaussian and PGopher This appendix contains methods for using Gaussian 09 121 and PGopher 120 to simulate vibrational and electronic bands of molecules.

More information

Exercise 1: Structure and dipole moment of a small molecule

Exercise 1: Structure and dipole moment of a small molecule Introduction to computational chemistry Exercise 1: Structure and dipole moment of a small molecule Vesa Hänninen 1 Introduction In this exercise the equilibrium structure and the dipole moment of a small

More information

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2 The Delocalized Approach to Bonding: The localized models for bonding we have examined (Lewis and VBT) assume that all electrons are restricted to specific bonds between atoms or in lone pairs. In contrast,

More information

Chemistry 1B, Fall 2013 Lectures 15-16

Chemistry 1B, Fall 2013 Lectures 15-16 Chemistry 1, Fall 2013 Lectures 1516 Chemistry 1 Fall 2013 Lectures 1516 Quantum Mechanics of the Covalent ond LISTEN UP!!! WE WILL E COVERING SECOND PRT OF CHPTER 14 (pp 676688) FIRST You will go CRZY

More information

Covalent Bonds: overlap of orbitals σ-bond π-bond Molecular Orbitals

Covalent Bonds: overlap of orbitals σ-bond π-bond Molecular Orbitals Covalent Bonding What is covalent bonding? Covalent Bonds: overlap of orbitals σ-bond π-bond Molecular Orbitals Hybrid Orbital Formation Shapes of Hybrid Orbitals Hybrid orbitals and Multiple Bonds resonance

More information

Dimer Dissociation of a Photoreceptor Protein from QM/MM and MD Simulations

Dimer Dissociation of a Photoreceptor Protein from QM/MM and MD Simulations Dimer Dissociation of a Photoreceptor Protein from QM/MM and MD Simulations IMA University of Minnesota Minneapolis, MN, July 20, 2015 Haisheng Ren Advisor: Prof. Jiali Gao Department of Chemistry, University

More information

Lecture Notes D: Molecular Orbital Theory

Lecture Notes D: Molecular Orbital Theory Lecture Notes D: Molecular Orbital Theory Orbital plotting applet: http://www.mpcfaculty.net/mark_bishop/hybrid_frame.htm Images below from: http://employees.oneonta.edu/viningwj/chem111/hybrids%20and%20pi%20bonding.jpg

More information

Lecture 16 C1403 October 31, Molecular orbital theory: molecular orbitals and diatomic molecules

Lecture 16 C1403 October 31, Molecular orbital theory: molecular orbitals and diatomic molecules Lecture 16 C1403 October 31, 2005 18.1 Molecular orbital theory: molecular orbitals and diatomic molecules 18.2 Valence bond theory: hybridized orbitals and polyatomic molecules. From steric number to

More information

QUANTUM MECHANICS AND MOLECULAR STRUCTURE

QUANTUM MECHANICS AND MOLECULAR STRUCTURE 6 QUANTUM MECHANICS AND MOLECULAR STRUCTURE 6.1 Quantum Picture of the Chemical Bond 6.2 Exact Molecular Orbital for the Simplest Molecule: H + 2 6.3 Molecular Orbital Theory and the Linear Combination

More information

Size-extensive wave functions for QMC A linear-scaling GVB approach

Size-extensive wave functions for QMC A linear-scaling GVB approach Size-extensive wave functions for QMC A linear-scaling GVB approach Claudia Filippi, University of Twente, The Netherlands Francesco Fracchia, University of Pisa, Italy Claudio Amovilli, University of

More information

Introduction to Hartree-Fock calculations using ORCA and Chemcraft

Introduction to Hartree-Fock calculations using ORCA and Chemcraft Introduction to Hartree-Fock calculations using ORCA and Chemcraft In this exercise, you will get to use software for carrying out calculations of wavefunctions for molecules, the ORCA program. While ORCA

More information

ABC of DFT: Hands-on session 1 Introduction into calculations on molecules

ABC of DFT: Hands-on session 1 Introduction into calculations on molecules ABC of DFT: Hands-on session 1 Introduction into calculations on molecules Tutor: Alexej Bagrets Wann? 09.11.2012, 11:30-13:00 Wo? KIT Campus Nord, Flachbau Physik, Geb. 30.22, Computerpool, Raum FE-6

More information

TYPES OF SYMMETRIES OF MO s s-s combinations of orbitals: , if they are antibonding. s-p combinatinos of orbitals: CHEMICAL BONDING.

TYPES OF SYMMETRIES OF MO s s-s combinations of orbitals: , if they are antibonding. s-p combinatinos of orbitals: CHEMICAL BONDING. TYPES OF SYMMETRIES OF MO s s-s combinations of : Orbitals Molecular Orbitals s s Node s s (g) (g) Bonding orbital Antibonding orbital (u) 4 (u) s-s combinations of atomic In the bonding MO there is increased

More information

G A M E S S - U K USER S GUIDE and REFERENCE MANUAL Version 8.0 June 2008

G A M E S S - U K USER S GUIDE and REFERENCE MANUAL Version 8.0 June 2008 CONTENTS i Computing for Science (CFS) Ltd., CCLRC Daresbury Laboratory. Generalised Atomic and Molecular Electronic Structure System G A M E S S - U K USER S GUIDE and REFERENCE MANUAL Version 8.0 June

More information

Molecular structure and bonding

Molecular structure and bonding Chemistry 481(01) Spring 2017 Instructor: Dr. Upali Siriwardane e-mail: upali@latech.edu Office: CTH 311 Phone 257-4941 Office Hours: M,W 8:00-9:00 & 11:00-12:00 am; Tu,Th, F 9:30-11:30 a.m. April 4, 2017:

More information

Ethene. Introduction. The ethene molecule is planar (i.e. all the six atoms lie in the same plane) and has a high degree of symmetry:

Ethene. Introduction. The ethene molecule is planar (i.e. all the six atoms lie in the same plane) and has a high degree of symmetry: FY1006 Innføring i kvantefysikk og TFY4215 Kjemisk fysikk og kvantemekanikk Spring 2012 Chemical Physics Exercise 1 To be delivered by Friday 27.04.12 Introduction Ethene. Ethylene, C 2 H 4, or ethene,

More information

Chapter 18 Molecular orbitals and spectroscopy Conjugation of bonds and resonance structures

Chapter 18 Molecular orbitals and spectroscopy Conjugation of bonds and resonance structures Chapter 18 Molecular orbitals and spectroscopy 18.1 Diatomic molecules 18.2 Polyatomic molecules 18.3 Conjugation of bonds and resonance structures 18.4 The interaction of light and matter (spectroscopy)

More information

Multiconfigurational Quantum Chemistry. Björn O. Roos as told by RL Department of Theoretical Chemistry Chemical Center Lund University Sweden

Multiconfigurational Quantum Chemistry. Björn O. Roos as told by RL Department of Theoretical Chemistry Chemical Center Lund University Sweden Multiconfigurational Quantum Chemistry Björn O. Roos as told by RL Department of Theoretical Chemistry Chemical Center Lund University Sweden April 20, 2009 1 The Slater determinant Using the spin-orbitals,

More information

Name: Class: Date: 3. How many lone pairs of electrons are assigned to the carbon atom in carbon monoxide? a. 0 b. 1 c. 2 d. 3

Name: Class: Date: 3. How many lone pairs of electrons are assigned to the carbon atom in carbon monoxide? a. 0 b. 1 c. 2 d. 3 Class: Date: Midterm 3, Fall 2009 Record your name on the top of this exam and on the scantron form. Record the test ID letter in the top right box of the scantron form. Record all of your answers on the

More information

Molecular Geometry and Chemical Bonding Theory

Molecular Geometry and Chemical Bonding Theory Molecular Geometry and Chemical Bonding Theory The Valence -Shell Electron -Pair Repulsion (VSEPR) Model predicts the shapes of the molecules and ions by assuming that the valence shell electron pairs

More information

CHEMISTRY. Chapter 8 ADVANCED THEORIES OF COVALENT BONDING Kevin Kolack, Ph.D. The Cooper Union HW problems: 6, 7, 12, 21, 27, 29, 41, 47, 49

CHEMISTRY. Chapter 8 ADVANCED THEORIES OF COVALENT BONDING Kevin Kolack, Ph.D. The Cooper Union HW problems: 6, 7, 12, 21, 27, 29, 41, 47, 49 CHEMISTRY Chapter 8 ADVANCED THEORIES OF COVALENT BONDING Kevin Kolack, Ph.D. The Cooper Union HW problems: 6, 7, 12, 21, 27, 29, 41, 47, 49 2 CH. 8 OUTLINE 8.1 Valence Bond Theory 8.2 Hybrid Atomic Orbitals

More information

Selected Publications of Prof. Dr. Wenjian Liu

Selected Publications of Prof. Dr. Wenjian Liu Selected Publications of Prof. Dr. Wenjian Liu College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China 1 Fundamentals of relativistic molecular quantum mechanics 1. Handbook

More information

Calculations of band structures

Calculations of band structures Chemistry and Physics at Albany Planning for the Future Calculations of band structures using wave-function based correlation methods Elke Pahl Centre of Theoretical Chemistry and Physics Institute of

More information

Benoît BRAÏDA* Label chimie théorique d Ile de France Valence Bond theory. Laboratoire de Chimie Théorique Sorbonne Université - CNRS

Benoît BRAÏDA* Label chimie théorique d Ile de France Valence Bond theory. Laboratoire de Chimie Théorique Sorbonne Université - CNRS Benoît BRAÏDA* Label chimie théorique d Ile de France 2019 Valence Bond theory Laboratoire de Chimie Théorique Sorbonne Université - CNRS * benoit.braida@sorbonne-universite.fr VB lectures Part. 0 - Purpose

More information

Chapter: 22. Visualization: Making INPUT File and Processing of Output Results

Chapter: 22. Visualization: Making INPUT File and Processing of Output Results Chapter: 22 Visualization: Making INPUT File and Processing of Output Results Keywords: visualization, input and output structure, molecular orbital, electron density. In the previous chapters, we have

More information

CHEMISTRY. Chapter 10 Theories of Bonding and Structure. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION

CHEMISTRY. Chapter 10 Theories of Bonding and Structure. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION CHEMISTRY The Molecular Nature of Matter SIXTH EDITION Jespersen Brady Hyslop Chapter 10 Theories of Bonding and Structure Copyright 2012 by John Wiley & Sons, Inc. Molecular Structures Molecules containing

More information

Using Symmetry to Generate Molecular Orbital Diagrams

Using Symmetry to Generate Molecular Orbital Diagrams Using Symmetry to Generate Molecular Orbital Diagrams review a few MO concepts generate MO for XH 2, H 2 O, SF 6 Formation of a bond occurs when electron density collects between the two bonded nuclei

More information

Jack Smith. Center for Environmental, Geotechnical and Applied Science. Marshall University

Jack Smith. Center for Environmental, Geotechnical and Applied Science. Marshall University Jack Smith Center for Environmental, Geotechnical and Applied Science Marshall University -- Division of Science and Research WV Higher Education Policy Commission WVU HPC Summer Institute June 20, 2014

More information

Hydrogen Bond 1. The states of hybridization of boron and oxygen atoms in boric acid (H BO ) are reectively (A) and (B) and (C) and (D) and. The correct order of the hybridization of the central atom in

More information

Chapter 9 Molecular Geometry Valence Bond and Molecular Orbital Theory

Chapter 9 Molecular Geometry Valence Bond and Molecular Orbital Theory Chapter 9 Molecular Geometry Valence Bond and Molecular Orbital Theory Chapter Objectives: Learn the basics of Valence Bond Theory and Molecular Orbital Theory and how they are used to model covalent bonding.

More information

AP Chemistry- Practice Bonding Questions for Exam

AP Chemistry- Practice Bonding Questions for Exam AP Chemistry- Practice Bonding Questions for Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is a correct Lewis structure for

More information

Molecular Structure and Orbitals

Molecular Structure and Orbitals CHEM 1411 General Chemistry Chemistry: An Atoms First Approach by Zumdahl 2 5 Molecular Structure and Orbitals Chapter Objectives: Learn the basics of Valence Bond Theory and Molecular Orbital Theory and

More information

Chapter 10 Theories of Covalent Bonding

Chapter 10 Theories of Covalent Bonding Chapter 10 Theories of Covalent Bonding 1 Atomic Orbitals Molecules Bonding and 2 Molecular Structure Questions How are molecules held together? Why is O 2 paramagnetic? And how is this property connected

More information