Last Name or Student ID

Size: px
Start display at page:

Download "Last Name or Student ID"

Transcription

1 11/05/18, Chem433 Exam # 2 Last ame or Student ID 1. (2 pts) 2. (9 pts) 3. (2 pts) 4. (2 pts) 5. (2 pts) 6. (2 pts) 7. (2 pts) 8. (4 pts) 9. (14 pts) 10. (10 pts) 11. (26/31 pts) 12. (25/27 pts) Extra Total: (100/107 pts) The exam consists of two parts. The first part is close book/ close notes with mostly conceptual problems. Give a brief explanation for maximum credit. You can submit corrections to your answers either online before midnight 11/5/18. If answered correctly, corrections will get you 50% of the face value. The second part is take-home. You should bring it to class on Wednesday, 11/7/18, to be submitted at the beginning of the class.

2 Part I. In class and collected after 1 hour. It is close book close notes portion with mostly conceptual problems. Give a brief explanation for a full credit. 1. (2 pts) How many radial and angular nodes can be found in 6f orbital? 2. (9 pts) Consider the ground state of H2 molecule a) (3 pts) Identify which of the wavefunctions below correspond to the ground state of H2 molecule in the MO and VB description, respectively. Be aware that one function represents neither. a) = (1sA(1)1sB(2) + 1sB(1)1sA(2)) ( (1) (2) - (1) (2)) b) = (1sA(1) + 1sB(1)) (1sA(2) + 1sB(2)) ( (1) (2) - (1) (2)) c) = (1sA(1) + 1sB(2)) (1sA(2) + 1sB(1)) ( (1) (2) - (1) (2)) b) (4 pts) Comment on what is the main difference between the MO and VB description. You may illustrate it by comparing the two functions you identified above. c) (2 pts) Can the states in answers for a) be characterized by certain values of the overall spin? If yes, what is the spin state for each of the two functions you identified? 3. (2 pts) Place the energies of the following orbitals in the order of increasing for carbon atom: a) E(1s) < E (2s) = E(2p) < E (3s) = E(3p) = E (3d) b) (E(1s) > E (2s) = E(2p) > E (3s) = E(3p) = E (3d) c) E(1s) < E (2s) < E(2p) < E (3s) < E(3p) < E (3d) d) E(1s) > E (2s) > E(2p) > E (3s) > E(3p) > E (3d) 4. (2 pts) Identify all alternant hydrocarbons among those shown below. a) b) c) d)

3 5. (2 pts) Bosons are particles that : a) have half an integer spin b) have an integer spin c) their multiparticle wavefunction is symmetric with respect to exchanging any two of them, (1,2) = (2,1) d) their multiparticle wavefunction is antisymmetric with respect to exchanging any two of them, (1,2) = - (2,1) e) a and c f) b and d g) a and d h) b and c 6. (2 pts) Homogeneous line broadening: a) explains doppler broadening b) explains lifetime broadening c) is described by a Lorentzian lineshape d) is described by a Gaussian lineshape e) b and c f) a and d 7. (2 pts) Identify the quantum numbers n, l and ml for an orbital sketched below. What is the name of this orbital? Different colors represent different signs of the wavefunction. 8. (4 pts) Calculate the portion of light transmitted through a 1.0 cm cell filled with M solution of tetraphenyl porphyrin at the 416 nm, where its extinction coefficient is = M -1 cm -1. Provide your answer in % of transmitted light.

4 9. (14 pts) Consider SiO molecule. a) (6 pts) Sketch its molecular orbital energy level diagram with the electrons placed in these orbitals for the ground electronic state. What is the ground state electron configuration? b) (2 pts) What is the bond order for the ground state? c) (2 pts) What is the spin of the lowest energy term for this configuration? d) (2 pts) Will its cation SiO have longer or shorter bond length? e) (2 pts) What is the degeneracy of rotational J = 5 state of SiO?

5 10. (10 pts) Hybrid sp 2 orbitals are constructed as linear combinations of an s, px, and py orbitals of the same atom. If one of the hybrid orbitals (not normalized) is h1 = (s + 2 ½ px) identify the other two. a) (3 pts) ormalize h1. Hint: Remember that s and px, py orbitals represent an orthonormal set. Calculate the norm, = <h1 h1> and renormalize to get h1 = h1/ ½ b) (7 pts) Identify h2 and h3. Make sure that these hybrid orbitals are orthogonal to h1 and each other and the same relative contribution p vs s. To achieve that, take each remaining hi = (s + aipx+ bipy)/ 1/2 with the norm the same as calculated above for h1.

6 11. (26/31 pts) Consider Ti 2+ ion. a) (2 pts) What is its ground electron configuration? b) (3 pts) What is its ground state term and its degeneracy? c) (3 pts) What are the possible states for this term and their degeneracies? d) (2 pts) Which one is of the lowest energy state? e) (2 pts) Explain why [Ar]3d 1 4s 1 is likely the lowest energy excited electron configuration. f) (3 pts) What is the lowest energy term for this configuration? Hint: Draw the orbital diagrams for all unfilled subshells and follow the Hund s rules for electron placement. g) (2 pts) What are the possible states for this term?

7 h) (2 pts) Transitions between which states in g) and c) are allowed? i) (2 pts) List all possible terms for [Ar]3d 1 4p 1 excited electron configuration. i) (2 pts) List all states for [Ar]3d 1 4p 1 excited electron configuration to which optical transitions are dipole allowed and identify the lowest energy one out of them. j) (Honors, 5 pts) Identify all other possible terms for the ground electron configuration of Ti 2+.

8 Part II. Take home and collected on Wednesday in class. You should be answering these questions without any help. If submitted in class, each correct answer gets 1.5 times of its face value. 12. (25/27 pts total) Consider a series of aromatic molecules (all satisfy the 4n+2 rule): benzene, pyridine, pyrazine, pyrimidine, and 1,3,5 triazine. Using Hückel approximation calculate the energies of their molecular orbitals and analyze them as suggested below. The values of the coulomb and resonance integrals for nitrogen with one p electron, like in these molecules, equal = C +0.5 CC and C = CC = 2.4 ev, respectively benzene pyridine pyrazine pyrimidine 1,3,5-triazine a) (5 pts) Compare it with that calculated using particle on a ring (POR) approximation with the assumption of identical C-C bond lengths of LCC = 1.39 Å and C- bond lengths of LC = 1.37 Å. For the estimate of ring diameter use R = 3 ½ /12 Li What are the shortcomings of this model as applied to these molecules and how can it be improved? Molecule R, A LUMO-HOMO max, nm benzene Pyridine Pyrazine Pyrimidine 1,3,5-triazine b) (10 pts) Calculate the wavelengths of the lowest energy transitions for all these molecules using the Hückel approximation with the above parameters. Hint: Construct the Hamiltonian matrices and calculate the energy eigen values. Identify HOMO and LUMO and calculate the energy differences for the transitions and the corresponding wavelengths of these transitions. You may use any software to identify the eigen values; for example, the one from the class web site. Molecule HOMO LUMO LUMO-HOMO max, nm benzene Pyridine Pyrazine pyrimidine 1,3,5-triazine

9 c) (5 pts) From the above found energies of the states, identify the electron affinity (EA) for each molecule d) (5 pts) From the above found energies of the states, identify the ionization energies (IP) for each molecule Molecule IP, ev EA, ev benzene Pyridine Pyrazine pyrimidine 1,3,5-triazine e) (2 pts, Honors) What is wrong with assigning the ionization energy to the HOMO energy in this case?

10 Extra Credit.1 (up to 15 pts) you would have to show it to me in person. Perform an analysis based on Hückel approximation for regioselectivity in electrophilic substitution for different substituent groups in benzene. For simplicity, let us use CH2 + as electron ( ) withdrawing group and CH2 as electron ( ) donating group. Does the analysis of only HOMO orbital automatically lead to the corresponding ortho/para and metha directing? - H 2 C + H 2 C

Last Name or Student ID

Last Name or Student ID 12/9/15, Chem433 Final Exam Last Name or Student ID 1. (2 pts) 11. (4 pts) 2. (6 pts) 12. (3 pts) 3. (2 pts) 13. (4 pts) 4. (3 pts) 14. (3 pts) 5. (5 pts) 15. (3 pts) 6. (3 pts) 16. (7 pts) 7. (12 pts)

More information

Last Name or Student ID

Last Name or Student ID 12/05/18, Chem433 Final Exam Last Name or Student ID 1. (2 pts) 12. (3 pts) 2. (6 pts) 13. (3 pts) 3. (3 pts) 14. (2 pts) 4. (3 pts) 15. (3 pts) 5. (4 pts) 16. (3 pts) 6. (2 pts) 17. (15 pts) 7. (9 pts)

More information

Last Name or Student ID

Last Name or Student ID 12/05/18, Chem433 Final Exam answers Last Name or Student ID 1. (2 pts) 12. (3 pts) 2. (6 pts) 13. (3 pts) 3. (3 pts) 14. (2 pts) 4. (3 pts) 15. (3 pts) 5. (4 pts) 16. (3 pts) 6. (2 pts) 17. (15 pts) 7.

More information

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2 The Delocalized Approach to Bonding: The localized models for bonding we have examined (Lewis and VBT) assume that all electrons are restricted to specific bonds between atoms or in lone pairs. In contrast,

More information

CHEM 2010 Symmetry, Electronic Structure and Bonding Winter Numbering of Chapters and Assigned Problems

CHEM 2010 Symmetry, Electronic Structure and Bonding Winter Numbering of Chapters and Assigned Problems CHEM 2010 Symmetry, Electronic Structure and Bonding Winter 2011 Numbering of Chapters and Assigned Problems The following table shows the correspondence between the chapter numbers in the full book (Physical

More information

Chemistry 6 10:00 Section Time limit = 3 hours Spring There are two sections to this exam. Please read the instructions carefully.

Chemistry 6 10:00 Section Time limit = 3 hours Spring There are two sections to this exam. Please read the instructions carefully. Chemistry 6 10:00 Section Final Exam Time limit = 3 hours Spring 2005 Name There are two sections to this exam. Please read the instructions carefully. In the first section, there are 13 multiple choice

More information

Tuning Color Through Substitution

Tuning Color Through Substitution 1 Tuning Color Through Substitution Introduction In this experiment, the effect of substituents on the absorbance spectra of molecules will be related to the structure of the molecular orbitals involved

More information

5.61 Physical Chemistry Final Exam 12/16/09. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry Chemistry Physical Chemistry

5.61 Physical Chemistry Final Exam 12/16/09. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry Chemistry Physical Chemistry 5.6 Physical Chemistry Final Exam 2/6/09 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry Chemistry - 5.6 Physical Chemistry Final Examination () PRINT your name on the cover page. (2) It

More information

Lecture B6 Molecular Orbital Theory. Sometimes it's good to be alone.

Lecture B6 Molecular Orbital Theory. Sometimes it's good to be alone. Lecture B6 Molecular Orbital Theory Sometimes it's good to be alone. Covalent Bond Theories 1. VSEPR (valence shell electron pair repulsion model). A set of empirical rules for predicting a molecular geometry

More information

Quantum Chemistry. NC State University. Lecture 5. The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy

Quantum Chemistry. NC State University. Lecture 5. The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy Quantum Chemistry Lecture 5 The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy NC State University 3.5 Selective absorption and emission by atmospheric gases (source:

More information

α β β α β β 0 β α 0 0 0

α β β α β β 0 β α 0 0 0 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry 5.6 Quantum Mechanics Fall 03 Problem Set #7 Reading Assignment: McQuarrie 9.-9.5, 0.-0.5,Matlab and Linear Algebra Handouts ( = Easier = More

More information

The Hückel Approximation Consider a conjugated molecule i.e. a molecule with alternating double and single bonds, as shown in Figure 1.

The Hückel Approximation Consider a conjugated molecule i.e. a molecule with alternating double and single bonds, as shown in Figure 1. The Hückel Approximation In this exercise you will use a program called Hückel to look at the p molecular orbitals in conjugated molecules. The program calculates the energies and shapes of p (pi) molecular

More information

Electronic Structure Models

Electronic Structure Models Electronic Structure Models Hückel Model (1933) Basic Assumptions: (a) One orbital per atom contributes to the basis set; all orbitals "equal" (b) The relevant integrals involving the Hamiltonian are α

More information

Goals for Today. Clarify some Rydberg Concepts Absorption vs. emission

Goals for Today. Clarify some Rydberg Concepts Absorption vs. emission Note: Due to recent changes the exam 2 material for these slides ends at Ionization Energy Exceptions. You can omit Lewis Structures through General Formal Charge Rules. CH301 Unit 2 QUANTUM NUMBERS AND

More information

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components.

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components. Chem 44 Review for Exam Hydrogenic atoms: The Coulomb energy between two point charges Ze and e: V r Ze r Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative

More information

Chemistry 543--Final Exam--Keiderling May 5, pm SES

Chemistry 543--Final Exam--Keiderling May 5, pm SES Chemistry 543--Final Exam--Keiderling May 5,1992 -- 1-5pm -- 174 SES Please answer all questions in the answer book provided. Make sure your name is clearly indicated and that the answers are clearly numbered,

More information

Theoretical Chemistry - Level II - Practical Class Molecular Orbitals in Diatomics

Theoretical Chemistry - Level II - Practical Class Molecular Orbitals in Diatomics Theoretical Chemistry - Level II - Practical Class Molecular Orbitals in Diatomics Problem 1 Draw molecular orbital diagrams for O 2 and O 2 +. E / ev dioxygen molecule, O 2 dioxygenyl cation, O 2 + 25

More information

Part 1. Answer 7 of the following 8 questions. If you answer more than 7 cross out the one you wish not to be graded. 12 points each.

Part 1. Answer 7 of the following 8 questions. If you answer more than 7 cross out the one you wish not to be graded. 12 points each. Physical Chemistry Final Name Spring 2004 Prof. Shattuck Constants: h=6.626x10-34 J s h =1.054x10-34 J s 1Å=1x10-8cm=1x10-10m NA=6.022x1023 mol-1 R=8.314 J/mol K 1eV= 96.485 kj/mol Part 1. Answer 7 of

More information

Benzene: E. det E E 4 E 6 0.

Benzene: E. det E E 4 E 6 0. Benzene: 2 5 3 4 We will solve Schodinger equation for this molecule by considering only porbitals of six carbons under the Huckel approximation. Huckel approximation, though quite crude, provides very

More information

My additional comments, questions are colored in blue in the following slides.

My additional comments, questions are colored in blue in the following slides. My additional comments, questions are colored in blue in the following slides. Do not forget to work the assigned HW from the text that is also posted on the boardlist. I will post my answers to these

More information

Please pass in only this completed answer sheet on the day of the test. LATE SUBMISSIONS WILL NOT BE ACCEPTED

Please pass in only this completed answer sheet on the day of the test. LATE SUBMISSIONS WILL NOT BE ACCEPTED CHM-201 General Chemistry and Laboratory I Unit #4 Take Home Test Due December 13, 2018 Please pass in only this completed answer sheet on the day of the test. LATE SUBMISSIONS WILL NOT BE ACCEPTED CHM-201

More information

Chem 673, Problem Set 5 Due Thursday, November 29, 2007

Chem 673, Problem Set 5 Due Thursday, November 29, 2007 Chem 673, Problem Set 5 Due Thursday, November 29, 2007 (1) Trigonal prismatic coordination is fairly common in solid-state inorganic chemistry. In most cases the geometry of the trigonal prism is such

More information

NH 3 H 2 O N 2. Why do they make chemical bonds? Molecular Orbitals

NH 3 H 2 O N 2. Why do they make chemical bonds? Molecular Orbitals N 2 NH 3 H 2 O Why do they make chemical bonds? 5 Molecular Orbitals Why do they make chemical bonds? Stabilization Bond energy Types of Chemical Bonds Metallic Bond Ionic Bond Covalent Bond Covalent Bond

More information

CHEM J-5 June 2014

CHEM J-5 June 2014 CHEM1101 2014-J-5 June 2014 The molecular orbital energy level diagrams for H 2, H 2 +, H 2 and O 2 are shown below. Fill in the valence electrons for each species in its ground state and label the types

More information

ORGANIC - CLUTCH CH AROMATICITY.

ORGANIC - CLUTCH CH AROMATICITY. !! www.clutchprep.com CONCEPT: AROMATICTY INTRODUCTION Aromatic compounds display an unusual stability for their high level of electron density. Their high level of unsaturation should make them extremely

More information

Some important constants. c = x 10 8 m s -1 m e = x kg N A = x 10

Some important constants. c = x 10 8 m s -1 m e = x kg N A = x 10 CH101 GENERAL CHEMISTRY I MID TERM EXAMINATION FALL SEMESTER 2008 Wednesday 22 October 2008: 1900 2100 Attempt all SIX questions A copy of the periodic table is supplied Some important constants h = 6.626

More information

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2 The Delocalized Approach to Bonding: The localized models for bonding we have examined (Lewis and VBT) assume that all electrons are restricted to specific bonds between atoms or in lone pairs. In contrast,

More information

A Rigorous Introduction to Molecular Orbital Theory and its Applications in Chemistry. Zachary Chin, Alex Li, Alex Liu

A Rigorous Introduction to Molecular Orbital Theory and its Applications in Chemistry. Zachary Chin, Alex Li, Alex Liu A Rigorous Introduction to Molecular Orbital Theory and its Applications in Chemistry Zachary Chin, Alex Li, Alex Liu Quantum Mechanics Atomic Orbitals and Early Bonding Theory Quantum Numbers n: principal

More information

Chemistry 120A 2nd Midterm. 1. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (1-electron):

Chemistry 120A 2nd Midterm. 1. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (1-electron): April 6th, 24 Chemistry 2A 2nd Midterm. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (-electron): E n = m e Z 2 e 4 /2 2 n 2 = E Z 2 /n 2, n =, 2, 3,... where Ze is

More information

Lecture 26: Qualitative Molecular Orbital Theory: Hückel Theory

Lecture 26: Qualitative Molecular Orbital Theory: Hückel Theory MASSACHUSETTS INSTITUTE OF TECHNOLOGY 5.6 Physical Chemistry I Fall, 07 Professor Robert W. Field Lecture 6: Qualitative Molecular Orbital Theory: Hückel Theory Models in Physical Chemistry Our job is

More information

EXAM INFORMATION. Radial Distribution Function: B is the normalization constant. d dx. p 2 Operator: Heisenberg Uncertainty Principle:

EXAM INFORMATION. Radial Distribution Function: B is the normalization constant. d dx. p 2 Operator: Heisenberg Uncertainty Principle: EXAM INFORMATION Radial Distribution Function: P() r RDF() r Br R() r B is the normalization constant., p Operator: p ^ d dx Heisenberg Uncertainty Principle: n ax n! Integrals: xe dx n1 a x p Particle

More information

Organic Chemistry, 7 L. G. Wade, Jr. 2010, Prentice Hall

Organic Chemistry, 7 L. G. Wade, Jr. 2010, Prentice Hall Organic Chemistry, 7 th Edition L. G. Wade, Jr. Chapter 16 Aromatic Compounds 2010, Prentice Hall Discovery of Benzene Isolated in 1825 by Michael Faraday who determined C:H ratio to be 1:1. Synthesized

More information

σ u * 1s g - gerade u - ungerade * - antibonding σ g 1s

σ u * 1s g - gerade u - ungerade * - antibonding σ g 1s One of these two states is a repulsive (dissociative) state. Other excited states can be constructed using linear combinations of other orbitals. Some will be binding and others will be repulsive. Thus

More information

Molecular Orbital Theory This means that the coefficients in the MO will not be the same!

Molecular Orbital Theory This means that the coefficients in the MO will not be the same! Diatomic molecules: Heteronuclear molecules In heteronuclear diatomic molecules, the relative contribution of atomic orbitals to each MO is not equal. Some MO s will have more contribution from AO s on

More information

Hour Exam I Name: Fall 2011

Hour Exam I Name: Fall 2011 PLEASE EAD: This practice exam is based on last year s Chem 22 exam #1. I have highlighted those questions that I will not ask you on this exam (but you should definitely try to do them on your own), but

More information

Coulomb pairing and double-photoionization in aromatic hydrocarbons

Coulomb pairing and double-photoionization in aromatic hydrocarbons Coulomb pairing and double-photoionization in aromatic hydrocarbons D. L. Huber * Physics Department, University of Wisconsin-Madison, Madison, WI 53706, USA Abstract Recently reported anomalies in the

More information

5. (6 pts) Show how the following compound can be synthesized from the indicated starting material:

5. (6 pts) Show how the following compound can be synthesized from the indicated starting material: Exam 2 Name CHEM 212 1. (36 pts) Complete the following chemical reactions showing all major organic products; illustrate proper stereochemistry where appropriate. If no reaction occurs, indicate NR :

More information

Experiment 15: Atomic Orbitals, Bond Length, and Molecular Orbitals

Experiment 15: Atomic Orbitals, Bond Length, and Molecular Orbitals Experiment 15: Atomic Orbitals, Bond Length, and Molecular Orbitals Introduction Molecular orbitals result from the mixing of atomic orbitals that overlap during the bonding process allowing the delocalization

More information

CHEMISTRY 332 FALL 08 EXAM II October 22-23, 2008

CHEMISTRY 332 FALL 08 EXAM II October 22-23, 2008 First Three Letters of Last Name NAME Network ID CHEMISTRY 332 FALL 08 EXAM II October 22-23, 2008 The following materials are permissible during the exam: molecular model kits, course notes (printed,

More information

Covalent Bonds: overlap of orbitals σ-bond π-bond Molecular Orbitals

Covalent Bonds: overlap of orbitals σ-bond π-bond Molecular Orbitals Covalent Bonding What is covalent bonding? Covalent Bonds: overlap of orbitals σ-bond π-bond Molecular Orbitals Hybrid Orbital Formation Shapes of Hybrid Orbitals Hybrid orbitals and Multiple Bonds resonance

More information

MOLECULAR STRUCTURE. Molecular Structure - B. Molecular Structure - B. Molecular Structure - B. Molecular Structure - B. Molecular Structure - B

MOLECULAR STRUCTURE. Molecular Structure - B. Molecular Structure - B. Molecular Structure - B. Molecular Structure - B. Molecular Structure - B MOLECULAR STRUCTURE Molecular Orbital all orbitals of the appropriate symmetry contribute to a molecular orbital. Bundet Boekfa Chem Div, Faculty Lib Arts & Sci Kasetsart University Kamphaeng Saen Campus

More information

Problem 1: Step Potential (10 points)

Problem 1: Step Potential (10 points) Problem 1: Step Potential (10 points) 1 Consider the potential V (x). V (x) = { 0, x 0 V, x > 0 A particle of mass m and kinetic energy E approaches the step from x < 0. a) Write the solution to Schrodinger

More information

Conjugated Systems. With conjugated double bonds resonance structures can be drawn

Conjugated Systems. With conjugated double bonds resonance structures can be drawn Conjugated Systems Double bonds in conjugation behave differently than isolated double bonds With conjugated double bonds resonance structures can be drawn With isolated double bonds cannot draw resonance

More information

Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals

Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals Pre-Quantum Atomic Structure The existence of atoms and molecules had long been theorized, but never rigorously proven until the late 19

More information

Chem 673, Problem Set 5 Due Tuesday, December 2, 2008

Chem 673, Problem Set 5 Due Tuesday, December 2, 2008 Chem 673, Problem Set 5 Due Tuesday, December 2, 2008 (1) (a) Trigonal bipyramidal (tbp) coordination is fairly common. Calculate the group overlaps of the appropriate SALCs for a tbp with the 5 d-orbitals

More information

Lecture 9 Electronic Spectroscopy

Lecture 9 Electronic Spectroscopy Lecture 9 Electronic Spectroscopy Molecular Orbital Theory: A Review - LCAO approximaton & AO overlap - Variation Principle & Secular Determinant - Homonuclear Diatomic MOs - Energy Levels, Bond Order

More information

Practice sheet #6: Molecular Shape, Hybridization, Molecular Orbitals.

Practice sheet #6: Molecular Shape, Hybridization, Molecular Orbitals. CH 101/103 - Practice sheet 3/17/2014 Practice sheet #6: Molecular Shape, Hybridization, Molecular Orbitals. 1. Draw the 3D structures for the following molecules. You can omit the lone pairs on peripheral

More information

Your full name (PLEASE PRINT) Second hour test page 1 of 5 October 24, 2003 Your scheduled Tuesday quiz section (please circle) B hr E hr

Your full name (PLEASE PRINT) Second hour test page 1 of 5 October 24, 2003 Your scheduled Tuesday quiz section (please circle) B hr E hr EM 111 Your full name (PLEASE PRINT) Second hour test page 1 of 5 October 24, 2003 Your scheduled Tuesday quiz section (please circle) B hr E hr 1 Your scheduled Tuesday quiz instructor: You may use a

More information

Chemistry 881 Lecture Topics Fall 2001

Chemistry 881 Lecture Topics Fall 2001 Chemistry 881 Lecture Topics Fall 2001 Texts PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon MATHEMATICS for PHYSICAL CHEMISTRY, Mortimer i. Mathematics Review (M, Chapters 1,2,3 & 4; M&S,

More information

Chemistry 1A, Spring 2006 Midterm Exam II, Version 1 March 6, 2006 (90 min, closed book)

Chemistry 1A, Spring 2006 Midterm Exam II, Version 1 March 6, 2006 (90 min, closed book) Chemistry 1A, Spring 2006 Midterm Exam II, Version 1 March 6, 2006 (90 min, closed book) Name: SID: Identification Sticker TA Name: Write your name on every page of this exam. This exam has 38 multiple

More information

Placement Exam for Exemption from Chemistry 120 Fall 2006

Placement Exam for Exemption from Chemistry 120 Fall 2006 Placement Exam for Exemption from Chemistry 120 Fall 2006 Name: By submitting this exam you affirm that you have not consulted any person, book, website or any other source for assistance. You may use

More information

Chemistry 4A Midterm Exam 2 Version B October 17, 2008 Professor Pines Closed Book, 50 minutes, 125 points 5 pages total (including cover)

Chemistry 4A Midterm Exam 2 Version B October 17, 2008 Professor Pines Closed Book, 50 minutes, 125 points 5 pages total (including cover) Chemistry 4A Midterm Exam 2 Version B October 17, 2008 Professor Pines Closed Book, 50 minutes, 125 points 5 pages total (including cover) Student Name: KEY Student ID#: GSI Name: Lab Section Day/Time:

More information

7. Arrange the molecular orbitals in order of increasing energy and add the electrons.

7. Arrange the molecular orbitals in order of increasing energy and add the electrons. Molecular Orbital Theory I. Introduction. A. Ideas. 1. Start with nuclei at their equilibrium positions. 2. onstruct a set of orbitals that cover the complete nuclear framework, called molecular orbitals

More information

Chem 1A, Fall 2015, Midterm Exam 1. Version A September 21, 2015 (Prof. Head-Gordon) 2

Chem 1A, Fall 2015, Midterm Exam 1. Version A September 21, 2015 (Prof. Head-Gordon) 2 Chem 1A, Fall 2015, Midterm Exam 1. Version A September 21, 2015 (Prof. Head-Gordon) 2 Name: Student ID: TA: Contents: 9 pages A. Multiple choice (7 points) B. Stoichiometry (10 points) C. Photoelectric

More information

CHEMISTRY 107 Section 501 Exam #2 Version A October 20, 2017 Dr. Larry Brown

CHEMISTRY 107 Section 501 Exam #2 Version A October 20, 2017 Dr. Larry Brown NAME: (print) UIN #: CHEMISTRY 107 Section 501 Exam #2 Version A October 20, 2017 Dr. Larry Brown This is a 50-minute exam, and contains 23 multiple-choice questions and 3 free response problems. Point

More information

PHYSICAL CHEMISTRY I. Chemical Bonds

PHYSICAL CHEMISTRY I. Chemical Bonds PHYSICAL CHEMISTRY I Chemical Bonds Review The QM description of bonds is quite good Capable of correctly calculating bond energies and reaction enthalpies However it is quite complicated and sometime

More information

ANNOUNCEMENTS. If you have questions about your exam 2 grade, write to me or Chapter 8 homework due April. 13 th.

ANNOUNCEMENTS. If you have questions about your exam 2 grade, write to me or Chapter 8 homework due April. 13 th. ANNOUNCEMENTS If you have questions about your exam 2 grade, write to me or Chem200@mail.sdsu.edu. Chapter 8 homework due April. 13 th. Chapter 9 home work due April. 20th. Exam 3 is 4/14 at 2 pm. LECTURE

More information

PAPER No. 7: Inorganic chemistry II MODULE No. 5: Molecular Orbital Theory

PAPER No. 7: Inorganic chemistry II MODULE No. 5: Molecular Orbital Theory Subject Chemistry Paper No and Title Module No and Title Module Tag 7, Inorganic chemistry II 5, Molecular Orbital Theory CHE_P7_M5 TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction to Ligand Field

More information

Electron Arrangement - Part 2

Electron Arrangement - Part 2 Brad Collins Electron Arrangement - Part 2 Chapter 9 Some images Copyright The McGraw-Hill Companies, Inc. Review Energy Levels Multi-electron 4d 4d 4d 4d 4d n = 4 4s 4p 4p 4p 3d 3d 3d 3d 3d n=3, l = 2

More information

Exam 2 Practice Problems (Key) 1. An electron has an n value of 3. What are the possible l values? What are the possible m l values?

Exam 2 Practice Problems (Key) 1. An electron has an n value of 3. What are the possible l values? What are the possible m l values? Exam 2 Practice Problems (Key) 1. An electron has an n value of 3. What are the possible l values? What are the possible m l values? l = 0, 1, 2 m l = 0 (for s) m l = 1, 0, +1 (for p) m l = 2, 1, 0, +1,

More information

Multielectron Atoms and Periodic Table

Multielectron Atoms and Periodic Table GRE Question Multielectron Atoms and Periodic Table Helium Atom 2 2m e ( 2 1 + 2 2) + 2ke 2 2ke 2 + ke2 r 1 r 2 r 2 r 1 Electron-electron repulsion term destroys spherical symmetry. No analytic solution

More information

Chem 344 Final Exam Tuesday, Dec. 11, 2007, 3-?? PM

Chem 344 Final Exam Tuesday, Dec. 11, 2007, 3-?? PM Chem 344 Final Exam Tuesday, Dec. 11, 2007, 3-?? PM Closed book exam, only pencils and calculators permitted. You may bring and use one 8 1/2 x 11" paper with anything on it. No Computers. Put all of your

More information

CHEM 344 Molecular Modeling

CHEM 344 Molecular Modeling CHEM 344 Molecular Modeling The Use of Computational Chemistry to Support Experimental Organic Chemistry Part 1: Molecular Orbital Theory, Hybridization, & Formal Charge * all calculation data obtained

More information

Symmetry and Molecular Orbitals (I)

Symmetry and Molecular Orbitals (I) Symmetry and Molecular Orbitals (I) Simple Bonding Model http://chiuserv.ac.nctu.edu.tw/~htchiu/chemistry/fall-2005/chemical-bonds.htm Lewis Structures Octet Rule Resonance Formal Charge Oxidation Number

More information

Chemistry 483 Lecture Topics Fall 2009

Chemistry 483 Lecture Topics Fall 2009 Chemistry 483 Lecture Topics Fall 2009 Text PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon A. Background (M&S,Chapter 1) Blackbody Radiation Photoelectric effect DeBroglie Wavelength Atomic

More information

Chemistry 125 First Semester Name December 19, 2003 Final Examination

Chemistry 125 First Semester Name December 19, 2003 Final Examination Chemistry 125 First Semester Name December 19, 2003 Final Examination This exam is budgeted for 150 minutes, but you may have 180 minutes to finish it. Good Luck. 1. (30 minutes) Describe evidence to support

More information

Chemistry 1210, Section 3, Fall semester 2012 Second Hour Exam October 24, 2012 Dr. Scott Ensign ExamVersion 0001

Chemistry 1210, Section 3, Fall semester 2012 Second Hour Exam October 24, 2012 Dr. Scott Ensign ExamVersion 0001 Chemistry 1210, Section 3, Fall semester 2012 Second Hour Exam October 24, 2012 Dr. Scott Ensign ExamVersion 0001 Instructions: Be sure to mark the exam version number (0001) on your scantron Do not begin

More information

Chem120a : Exam 3 (Chem Bio) Solutions

Chem120a : Exam 3 (Chem Bio) Solutions Chem10a : Exam 3 (Chem Bio) Solutions November 7, 006 Problem 1 This problem will basically involve us doing two Hückel calculations: one for the linear geometry, and one for the triangular geometry. We

More information

Molecular Orbitals for Ozone

Molecular Orbitals for Ozone Molecular Orbitals for Ozone Purpose: In this exercise you will do semi-empirical molecular orbital calculations on ozone with the goal of understanding the molecular orbital print out provided by Spartan

More information

Chm 331 Fall 2015, Exercise Set 4 NMR Review Problems

Chm 331 Fall 2015, Exercise Set 4 NMR Review Problems Chm 331 Fall 015, Exercise Set 4 NMR Review Problems Mr. Linck Version.0. Compiled December 1, 015 at 11:04:44 4.1 Diagonal Matrix Elements for the nmr H 0 Find the diagonal matrix elements for H 0 (the

More information

I 2 Vapor Absorption Experiment and Determination of Bond Dissociation Energy.

I 2 Vapor Absorption Experiment and Determination of Bond Dissociation Energy. I 2 Vapor Absorption Experiment and Determination of Bond Dissociation Energy. What determines the UV-Vis (i.e., electronic transitions) band appearance? Usually described by HOMO LUMO electron jump LUMO

More information

6. A solution of red Kool-Aid transmits light at a wavelength range of nm.

6. A solution of red Kool-Aid transmits light at a wavelength range of nm. I. Multiple Choice (15 pts) 1. FRET stands for a. Fluorescence Recovery Electron Transfer b. Fluorescence Resonance Energy Transfer c. Fluorescence Recovery Energy Transfer 2. Fluorescence involves the

More information

CHAPTER 9 THEORY OF RESONANCE BY, G.DEEPA

CHAPTER 9 THEORY OF RESONANCE BY, G.DEEPA CHAPTER 9 THEORY OF RESONANCE BY, G.DEEPA Conjugation in Alkadienes and Allylic Systems conjugation a series of overlapping p orbitals The Allyl Group allylic position is the next to a double bond 1 allyl

More information

Chem Discussion #12 Chapter 8 and 10 Your name/ TF s name: Discussion Day/Time:

Chem Discussion #12 Chapter 8 and 10 Your name/ TF s name: Discussion Day/Time: Chem 0 07 Discussion # Chapter 8 and 0 Your name/ TF s name: Discussion Da/Time: Things ou should know when ou leave Discussion toda for one-electron atoms: En = -R n = -.79 0-8 J n = -3.6eV ΔEmatter=En-Em

More information

CHEMISTRY 333 Fall 2006 Exam 3, in class

CHEMISTRY 333 Fall 2006 Exam 3, in class CHEMISTRY 333 Fall 006 Exam 3, in class Name SHOW YOUR WORK. Mathematica & calculators. You may use Mathematica or a calculator to do arithmetic. Do not use Mathematica for any higher-level manipulations

More information

Chemistry Lecture Notes

Chemistry Lecture Notes Molecular orbital theory Valence bond theory gave us a qualitative picture of chemical bonding. Useful for predicting shapes of molecules, bond strengths, etc. It fails to describe some bonding situations

More information

move on if you get stuck on one part

move on if you get stuck on one part Chem 105 Exam 2 Name This exam is schedule for 75 minutes and I anticipate it to take the full time allotted. You are free to leave if you finish. In multiple part problems, points awarded will not be

More information

PRACTICE PROBLEMS Give the electronic configurations and term symbols of the first excited electronic states of the atoms up to Z = 10.

PRACTICE PROBLEMS Give the electronic configurations and term symbols of the first excited electronic states of the atoms up to Z = 10. PRACTICE PROBLEMS 2 1. Based on your knowledge of the first few hydrogenic eigenfunctions, deduce general formulas, in terms of n and l, for (i) the number of radial nodes in an atomic orbital (ii) the

More information

Hückel Molecular Orbital (HMO) Theory

Hückel Molecular Orbital (HMO) Theory Hückel Molecular Orbital (HMO) Theory A simple quantum mechanical concept that gives important insight into the properties of large molecules Why HMO theory The first MO theory that could be applied to

More information

240 Chem. Aromatic Compounds. Chapter 6

240 Chem. Aromatic Compounds. Chapter 6 240 Chem Aromatic Compounds Chapter 6 1 The expressing aromatic compounds came to mean benzene and derivatives of benzene. Structure of Benzene: Resonance Description C 6 H 6 1.It contains a six-membered

More information

Chem 452 Mega Practice Exam 1

Chem 452 Mega Practice Exam 1 Last Name: First Name: PSU ID #: Chem 45 Mega Practice Exam 1 Cover Sheet Closed Book, Notes, and NO Calculator The exam will consist of approximately 5 similar questions worth 4 points each. This mega-exam

More information

Solutions Final exam 633

Solutions Final exam 633 Solutions Final exam 633 S.J. van Enk (Dated: June 9, 2008) (1) [25 points] You have a source that produces pairs of spin-1/2 particles. With probability p they are in the singlet state, ( )/ 2, and with

More information

CHEM 344 Molecular Modeling

CHEM 344 Molecular Modeling CHEM 344 Molecular Modeling The Use of Computational Chemistry to Support Experimental Organic Chemistry Day 1 all calculation data obtained from Gaussian09 using B3LYP/6-31G(d) unless otherwise noted.

More information

Computational Chemistry Workshops West Ridge Research Building-UAF Campus 9:00am-4:00pm, Room 009

Computational Chemistry Workshops West Ridge Research Building-UAF Campus 9:00am-4:00pm, Room 009 Computational Chemistry Workshops West Ridge Research Building-UAF Campus 9:00am-4:00pm, Room 009 Electronic Structure - July 19-21, 2016 Molecular Dynamics - July 26-28, 2016 Why are the Azulene and Naphthalene

More information

CHM Physical Chemistry II Chapter 9 - Supplementary Material. 1. Constuction of orbitals from the spherical harmonics

CHM Physical Chemistry II Chapter 9 - Supplementary Material. 1. Constuction of orbitals from the spherical harmonics CHM 3411 - Physical Chemistry II Chapter 9 - Supplementary Material 1. Constuction of orbitals from the spherical harmonics The wavefunctions that are solutions to the time independent Schrodinger equation

More information

Chemistry Exam 1. The Periodic Table

Chemistry Exam 1. The Periodic Table ame: Last First MI Chemistry 234-002 Exam 1 Spring 2017 Dr. J. sbourn Instructions: The first 18 questions of this exam should be answered on the provided Scantron. You must use a pencil for filling in

More information

Toward molecular switches and biochemical detectors employing adaptive femtosecond-scale laser pulses

Toward molecular switches and biochemical detectors employing adaptive femtosecond-scale laser pulses Toward molecular switches and biochemical detectors employing adaptive femtosecond-scale laser pulses Petra Sauer and Roland E. Allen, Institute for Quantum Studies and Physics Department, Texas A&M University

More information

Molecular Orbital Theory

Molecular Orbital Theory Molecular Orbital Theory While FMO theory allows prediction of reactions (by thermodynamics, regio or stereochemistry), all predictions seen so far have been qualitative We have predicted that HOMO or

More information

Excited States Calculations for Protonated PAHs

Excited States Calculations for Protonated PAHs 52 Chapter 3 Excited States Calculations for Protonated PAHs 3.1 Introduction Protonated PAHs are closed shell ions. Their electronic structure should therefore be similar to that of neutral PAHs, but

More information

Electronegativity is a very useful concept for the explanation or understanding of chemical reactivity throughout the periodic table.

Electronegativity is a very useful concept for the explanation or understanding of chemical reactivity throughout the periodic table. 1.6. Review of Electronegativity (χ) CONCEPT: Electronegativity is a very useful concept for the explanation or understanding of chemical reactivity throughout the periodic table. There are many definitions

More information

CHEM1901/ J-5 June 2013

CHEM1901/ J-5 June 2013 CHEM1901/3 2013-J-5 June 2013 Oxygen exists in the troposphere as a diatomic molecule. 4 (a) Using arrows to indicate relative electron spin, fill the left-most valence orbital energy diagram for O 2,

More information

CHEMISTRY 101 SPRING 2010 EXAM 3 FORM B SECTION 502 DR. KEENEY-KENNICUTT PART 1

CHEMISTRY 101 SPRING 2010 EXAM 3 FORM B SECTION 502 DR. KEENEY-KENNICUTT PART 1 NAME CHEMISTRY 101 SPRING 2010 EXAM 3 FORM B SECTION 502 DR. KEENEY-KENNICUTT Directions: (1) Put your name and signature on PART 2 of the exam where indicated. (2) Sign the Aggie Code on PART 2 of this

More information

E = 2 (E 1)+ 2 (4E 1) +1 (9E 1) =19E 1

E = 2 (E 1)+ 2 (4E 1) +1 (9E 1) =19E 1 Quantum Mechanics and Atomic Physics Lecture 22: Multi-electron Atoms http://www.physics.rutgers.edu/ugrad/361 h / d/361 Prof. Sean Oh Last Time Multi-electron atoms and Pauli s exclusion principle Electrons

More information

Chemistry 2. Lecture 1 Quantum Mechanics in Chemistry

Chemistry 2. Lecture 1 Quantum Mechanics in Chemistry Chemistry 2 Lecture 1 Quantum Mechanics in Chemistry Your lecturers 8am Assoc. Prof Timothy Schmidt Room 315 timothy.schmidt@sydney.edu.au 93512781 12pm Assoc. Prof. Adam J Bridgeman Room 222 adam.bridgeman@sydney.edu.au

More information

Name. Chem Organic Chemistry II Laboratory Exercise Molecular Modeling Part 2

Name. Chem Organic Chemistry II Laboratory Exercise Molecular Modeling Part 2 Name Chem 322 - Organic Chemistry II Laboratory Exercise Molecular Modeling Part 2 Click on Titan in the Start menu. When it boots, click on the right corner to make the window full-screen. icon in the

More information

Chapter 14: Dienes and Conjugation. Topics Dienes: Naming and Properties. Conjugation. 1,2 vs 1,4 addition and the stability of the allyl cation

Chapter 14: Dienes and Conjugation. Topics Dienes: Naming and Properties. Conjugation. 1,2 vs 1,4 addition and the stability of the allyl cation rganic hemistry otes by Jim Maxka hapter 14: Dienes and onjugation Topics Dienes: aming and Properties onjugation 1,2 vs 1,4 addition and the stability of the allyl cation Diels Alder eaction Simple rbital

More information

MOLECULAR ORBITAL THEORY Chapter 10.8, Morrison and Boyd

MOLECULAR ORBITAL THEORY Chapter 10.8, Morrison and Boyd MOLECULAR ORBITAL THEORY Chapter 10.8, Morrison and Boyd more understanding: why oxygen is paramagnetic, why H2 + exists; explanation of excited electronic states (e.g., visible spectra) eliminates need

More information

Aromatic Compounds I

Aromatic Compounds I 2302272 Org Chem II Part I Lecture 1 Aromatic Compounds I Instructor: Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th Recommended Textbook: Chapter 16 in Organic Chemistry, 8 th Edition, L.

More information

2m dx 2. The particle in a one dimensional box (of size L) energy levels are

2m dx 2. The particle in a one dimensional box (of size L) energy levels are Name: Chem 3322 test #1 solutions, out of 40 marks I want complete, detailed answers to the questions. Show all your work to get full credit. indefinite integral : sin 2 (ax)dx = x 2 sin(2ax) 4a (1) with

More information

Chm September 2010

Chm September 2010 Inorganic Exam 1 Chm 451 21 September 2010 Name: Instructions. Always show your work where required for full credit. 1. (5 pts) The first ionization energies for the 2 nd row elements generally increase

More information