Multielectron Atoms and Periodic Table

Size: px
Start display at page:

Download "Multielectron Atoms and Periodic Table"

Transcription

1 GRE Question

2 Multielectron Atoms and Periodic Table Helium Atom 2 2m e ( ) + 2ke 2 2ke 2 + ke2 r 1 r 2 r 2 r 1 Electron-electron repulsion term destroys spherical symmetry. No analytic solution discovered (to date). If you ignore the e-e repulsion term (and ignore indistinguishability of electrons), = E ( r 1, r 2 ) n 1,l 1,m 1 ( r 1 ) n2,l 2,m 2 ( r 2 ) ~ 2 2m e r 2 (~r i ) 2ke 2 r i = E i (~r i ) Hydrogen- like wave func4on

3 Wave functions are hydrogen-like with Z=2 Energy of individual electrons: E n = 13.6 ev Z2 n 2 Ground-state energy: both electrons in n=1 shell E = (2)(8)(13.6) ev = 109 ev The actual ground-state energy of helium is -79 ev, so e-e repulsion accounts for roughly +30 ev. Bad Approximation to ignore e-e interaction! So how can we get a better approximation, accounting for the electron-electron interaction?

4 The Central Field Approximation (Hartree Method) Assume each electron moves independently in a spherically symmetric potential energy distribution due to both the nucleus and the negatively charged cloud of the other electrons. Charge density of other electrons: (~r )= (~r i ) 2 e X i (the sum over i represents summing over all electrons other than the electron in which we are determine the poten4al energy that it sees) The potential energy is then determined using standard electrostatic theory: V (r) = Zke2 r Z k (~r 0 ) e ~r ~r 0 d3 r Insert this into the Schrodinger equation and solve for new wave function

5 Hartree Method This central field approximation requires an iteration scheme: 1. Guess wave functions for each of the electrons 2. Use wave functions to determine the charge distribution each electron sees. 3. Solve the TISE for each electron using the potential energy associated with the charge distribution. 4. If the solutions to the TISE give rise to significantly different wave functions than those used in step #2, go back to step #2 and repeat. After convergence, the output of this procedure yields selfconsistent wave functions (and associate eigenenergies) for each electron in the atom. More sophisticated models account for spin and force antisymmetric multiparticle quantum states. (only important for valance electrons)

6 Features of the Hartree Method Due to spherical symmetry, potential energy is still a function of r. Thus the angular portion of the wave functions are still spherical harmonics: nlm l = R nl (r)y m l l (, ) Same rules for allowed values of l and m l apply as for hydrogen. The radial functions, determined by numerically solving the radial portion of the TISE, can differ significantly from those of the hydrogen atom (this is due to the e-e interactions). The eigenenergies now depend on both n and l (for hydrogen they only depend on n) Energies are degenerate only if V (r) / 1/r This dependence on l can be understood in terms of screening.

7

8 The Dependence of Energy on l Screening Screening can be understood in terms of Gauss law. The outer electron sees an enclosed charge to be less than that of the nucleus. For an outer electron, the electric field due to the nucleus is partially screened by the inner electrons. If the outer electron s radial probability distribution is more spread out, it spends more time penetrating through the screening effect of the inner electrons, and it will be more strongly attached to the nucleus. There is less screening. For a given n, values of l having wave functions with a higher spread in r will have lower energies.

9 Clicker Question For a given value of n, for what values of l will an outer electron be less effectively screened by the inner electrons (and thus have a lower energy state)? 1. High values of l 2. Low values of l 3. Huh, I m so lost!

10

11 The Dependence of Energy on l For a given value of n, states with low values of l have a higher dispersion in r, so there is a higher probability the outer electron is found closer to the nucleus. States with low values of l have lower energies than states with a higher value of l. Crudely, the ordering of energy levels can be determined by the ordering of the sum n+l. Ties generally go to lower n states.

12

13 Orbital energies are lower in multielectron atoms than in the hydrogen atom

14 Structure of Periodic Table Structure can be understood using ordering of energy states and degeneracy of subshells.

15

16

17 GRE QUESTIONS

18 GRE Question

19

20

21 Ionization Energies What is the ionization energy of hydrogen? I 1 = 13.6 ev What is the ionization energy of helium, ignoring screening? Ignoring screening, it acts hydrogen-like: E 1 = Z n 2 ev = 54 ev Actual ionization energy is E 1 =24.6 ev. If you use above equation to define Z eff, for He, then Z eff =1.4 This is ionization energy is high! Nobel gas.

22 Clicker Question Lithium (Z=3): How do you expect the ionization energy of lithium to compare to hydrogen and helium? 1. higher than hydrogen, less than helium 2. higher than both hydrogen and helium 3. less than both hydrogen and helium 4. higher than hydrogen, less than helium

23 E 1 = Z2 eff 13.6 n 2 ev Ionization Energies For lithium, valence electron is in the 2s state, so n=2 We expect screening to be quite effective since the 2s radial probability distribution is further out than the 1s distribution. If we guess that Z eff is roughly 1, then we guess E ev. Actual ionization energy is 5.4 ev. (Z eff = 1.26). Why is Z eff > 1? This is a general property. Atoms with lone valence electrons in outer subshell will have low ionization energies. Ionization energy increases as you move to right within a subshell (due to higher nuclear charge). Nobel gases have very high ionization energies.

24

25

26

27

28

29 Spectroscopic Notation Uhlenback and Goudsmit

30 Clicker Question What is the spectroscopic notation for the ground state of helium? S S S S S 0

31 GRE Question

32 Residual Coulomb Interaction An electric interaction that compensates for the fact that the Hartree net potential V(r) acting on each valence electron describes only the average affect of the Coulomb interactions between that electron and the other valence electrons. Refinements are needed to account for Exchange force (symmetric vs anti-symmetric wavefunctions) Non-Spherically symmetric charge distribution (due to other valence electrons).

33 Clicker Question For the first excited state of helium, possible states are 2 1 S 0 (singlet) and 2 3 S 1 (triplet). Which one has a lower energy? 1. The singlet 2. The triplet 3. They should have the same energy!

34 JITT Responses Due to electron repulsion the states will have different energies. In the triplet state when the particles are at the same location the spatial wave function is zero, however in the singlet state the spatial wave function is nonzero.the closer the electrons get to each other, the more they repel therefore the singlet state will have a higher energy. I believe the singlet state (antisymmetric)would have lower energy because antisymmetric states minimize electronelectron interactions. the configuration with an anti-symmetric spacial state will result in lower energy, due to the fact that the electrons will tend to be farther apart and therefore have less coulomb repulsion energy.this corresponds to a symmetric spin state since the overall wavefunction has to be anti-symmetric, so the triplet has a lower energy.

35

36 Hunds Rules The effects of the residual coulomb interaction give rise to Hunds Rules For a given subshell, states with a higher value of S will have lower energies. (Exchange Force) For a given subshell and given value of S, states with a higher value of L will have a lower energy. Sometimes Hund s Rules include the effects of LS coupling: For atoms with less than half-filled shells, the level with the lowest value of J lies lowest in energy.

37

38 Ground State of Carbon What is the ground state of carbon (Z=6)? What is the spectroscopic notation of ground state? Maximize S: Thus S=1 (symmetric spin state) Need an antisymmetric spatial state, so the two 2p electrons need to have different values of m L. Values of m L indicate L=1 J=2,1,0; Thus lowest energy is 3 P 0.

39 Carbon

40 Summary: For lowest energies: minimize n + l (as much as possible) maximize S (exchange force) maximize L (residual coulomb) minimize J (for half-filled or less shell) (LS coupling) minimize m J (Zeeman effect if external field)

41 GRE Question

E = 2 (E 1)+ 2 (4E 1) +1 (9E 1) =19E 1

E = 2 (E 1)+ 2 (4E 1) +1 (9E 1) =19E 1 Quantum Mechanics and Atomic Physics Lecture 22: Multi-electron Atoms http://www.physics.rutgers.edu/ugrad/361 h / d/361 Prof. Sean Oh Last Time Multi-electron atoms and Pauli s exclusion principle Electrons

More information

Chapter 9: Multi- Electron Atoms Ground States and X- ray Excitation

Chapter 9: Multi- Electron Atoms Ground States and X- ray Excitation Chapter 9: Multi- Electron Atoms Ground States and X- ray Excitation Up to now we have considered one-electron atoms. Almost all atoms are multiple-electron atoms and their description is more complicated

More information

2m r2 (~r )+V (~r ) (~r )=E (~r )

2m r2 (~r )+V (~r ) (~r )=E (~r ) Review of the Hydrogen Atom The Schrodinger equation (for 1D, 2D, or 3D) can be expressed as: ~ 2 2m r2 (~r, t )+V (~r ) (~r, t )=i~ @ @t The Laplacian is the divergence of the gradient: r 2 =r r The time-independent

More information

Potential energy, from Coulomb's law. Potential is spherically symmetric. Therefore, solutions must have form

Potential energy, from Coulomb's law. Potential is spherically symmetric. Therefore, solutions must have form Lecture 6 Page 1 Atoms L6.P1 Review of hydrogen atom Heavy proton (put at the origin), charge e and much lighter electron, charge -e. Potential energy, from Coulomb's law Potential is spherically symmetric.

More information

Chapter 9. Atomic structure and atomic spectra

Chapter 9. Atomic structure and atomic spectra Chapter 9. Atomic structure and atomic spectra -The structure and spectra of hydrogenic atom -The structures of many e - atom -The spectra of complex atoms The structure and spectra of hydrogenic atom

More information

Chapter 10: Multi- Electron Atoms Optical Excitations

Chapter 10: Multi- Electron Atoms Optical Excitations Chapter 10: Multi- Electron Atoms Optical Excitations To describe the energy levels in multi-electron atoms, we need to include all forces. The strongest forces are the forces we already discussed in Chapter

More information

Chemistry 120A 2nd Midterm. 1. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (1-electron):

Chemistry 120A 2nd Midterm. 1. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (1-electron): April 6th, 24 Chemistry 2A 2nd Midterm. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (-electron): E n = m e Z 2 e 4 /2 2 n 2 = E Z 2 /n 2, n =, 2, 3,... where Ze is

More information

4πε. me 1,2,3,... 1 n. H atom 4. in a.u. atomic units. energy: 1 a.u. = ev distance 1 a.u. = Å

4πε. me 1,2,3,... 1 n. H atom 4. in a.u. atomic units. energy: 1 a.u. = ev distance 1 a.u. = Å H atom 4 E a me =, n=,,3,... 8ε 0 0 π me e e 0 hn ε h = = 0.59Å E = me (4 πε ) 4 e 0 n n in a.u. atomic units E = r = Z n nao Z = e = me = 4πε = 0 energy: a.u. = 7. ev distance a.u. = 0.59 Å General results

More information

Atomic Structure and Atomic Spectra

Atomic Structure and Atomic Spectra Atomic Structure and Atomic Spectra Atomic Structure: Hydrogenic Atom Reading: Atkins, Ch. 10 (7 판 Ch. 13) The principles of quantum mechanics internal structure of atoms 1. Hydrogenic atom: one electron

More information

Many-Electron Atoms. Thornton and Rex, Ch. 8

Many-Electron Atoms. Thornton and Rex, Ch. 8 Many-Electron Atoms Thornton and Rex, Ch. 8 In principle, can now solve Sch. Eqn for any atom. In practice, -> Complicated! Goal-- To explain properties of elements from principles of quantum theory (without

More information

CHAPTER 8 Atomic Physics

CHAPTER 8 Atomic Physics CHAPTER 8 Atomic Physics 8.1 Atomic Structure and the Periodic Table 8.2 Total Angular Momentum 8.3 Anomalous Zeeman Effect What distinguished Mendeleev was not only genius, but a passion for the elements.

More information

only two orbitals, and therefore only two combinations to worry about, but things get

only two orbitals, and therefore only two combinations to worry about, but things get 131 Lecture 1 It is fairly easy to write down an antisymmetric wavefunction for helium since there are only two orbitals, and therefore only two combinations to worry about, but things get complicated

More information

( ( ; R H = 109,677 cm -1

( ( ; R H = 109,677 cm -1 CHAPTER 9 Atomic Structure and Spectra I. The Hydrogenic Atoms (one electron species). H, He +1, Li 2+, A. Clues from Line Spectra. Reminder: fundamental equations of spectroscopy: ε Photon = hν relation

More information

Towards the Hartree Method

Towards the Hartree Method Towards the Hartree Method Recall from Lecture 11: Schrödinger Equation for Helium rewritten in simple abstract form as follows, where the subscript of H and V indicate which electrons these terms apply

More information

Mendeleev s Periodic Law

Mendeleev s Periodic Law Mendeleev s Periodic Law Periodic Law When the elements are arranged in order of increasing atomic mass, certain sets of properties recur periodically. Mendeleev s Periodic Law allows us to predict what

More information

Many-Electron Atoms. Thornton and Rex, Ch. 8

Many-Electron Atoms. Thornton and Rex, Ch. 8 Many-Electron Atoms Thornton and Rex, Ch. 8 In principle, can now solve Sch. Eqn for any atom. In practice, -> Complicated! Goal-- To explain properties of elements from principles of quantum theory (without

More information

Electronic Microstates & Term Symbols. Suggested reading: Shriver and Atkins, Chapter 20.3 or Douglas,

Electronic Microstates & Term Symbols. Suggested reading: Shriver and Atkins, Chapter 20.3 or Douglas, Lecture 4 Electronic Microstates & Term Symbols Suggested reading: Shriver and Atkins, Chapter 20.3 or Douglas, 1.4-1.5 Recap from last class: Quantum Numbers Four quantum numbers: n, l, m l, and m s Or,

More information

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components.

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components. Chem 44 Review for Exam Hydrogenic atoms: The Coulomb energy between two point charges Ze and e: V r Ze r Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative

More information

ATOMIC STRUCTURE. Atomic Structure. Atomic orbitals and their energies (a) Hydrogenic radial wavefunctions

ATOMIC STRUCTURE. Atomic Structure. Atomic orbitals and their energies (a) Hydrogenic radial wavefunctions ATOMIC STRUCTURE Atomic orbitals and their energies (a) Hydrogenic radial wavefunctions Bundet Boekfa Chem Div, Fac Lib Arts & Sci Kasetsart University Kamphaeng Saen Campus 1 2 Atomic orbitals and their

More information

Chapter 8. Periodic Properties of the Elements

Chapter 8. Periodic Properties of the Elements Chapter 8 Periodic Properties of the Elements Mendeleev (1834 1907) Ordered elements by atomic mass. Saw a repeating pattern of properties. Periodic Law When the elements are arranged in order of increasing

More information

Copyright 2018 Dan Dill 1

Copyright 2018 Dan Dill 1 TP Which electron cloud is the most stable? 25% 25% 25% 25% 1. 2s 2. 2p 3. 2s and 2p have the same energy 4. Further information needed. Lecture 32 CH101 A2 (MWF 9:05 am) Wednesday, November 28, 2018 For

More information

Preliminary Quantum Questions

Preliminary Quantum Questions Preliminary Quantum Questions Thomas Ouldridge October 01 1. Certain quantities that appear in the theory of hydrogen have wider application in atomic physics: the Bohr radius a 0, the Rydberg constant

More information

5.111 Lecture Summary #7 Wednesday, September 17, 2014

5.111 Lecture Summary #7 Wednesday, September 17, 2014 5.111 Lecture Summary #7 Wednesday, September 17, 2014 Readings for today: Section 1.12 Orbital Energies (of many-electron atoms), Section 1.13 The Building-Up Principle. (Same sections in 5 th and 4 th

More information

Multi-Particle Wave functions

Multi-Particle Wave functions Multi-Particle Wave functions Multiparticle Schroedinger equation (N particles, all of mass m): 2 2m ( 2 1 + 2 2 +... 2 N ) Multiparticle wave function, + U( r 1, r 2,..., r N )=i (~r 1,~r 2,...,~r N,t)

More information

Chapter 5. Periodicity and the Electronic Structure of Atoms

Chapter 5. Periodicity and the Electronic Structure of Atoms Chapter 5 Periodicity and the Electronic Structure of Atoms Electron Spin experiments by Stern and Gerlach showed a beam of silver atoms is split in two by a magnetic field the experiment reveals that

More information

QUANTUM MECHANICS AND ATOMIC STRUCTURE

QUANTUM MECHANICS AND ATOMIC STRUCTURE 5 CHAPTER QUANTUM MECHANICS AND ATOMIC STRUCTURE 5.1 The Hydrogen Atom 5.2 Shell Model for Many-Electron Atoms 5.3 Aufbau Principle and Electron Configurations 5.4 Shells and the Periodic Table: Photoelectron

More information

CHM Physical Chemistry II Chapter 9 - Supplementary Material. 1. Constuction of orbitals from the spherical harmonics

CHM Physical Chemistry II Chapter 9 - Supplementary Material. 1. Constuction of orbitals from the spherical harmonics CHM 3411 - Physical Chemistry II Chapter 9 - Supplementary Material 1. Constuction of orbitals from the spherical harmonics The wavefunctions that are solutions to the time independent Schrodinger equation

More information

Chapter 8. Periodic Properties of the Element

Chapter 8. Periodic Properties of the Element Chapter 8 Periodic Properties of the Element Mendeleev (1834 1907) Ordered elements by atomic mass Saw a repeating pattern of properties Periodic law when the elements are arranged in order of increasing

More information

Lecture January 18, Quantum Numbers Electronic Configurations Ionization Energies Effective Nuclear Charge Slater s Rules

Lecture January 18, Quantum Numbers Electronic Configurations Ionization Energies Effective Nuclear Charge Slater s Rules Lecture 3 362 January 18, 2019 Quantum Numbers Electronic Configurations Ionization Energies Effective Nuclear Charge Slater s Rules Inorganic Chemistry Chapter 1: Figure 1.4 Time independent Schrödinger

More information

2.4. Quantum Mechanical description of hydrogen atom

2.4. Quantum Mechanical description of hydrogen atom 2.4. Quantum Mechanical description of hydrogen atom Atomic units Quantity Atomic unit SI Conversion Ang. mom. h [J s] h = 1, 05459 10 34 Js Mass m e [kg] m e = 9, 1094 10 31 kg Charge e [C] e = 1, 6022

More information

Quantum Theory & Electronic Structure of Atoms. It s Unreal!! Check your intuition at the door.

Quantum Theory & Electronic Structure of Atoms. It s Unreal!! Check your intuition at the door. Quantum Theory & Electronic Structure of Atoms It s Unreal!! Check your intuition at the door. 1 Quantum Theory of the Atom Description of the atom and subatomic particles. We will focus on the electronic

More information

CHEMISTRY. CHM201 Class #16 CHEMISTRY. Chapter 7 Continued. Chapter 7 Outline for Class #16

CHEMISTRY. CHM201 Class #16 CHEMISTRY. Chapter 7 Continued. Chapter 7 Outline for Class #16 CHEMISTRY Fifth Edition Gilbert Kirss Foster Bretz Davies CHM201 Class #16 Chemistry, 5 th Edition Copyright 2017, W. W. Norton & Company CHEMISTRY Fifth Edition Gilbert Kirss Foster Bretz Davies Chapter

More information

Lecture 32: The Periodic Table

Lecture 32: The Periodic Table Lecture 32: The Periodic Table (source: What If by Randall Munroe) PHYS 2130: Modern Physics Prof. Ethan Neil (ethan.neil@colorado.edu) Announcements Homework #9 assigned, due next Wed. at 5:00 PM as usual.

More information

Lecture Presentation. Chapter 8. Periodic Properties of the Element. Sherril Soman Grand Valley State University Pearson Education, Inc.

Lecture Presentation. Chapter 8. Periodic Properties of the Element. Sherril Soman Grand Valley State University Pearson Education, Inc. Lecture Presentation Chapter 8 Periodic Properties of the Element Sherril Soman Grand Valley State University Nerve Transmission Movement of ions across cell membranes is the basis for the transmission

More information

Atomic Spectroscopy II

Atomic Spectroscopy II Applied Spectroscopy Atomic Spectroscopy II Multielectron Atoms Recommended Reading: Banwell And McCash Chapter 5 The Building-Up (aufbau) Principle How do the electrons in multi-electron atoms get distributed

More information

Lecture 3: Helium Readings: Foot Chapter 3

Lecture 3: Helium Readings: Foot Chapter 3 Lecture 3: Helium Readings: Foot Chapter 3 Last Week: the hydrogen atom, eigenstate wave functions, and the gross and fine energy structure for hydrogen-like single-electron atoms E n Z n = hcr Zα / µ

More information

ECE440 Nanoelectronics. Lecture 07 Atomic Orbitals

ECE440 Nanoelectronics. Lecture 07 Atomic Orbitals ECE44 Nanoelectronics Lecture 7 Atomic Orbitals Atoms and atomic orbitals It is instructive to compare the simple model of a spherically symmetrical potential for r R V ( r) for r R and the simplest hydrogen

More information

The Electronic Structure of Atoms

The Electronic Structure of Atoms The Electronic Structure of Atoms Classical Hydrogen-like atoms: Atomic Scale: 10-10 m or 1 Å + - Proton mass : Electron mass 1836 : 1 Problems with classical interpretation: - Should not be stable (electron

More information

Quantum Numbers. principal quantum number: n. angular momentum quantum number: l (azimuthal) magnetic quantum number: m l

Quantum Numbers. principal quantum number: n. angular momentum quantum number: l (azimuthal) magnetic quantum number: m l Quantum Numbers Quantum Numbers principal quantum number: n angular momentum quantum number: l (azimuthal) magnetic quantum number: m l Principal quantum number: n related to size and energy of orbital

More information

Chemistry 1B Fall 2013

Chemistry 1B Fall 2013 Chemistry 1B Fall 2013 lectures 5-6 Chapter 12 pp. 557-569 th 7 *(569-571) 7th 4 2012 Nobel in QUANTUM physics 5 many-electron atoms and Schrödinger Equation (ppn557-558) Although the Schrödinger equation

More information

Chapter 8: Periodic Properties of the Elements

Chapter 8: Periodic Properties of the Elements C h e m i s t r y 1 A : C h a p t e r 8 P a g e 1 Chapter 8: Periodic Properties of the Elements Homework: Read Chapter 8. Work out sample/practice exercises Check for the MasteringChemistry.com assignment

More information

Basic Physical Chemistry Lecture 2. Keisuke Goda Summer Semester 2015

Basic Physical Chemistry Lecture 2. Keisuke Goda Summer Semester 2015 Basic Physical Chemistry Lecture 2 Keisuke Goda Summer Semester 2015 Lecture schedule Since we only have three lectures, let s focus on a few important topics of quantum chemistry and structural chemistry

More information

Contour Plots Electron assignments and Configurations Screening by inner and common electrons Effective Nuclear Charge Slater s Rules

Contour Plots Electron assignments and Configurations Screening by inner and common electrons Effective Nuclear Charge Slater s Rules Lecture 4 362 January 23, 2019 Contour Plots Electron assignments and Configurations Screening by inner and common electrons Effective Nuclear Charge Slater s Rules How to handle atoms larger than H? Effective

More information

Multi-Electron Atoms II

Multi-Electron Atoms II Multi-Electron Atoms II LS Coupling The basic idea of LS coupling or Russell-Saunders coupling is to assume that spin-orbit effects are small, and can be neglected to a first approximation. If there is

More information

Physics 2203, 2011: Equation sheet for second midterm. General properties of Schrödinger s Equation: Quantum Mechanics. Ψ + UΨ = i t.

Physics 2203, 2011: Equation sheet for second midterm. General properties of Schrödinger s Equation: Quantum Mechanics. Ψ + UΨ = i t. General properties of Schrödinger s Equation: Quantum Mechanics Schrödinger Equation (time dependent) m Standing wave Ψ(x,t) = Ψ(x)e iωt Schrödinger Equation (time independent) Ψ x m Ψ x Ψ + UΨ = i t +UΨ

More information

For the case of S = 1/2 the eigenfunctions of the z component of S are φ 1/2 and φ 1/2

For the case of S = 1/2 the eigenfunctions of the z component of S are φ 1/2 and φ 1/2 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.044 Statistical Physics I Spring Term 03 Excited State Helium, He An Example of Quantum Statistics in a Two Particle System By definition He has

More information

Solved radial equation: Last time For two simple cases: infinite and finite spherical wells Spherical analogs of 1D wells We introduced auxiliary func

Solved radial equation: Last time For two simple cases: infinite and finite spherical wells Spherical analogs of 1D wells We introduced auxiliary func Quantum Mechanics and Atomic Physics Lecture 16: The Coulomb Potential http://www.physics.rutgers.edu/ugrad/361 h / d/361 Prof. Sean Oh Solved radial equation: Last time For two simple cases: infinite

More information

Multielectron Atoms.

Multielectron Atoms. Multielectron Atoms. Chem 639. Spectroscopy. Spring 00 S.Smirnov Atomic Units Mass m e 1 9.109 10 31 kg Charge e 1.60 10 19 C Angular momentum 1 1.055 10 34 J s Permittivity 4 0 1 1.113 10 10 C J 1 m 1

More information

(8) Atomic Physics (1½l, 1½p)

(8) Atomic Physics (1½l, 1½p) 10390-716(8) Atomic Physics (1½l, 1½p) 2018 Course summary: Multi-electron atoms, exclusion principle, electrostatic interaction and exchange degeneracy, Hartree model, angular momentum coupling: L-S and

More information

The Quantum Mechanical Atom

The Quantum Mechanical Atom The Quantum Mechanical Atom CHAPTER 8 Chemistry: The Molecular Nature of Matter, 6 th edition By Jesperson, Brady, & Hyslop CHAPTER 8: Quantum Mechanical Atom Learning Objectives q Light as Waves, Wavelength

More information

(b) The wavelength of the radiation that corresponds to this energy is 6

(b) The wavelength of the radiation that corresponds to this energy is 6 Chapter 7 Problem Solutions 1. A beam of electrons enters a uniform 1.0-T magnetic field. (a) Find the energy difference between electrons whose spins are parallel and antiparallel to the field. (b) Find

More information

Atomic Spectra in Astrophysics

Atomic Spectra in Astrophysics Atomic Spectra in Astrophysics Potsdam University : Wi 2016-17 : Dr. Lidia Oskinova lida@astro.physik.uni-potsdam.de Complex Atoms Non-relativistic Schrödinger Equation 02 [ N i=1 ( ) 2 2m e 2 i Ze2 4πǫ

More information

Chemistry 1B Lectures 5-6 Fall 2013

Chemistry 1B Lectures 5-6 Fall 2013 aims for lectures 5-6: many electron atoms Chemistry 1B lectures 5-6 Chapter 12 pp. 557-569 th 7 *(569-571) 7th electron spin, the 4 th quantum number and the Pauli exclusion principle effective nuclear

More information

Particle Behavior of Light 1. Calculate the energy of a photon, mole of photons 2. Find binding energy of an electron (know KE) 3. What is a quanta?

Particle Behavior of Light 1. Calculate the energy of a photon, mole of photons 2. Find binding energy of an electron (know KE) 3. What is a quanta? Properties of Electromagnetic Radiation 1. What is spectroscopy, a continuous spectrum, a line spectrum, differences and similarities 2. Relationship of wavelength to frequency, relationship of E to λ

More information

Atomic Transitions and Selection Rules

Atomic Transitions and Selection Rules Atomic Transitions and Selection Rules The time-dependent Schrodinger equation for an electron in an atom with a time-independent potential energy is ~ 2 2m r2 (~r, t )+V(~r ) (~r, t )=i~ @ @t We found

More information

Molecular Physics. Attraction between the ions causes the chemical bond.

Molecular Physics. Attraction between the ions causes the chemical bond. Molecular Physics A molecule is a stable configuration of electron(s) and more than one nucleus. Two types of bonds: covalent and ionic (two extremes of same process) Covalent Bond Electron is in a molecular

More information

Wolfgang Pauli Multielectron atoms, Pauli Exclusion Principle, and the Periodic Table

Wolfgang Pauli Multielectron atoms, Pauli Exclusion Principle, and the Periodic Table Multielectron atoms, Pauli Exclusion Principle, and the Periodic Table Final is on Mon. Dec. 16 from 7:30pm-10:00pm in this room. Homework Set #12 due next Wed. Rest of the semester: Today we will cover

More information

14. Structure of Nuclei

14. Structure of Nuclei 14. Structure of Nuclei Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 14. Structure of Nuclei 1 In this section... Magic Numbers The Nuclear Shell Model Excited States Dr. Tina Potter 14.

More information

The general solution of Schrödinger equation in three dimensions (if V does not depend on time) are solutions of time-independent Schrödinger equation

The general solution of Schrödinger equation in three dimensions (if V does not depend on time) are solutions of time-independent Schrödinger equation Lecture 17 Page 1 Lecture 17 L17.P1 Review Schrödinger equation The general solution of Schrödinger equation in three dimensions (if V does not depend on time) is where functions are solutions of time-independent

More information

The periodic system of the elements. Predict. (rather than passively learn) Chemical Properties!

The periodic system of the elements. Predict. (rather than passively learn) Chemical Properties! The periodic system of the elements Study of over 100 elements daunting task! Nature has provided the periodic table Enables us to correlate an enormous amount of information Predict (rather than passively

More information

5.61 Physical Chemistry Exam III 11/29/12. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry Chemistry Physical Chemistry.

5.61 Physical Chemistry Exam III 11/29/12. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry Chemistry Physical Chemistry. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry Chemistry - 5.61 Physical Chemistry Exam III (1) PRINT your name on the cover page. (2) It is suggested that you READ THE ENTIRE EXAM before

More information

Lecture 9 Electronic Spectroscopy

Lecture 9 Electronic Spectroscopy Lecture 9 Electronic Spectroscopy Molecular Orbital Theory: A Review - LCAO approximaton & AO overlap - Variation Principle & Secular Determinant - Homonuclear Diatomic MOs - Energy Levels, Bond Order

More information

Chapter 6 Part 3; Many-electron atoms

Chapter 6 Part 3; Many-electron atoms Chapter 6 Part 3; Many-electron atoms Read: BLB 6.7 6.9 HW: BLB 6:59,63,64,67,71b-d,74,75,90,97; Packet 6:10 14 Know: s & atoms with many electrons Spin quantum number m s o Pauli exclusion principle o

More information

Ay126: Solutions to Homework 2

Ay126: Solutions to Homework 2 Ay6: Solutions to Homework S.. Kulkarni & I. Escala April 6, 07 A). The electronic configuration of Na I is s s p 6 3s. Thus the spectroscopic term for the ground state is S /. The principal series is

More information

Chapter 8. Mendeleev. Mendeleev s Predictions. Periodic Properties of the Elements

Chapter 8. Mendeleev. Mendeleev s Predictions. Periodic Properties of the Elements Chapter 8 Periodic Properties of the Elements Mendeleev Order elements by atomic mass Saw a repeating pattern of properties Periodic Law When the elements are arranged in order of increasing atomic mass,

More information

Development of atomic theory

Development of atomic theory Development of atomic theory The chapter presents the fundamentals needed to explain and atomic & molecular structures in qualitative or semiquantitative terms. Li B B C N O F Ne Sc Ti V Cr Mn Fe Co Ni

More information

Nuclear Shell Model. P461 - Nuclei II 1

Nuclear Shell Model. P461 - Nuclei II 1 Nuclear Shell Model Potential between nucleons can be studied by studying bound states (pn, ppn, pnn, ppnn) or by scattering cross sections: np -> np pp -> pp nd -> nd pd -> pd If had potential could solve

More information

Complete nomenclature for electron orbitals

Complete nomenclature for electron orbitals Complete nomenclature for electron orbitals Bohr s model worked but it lacked a satisfactory reason why. De Broglie suggested that all particles have a wave nature. u l=h/p Enter de Broglie again It was

More information

Remember Bohr s Explanation: Energy Levels of Hydrogen: The Electronic Structure of the Atom 11/28/2011

Remember Bohr s Explanation: Energy Levels of Hydrogen: The Electronic Structure of the Atom 11/28/2011 The Electronic Structure of the Atom Bohr based his theory on his experiments with hydrogen he found that when energy is added to a sample of hydrogen, energy is absorbed and reemitted as light When passed

More information

Electronic Structure of Atoms and the Periodic table. Electron Spin Quantum # m s

Electronic Structure of Atoms and the Periodic table. Electron Spin Quantum # m s Electronic Structure of Atoms and the Periodic table Chapter 6 & 7, Part 3 October 26 th, 2004 Homework session Wednesday 3:00 5:00 Electron Spin Quantum # m s Each electron is assigned a spinning motion

More information

Chem 104A, UC, Berkeley. Example: Z eff. Chem 104A, UC, Berkeley. Be:

Chem 104A, UC, Berkeley. Example: Z eff. Chem 104A, UC, Berkeley. Be: Example: 4 O: 1s s p p Z eff (0.85) 5(0.35) 4.55 Z 8 4.55 3.45 Be: B: C: 1s s 1 1s s p 1s s p Hund s rule: For any set of orbitals of equal energy (degenerate orbitals), the electron configuration with

More information

Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world,

Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world, Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world, x p h π If you try to specify/measure the exact position of a particle you

More information

( ) dσ 1 dσ 2 + α * 2

( ) dσ 1 dσ 2 + α * 2 Chemistry 36 Dr. Jean M. Standard Problem Set Solutions. The spin up and spin down eigenfunctions for each electron in a many-electron system are normalized and orthogonal as given by the relations, α

More information

Physics and Chemistry of the Interstellar Medium

Physics and Chemistry of the Interstellar Medium 0. Physics and Chemistry of the Interstellar Medium Pierre Hily-Blant Master2 Lecture, LAOG pierre.hilyblant@obs.ujf-grenoble.fr, Office 53 2012-2013 Pierre Hily-Blant (Master2) The ISM 2012-2013 1 / 220

More information

Chemistry 2000 Lecture 1: Introduction to the molecular orbital theory

Chemistry 2000 Lecture 1: Introduction to the molecular orbital theory Chemistry 2000 Lecture 1: Introduction to the molecular orbital theory Marc R. Roussel January 5, 2018 Marc R. Roussel Introduction to molecular orbitals January 5, 2018 1 / 24 Review: quantum mechanics

More information

Origin of the first Hund rule in He-like atoms and 2-electron quantum dots

Origin of the first Hund rule in He-like atoms and 2-electron quantum dots in He-like atoms and 2-electron quantum dots T Sako 1, A Ichimura 2, J Paldus 3 and GHF Diercksen 4 1 Nihon University, College of Science and Technology, Funabashi, JAPAN 2 Institute of Space and Astronautical

More information

Where have we been? Lectures 1 and 2 Bohr s Model/ Wave Mechanics/ Radial and Angular Wavefunctions/ Radial Distribution Functions/ s and p orbitals

Where have we been? Lectures 1 and 2 Bohr s Model/ Wave Mechanics/ Radial and Angular Wavefunctions/ Radial Distribution Functions/ s and p orbitals Where have we been? Lectures 1 and 2 Bohr s Model/ Wave Mechanics/ Radial and Angular Wavefunctions/ Radial Distribution unctions/ s and p orbitals Where are we going? Lecture 3 Brief wavefunction considerations:

More information

Structure of diatomic molecules

Structure of diatomic molecules Structure of diatomic molecules January 8, 00 1 Nature of molecules; energies of molecular motions Molecules are of course atoms that are held together by shared valence electrons. That is, most of each

More information

Atomic Structure, Periodic Table, and Other Effects: Chapter 8 of Rex and T. Modern Physics

Atomic Structure, Periodic Table, and Other Effects: Chapter 8 of Rex and T. Modern Physics Atomic Structure, Periodic Table, and Other Effects: Chapter 8 of Rex and T Modern Physics 11/16 and 11/19/2018 1 Introduction In Chapter 7, we studied the hydrogen atom. What about other elements, e.g.,

More information

1.2 Rare earth atoms H Ψ=E Ψ, (1.2.1) where the non-relativistic Hamiltonian operator is. H = h2 2m. v ext (r i ) (1.2.

1.2 Rare earth atoms H Ψ=E Ψ, (1.2.1) where the non-relativistic Hamiltonian operator is. H = h2 2m. v ext (r i ) (1.2. 8 1. ELEMENTS OF RARE EARTH MAGNETISM 1.2 Rare earth atoms The starting point for the understanding of the magnetism of the rare earths is the description of the electronic states, particularly of the

More information

Sparks CH301 EFFECTIVE NUCLEAR CHARGE AND PERIODIC TRENDS. Why is strontium so dangerous? UNIT 2 Day 5

Sparks CH301 EFFECTIVE NUCLEAR CHARGE AND PERIODIC TRENDS. Why is strontium so dangerous? UNIT 2 Day 5 Sparks CH301 EFFECTIVE NUCLEAR CHARGE AND PERIODIC TRENDS Why is strontium so dangerous? UNIT 2 Day 5 How many electrons in Na have l=0? QUIZ QUESTION: INDIVIDUAL WORK, NO TALKING What are we going to

More information

The Electronic Theory of Chemistry

The Electronic Theory of Chemistry JF Chemistry CH1101 The Electronic Theory of Chemistry Dr. Baker bakerrj@tcd.ie Module Aims: To provide an introduction to the fundamental concepts of theoretical and practical chemistry, including concepts

More information

PAPER No. 7: Inorganic Chemistry - II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes

PAPER No. 7: Inorganic Chemistry - II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes Subject Chemistry Paper No and Title Module No and Title Module Tag 7, Inorganic chemistry II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes) 10, Electronic

More information

Chapter 7. Generally, the electronic structure of atoms correlates w. the prop. of the elements

Chapter 7. Generally, the electronic structure of atoms correlates w. the prop. of the elements Chapter 7 Periodic Properties of the Elements I) Development of the P.T. Generally, the electronic structure of atoms correlates w. the prop. of the elements - reflected by the arrangement of the elements

More information

Bohr Model of Hydrogen Atom

Bohr Model of Hydrogen Atom Bohr Model of Hydrogen Atom electrons move in circular orbits around nucleus orbits can only be of certain radii each radius corresponds to different energy ( only certain energies are allowed) n - defines

More information

shielding ==> (effective nuclear charge) < (full nuclear charge)

shielding ==> (effective nuclear charge) < (full nuclear charge) Pultz 1 8-10 Polyelectronic atoms When you have a nucleus with a +Z charge and only one electron outside the nucleus, as in H and He + and Li 2+ and Be 3+ and..., the Schrödinger equation can be solved

More information

R. Clark, D. Humbert, K. Sheikh Nuclear Data Section

R. Clark, D. Humbert, K. Sheikh Nuclear Data Section Calculation of Atomic Data for Plasma Modeling: Introduction and Atomic Structure Part 1 R. Clark, D. Humbert, K. Sheikh Nuclear Data Section Overview Plasmas in fusion research Data needs for plasma modeling

More information

Chapter 1: Chemical Bonding

Chapter 1: Chemical Bonding Chapter 1: Chemical Bonding Linus Pauling (1901 1994) January 30, 2017 Contents 1 The development of Bands and their filling 3 2 Different Types of Bonds 7 2.1 Covalent Bonding.............................

More information

Goals for Today. Clarify some Rydberg Concepts Absorption vs. emission

Goals for Today. Clarify some Rydberg Concepts Absorption vs. emission Note: Due to recent changes the exam 2 material for these slides ends at Ionization Energy Exceptions. You can omit Lewis Structures through General Formal Charge Rules. CH301 Unit 2 QUANTUM NUMBERS AND

More information

Chapter 9. Blimps, Balloons, and Models for the Atom. Electrons in Atoms and the Periodic Table. Hindenburg. Properties of Elements Hydrogen Atoms

Chapter 9. Blimps, Balloons, and Models for the Atom. Electrons in Atoms and the Periodic Table. Hindenburg. Properties of Elements Hydrogen Atoms Chapter 9 Electrons in Atoms and the Periodic Table Blimps, Balloons, and Models for the Atom Hindenburg Blimps, Balloons, and Models for the Atom Properties of Elements Hydrogen Atoms Helium Atoms 1 Blimps,

More information

Vanden Bout/LaBrake CH301

Vanden Bout/LaBrake CH301 Vanden Bout/LaBrake CH301 ELECTRON CONFIGURATION and PERIODIC TABLE UNIT 2 Day 3 Important InformaIon EXAM WRAPPER POSTED- 20 BONUS POINTS HW05 POSTED DUE Tue 9AM LM17 Posted DUE Tue 9AM (NGLM07- Periodic

More information

Electron Configuration and Chemical Periodicity

Electron Configuration and Chemical Periodicity Electron Configuration and Chemical Periodicity The Periodic Table Periodic law (Mendeleev, Meyer, 1870) periodic reoccurrence of similar physical and chemical properties of the elements arranged by increasing

More information

MAGNETISM OF ATOMS QUANTUM-MECHANICAL BASICS. Janusz Adamowski AGH University of Science and Technology, Kraków, Poland

MAGNETISM OF ATOMS QUANTUM-MECHANICAL BASICS. Janusz Adamowski AGH University of Science and Technology, Kraków, Poland MAGNETISM OF ATOMS QUANTUM-MECHANICAL BASICS Janusz Adamowski AGH University of Science and Technology, Kraków, Poland 1 The magnetism of materials can be derived from the magnetic properties of atoms.

More information

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240 Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240 John D. Williams, Ph.D. Department of Electrical and Computer Engineering 406 Optics Building - UAHuntsville,

More information

I. RADIAL PROBABILITY DISTRIBUTIONS (RPD) FOR S-ORBITALS

I. RADIAL PROBABILITY DISTRIBUTIONS (RPD) FOR S-ORBITALS 5. Lecture Summary #7 Readings for today: Section.0 (.9 in rd ed) Electron Spin, Section. (.0 in rd ed) The Electronic Structure of Hydrogen. Read for Lecture #8: Section. (. in rd ed) Orbital Energies

More information

The Shell Model (II)

The Shell Model (II) 22 ChemActivity 5 The Shell Model (II) Model 1: Valence Electrons, Inner-Shell Electrons, and Core Charge. The electrons in the outermost shell of an atom are referred to as valence electrons. Electrons

More information

How we describe bonding is affected strongly by how we describe where/how electrons are held by atoms in molecules.

How we describe bonding is affected strongly by how we describe where/how electrons are held by atoms in molecules. CHEM 2060 Lecture 8: Atomic Configurations L8-1 Electronic Configurations How we describe bonding is affected strongly by how we describe where/how electrons are held by atoms in molecules. We know that

More information

(1/2) M α 2 α, ˆTe = i. 1 r i r j, ˆV NN = α>β

(1/2) M α 2 α, ˆTe = i. 1 r i r j, ˆV NN = α>β Chemistry 26 Spectroscopy Week # The Born-Oppenheimer Approximation, H + 2. Born-Oppenheimer approximation As for atoms, all information about a molecule is contained in the wave function Ψ, which is the

More information

Molecular-Orbital Theory

Molecular-Orbital Theory Prof. Dr. I. Nasser atomic and molecular physics -551 (T-11) April 18, 01 Molecular-Orbital Theory You have to explain the following statements: 1- Helium is monatomic gas. - Oxygen molecule has a permanent

More information

Chapter 10: Modern Atomic Theory and the Periodic Table. How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation

Chapter 10: Modern Atomic Theory and the Periodic Table. How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation Chapter 10: Modern Atomic Theory and the Periodic Table How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation Electromagnetic (EM) radiation is a form of energy that exhibits

More information