Chem Discussion #12 Chapter 8 and 10 Your name/ TF s name: Discussion Day/Time:

Size: px
Start display at page:

Download "Chem Discussion #12 Chapter 8 and 10 Your name/ TF s name: Discussion Day/Time:"

Transcription

1 Chem 0 07 Discussion # Chapter 8 and 0 Your name/ TF s name: Discussion Da/Time: Things ou should know when ou leave Discussion toda for one-electron atoms: En = -R n = J n = -3.6eV ΔEmatter=En-Em ; Ionization Energ(IE)=E En(initial) ΔΕlight=hνlight= IE +KE n. Consider the following energ levels of the hdrogen atom as shown below in the diagram: a. Sketch electron clouds corresponding to energ levels up to n=3.( next to the lines on the right ) b. When electron cloud of the H atom at the lowest energ interacts with light of the lowest resonate frequenc, sketch the resulting electron cloud(s). c. When electron cloud of the H atom at the lowest energ interacts with light of the nd lowest resonate frequenc, sketch the resulting electron cloud(s). d. When electron cloud of the He atom at the lowest energ interacts with light of the lowest resonate frequenc, sketch the resulting electron cloud(s). e. What are the two energ levels involved in the ionization energ of an electron from H in the ground state? f. What is the ground state H atom ionization energ in J, ev and kj/mol? (H(g) H + (g) + e - ) g. What is the expression for the ionization energ of an electron from the n=3 state of an atom with atomic number?

2 . Hpothetical atom, X, has the following ground state absorption spectrum (displaed below), and the ground state ionization energ of the atom is 5eV (IE). Each of the absorption lines corresponds to a natural frequenc of the electron cloud resulting from the mixing of electron wave with loop with electron wave with more than one loop (i.e. the atom alwas starts in its ground state in each absorption). (In answering the following questions, assume that the zero of energ is the ionized atom) X X + + e -. (a) What is the energ of the ground state (of the electron cloud corresponding to one loop) of X? (Careful of a sign!) (b) Construct the energ level diagram for X. (Hint: How man energ levels are necessar to account for the absorption spectrum?) (c) Using the energ level diagram ou just did draw: How man lines will be present in the electricall-excited emission spectrum of this atom? (d) What is the energ of the third excited state of X? How man loops does that state have? (e) What is the energ of the highest energ state of X that is necessar to account for the absorption spectrum? (f) Is it possible for an electron in the ground state of atom X to absorb light of energ 3 ev or will it be transparent to it?

3 (g) Can atom X emit light of energ 3 ev? (h) Is it possible for X to absorb light of energ 6eV or will it be transparent to it? Wh? (i) Can atom X emit light of energ6 ev? (j) What is the lowest frequenc of the light emitted from the atom? (k) Draw the emission spectrum: 3. What is the expression for the energ in J for the ground state of an electron cloud in Li +? a. Calculate wavelength (in nm) of the light corresponding to the Li + electron cloud resulting from mixing a 3 loop electron wave with a loop electron wave? (Answer:nm) 4. What electron cloud energies account for the line corresponding to the wavelength 434 nm in the gas discharge spectrum for the Balmer series of H atoms? (In the Balmer series in each of the emission lines corresponds to a natural frequenc of the electron cloud resulting from the mixing of an electron wave with more than two loop with the electron wave with loop) A. Onl the n = 3 cloud energ B. Onl the n = 4 cloud energ C. Onl the n = 5 cloud energ D. The n = and n = 4 cloud energies E. The n = and n = 5 cloud energies F. None of these. 5. Photons of energ 3.6eV=R are able to ionize H in its n = energ level. Are photons of this energ are able to ionize He + in its n = energ level? 3

4 6. The light with wavelength of 365 nm will ionize H atom in the n = energ level. What effect will light with wavelength = 657 nm have? (Choose all that appl) a. Atom will be transparent to the light of this wavelength. b. Ionization will take place c. Ionization will not take place d. The ionized electron will use excess energ for kinetic energ 7. The light with wavelength of 365nm will ionize H atom in the n = energ level. What effect will light with wavelength = 65nm have? (Choose all that appl) a. Atom will be transparent to the light of this wavelength. b. Ionization will take place c. Ionization will not take place d. The ionized electron will use excess energ for kinetic energ 8. The photoelectric effect threshold frequenc of a metal is υ0 = 0 5 Hz. Gamma radiation of frequenc 0 7 Hz ejects electrons from the metal. Which of the following occurs when the intensit of the gamma radiation is reduced b 50 %? a. The velocit of the ejected electrons will be reduced b a factor of two. b. The kinetic energ of the ejected electrons will be reduced b a factor of two. c. The kinetic energ of the ejected electrons will be reduced b a factor of four. d. Kinetic energ and the velocit of the ejected electrons will sta the same. e. Number of ejected electrons will increase. f. Number of ejected electrons will decrease. 9. Assume light is able to eject electrons from a metal. What do ou expect as the wavelength of the light is increased? a. If the light wavelength reaches the lowest, electrons will no longer be ejected. b. Electrons will still be ejected but the will move faster and faster. c. Electrons will still be ejected but the will move slower and slower. d. More and more electrons will be ejected but the will have the same kinetic energ. e. More information needed. 0. An electron is ionized from the ground state of an atom, with E = J, b light with frequenc Hz. What is the kinetic energ (in ev) of the ejected electron? 4

5 . The work function (ionization energ), of chromium metal is 7.x0-9 J. What is the maximum kinetic energ of an electron, if it is ejected from chromium metal b light of wavelength 50.nm? a. What will happen to the speed and quantit of the ejected electrons if the wavelength of the light will increase? b. What will happen to the speed and quantit of the ejected electrons if the wavelength of the light will decrease? c. What will happen to the speed and quantit of electrons if the intensit of the light will increase?. An atom has onl three energ levels, -.5, -4.0, and -4.5 ev. Draw the absorption spectrum for a gas of these atoms excited b an electric discharge. (Hint: ou need to draw energ level diagrams to answer this question assume the most negative energ is an energ of the ground state) b. Draw the emission spectrum. (Hint: does it alwas just goes to the ground state?) 3. An atom has onl three energ levels, -.6, -4., and -5 ev. Draw the absorption spectrum for a gas of these atoms excited b an electric discharge. b. List all the lines in the emission spectrum. Do not assume that it alwas goes to the ground state. 4. One atom emits light of energ.7 ev. A second atom has onl three energ levels: -0.9 ev, -.7 ev, and -.9 ev. Assuming ionization is not possible can the second atom absorb the light emitted b the first atom. 5

6 Useful information: Atomic wave function famil album a. Principle quantum number n=,,3, specifies energ level n= j+l b. Number of nodal planes (l). c. Angular momentum quantum number (l=0,,, n-) defines the shape of the orbital. d. ml= -l,.0 l e. Number of loops j (j=n-l) f. S, P and D and F orbitals. g. Size of the orbital is proportional to n Electron configuration a. Orbital, Shell, Subshell b. Shielding c. Pauli Exclusion Principle. Auf-bau. Hund s rule Periodic Trends (I.E., E.A., Radius, Ionic Radius, Electronegativit) For man electron atoms: eff 8 eff kj eff En 3.6(eV).8 0 (J) 3 n n mol n Useful Information Below 3dx, 3dx - and 3dz orbital. Be sure to correctl orient our orbitals in the x--z space. 6

7 Orbital l n=j+l j= n-l Shape Number of orbitals in a subshells(ml) l+ orientation in space s Sphere etc j=n p d 3 4 etc 3 4 etc 3 j=n- j=n- Dumbbell # e - that can fit 3 6 Cloverleaf 5 0 f etc j=n For the two hdrogen electron clouds below identif the quantum number n, the quantum number l, the number of radial loops j, and the specific name of the orbital (ou must indicate orientation, e.g. 3dx). A z n = l= j= n = l= j= z x x name: name: a. For the two hdrogen electron clouds above, which has the largest ionization energ? (Note: in H atom, all orbitals of same n have the same energ.). What are the possible angular momentum quantum numbers for an orbital in the n=4 shell? How man degenerate orbitals are in the n=3 shell? What are the?(note: in H atom, all orbitals of same n have the same energ.) 7

8 3. The figure shows three H atom electron clouds. a. Which of the following H atom electron clouds has the largest ionization energ? b. Write down the numerical expression that when evaluated gives the value in ev of smallest ionization energ of these three clouds.( Answer: 0.85) A: B: C: Additional Practice problems:. The ionization wavelength of H atom in the n = energ level is 365 nm. Will light of this wavelength ionize He + in the n = level?. An electron is ionized from the ground state of an atom, with E = 30 ev, b light for which a photon of light energ is 36 ev. What is the kinetic energ (in ev) of the ejected electron?( Answer: 6eV) 3. What is kinetic energ of the electron ionized from Li + in its n = 6 level b light of wavelength 30 nm?(answer: 0.94*0-9 ) 4. In terms of the variables ( like: R, h, and c) what is the smallest possible wavelength of light that will be emitted b a He + atom starting with the energ corresponding to 6 loops? 5. What is the largest possible wavelength of light that will be emitted b be the Li + atom with the energ level corresponding to 6 loops?(answer: 800nm) In preparation for lectures and next week discussion: Please bring Page 9 and 0 below to the lectures until completed 8

9 Atom He Li 3 Be 4 B 5 Electron configuration IE kj mol eff Trends in IE is Explained b: a. increases b. Electron electron repulsion c. New shell d. l increases or eff decreases (shielding) Ions (Ions Electron configuration) s 373 He + s s 50 s s 899 s Li + s Be + s s 80 B + C 6 N 7 O 8 F 9 s p x p s 086 s px p pz C + s s px N + s s p x p O + s s px p pz s 680 F Ne Na s s p Mg [ Ne]3s x p p z 3s 738 Ne + p p p s s x z Na + p p p s s x z Mg + [ Ne ]3s Al 3 [ ]3s 3px Ne 578 Al + [ Ne ]3s 9

10 Atom He Ions (Ions Electron configuration) Li 3 Li + IE kj mol He + s 548 s Be 4 Be + B 5 s s B eff For the Ions Trends in IE is Explained b: a. increases b. Electron electron repulsion c. New shell d. l increases or eff decreases (shielding) C 6 C + s s px s s p x p N 7 N s s p p p O 8 O + F 9 x z F s s p p p Ne 0 Ne + x z s s p p p Na Na + x z Mg Mg + [ Ne ]3s Al 3 Al + [ Ne ]3s 0

11 6. Draw the electron configuration diagram for C, but fill the diagram as if the C is in the ground state. Draw a dotted line around a shell. Circle a subshell. Draw a triangle around an orbital. Is C atom paramagnetic or diamagnetic? 8 a. Calculate eff of C, if IE = 086 kj/mol.(hint: IE= E -E eff initial=.8 0 (J) ) n. - H(BA) + H(BE) + H(EC). a. For water, B is < than D. Exam 3 answers: b. For water, slope of A is > than slope of C. c. For water, slope of C is < than slope of E. d. B for water is > B for ammonia (NH3). e. D for methane (CH4) is < D for methanol (CH3OH). 3. a. -88 kj/mol b kj/mol c. -4 kj d. 50. kj.mol e. 6 kj/mol 4. a J b ºC 6. C6H (l) + 9O (g) 6HO( l) + 6CO( g) 7. a. -38 kj/mol b. qp < 0 w > 0 ΔU < 0 8. C<C3<C 9. F, F, F, T, F Hz. 74.5% Tfinal (constant pressure) > Tfinal (constant volume)

Chem Discussion #12 Chapter 8 and 10 Your name/ TF s name: Discussion Day/Time:

Chem Discussion #12 Chapter 8 and 10 Your name/ TF s name: Discussion Day/Time: Chem 0 06 Discussion # Chapter 8 and 0 Your name/ TF s name: Discussion Da/Time: En = -R Things ou should know when ou leave Discussion toda for one-electron atoms: Z n = -.79 0-8 J Z n = -.6eV ΔEmatter=En-Em

More information

CH 101Fall 2018 Discussion #12 Chapter 8, Mahaffy, 2e sections Your name: TF s name: Discussion Day/Time:

CH 101Fall 2018 Discussion #12 Chapter 8, Mahaffy, 2e sections Your name: TF s name: Discussion Day/Time: CH 11Fall 218 Discussion #12 Chapter 8, Mahaff, 2e sections 8.3-8.7 Your name: TF s name: Discussion Da/Time: Things ou should know when ou leave Discussion toda for one-electron atoms: ΔE matter=e n-e

More information

Things you should know when you leave Discussion today for one-electron atoms:

Things you should know when you leave Discussion today for one-electron atoms: E = -R Thigs ou should kow whe ou leave Discussio toda for oe-electro atoms: = -.79 0-8 J = -.6eV ΔEmatter=E-Em ; Ioizatio Eerg=E E(iitial) ΔΕlight=hνlight= IE +KE. Cosider the followig eerg levels of

More information

Hint: unit of energy transferred is equal to: hν = hc

Hint: unit of energy transferred is equal to: hν = hc CH 0 Fall 08 Discussion # Chapter 8 Your name: TF s name Discussion Day/Time: Things you should know when you leave Discussion today: Atomic (matter) Emission and absorption of light. Energy Conservation

More information

6.1.5 Define frequency and know the common units of frequency.

6.1.5 Define frequency and know the common units of frequency. CHM 111 Chapter 6 Worksheet and Study Guide Purpose: This is a guide for your as you work through the chapter. The major topics are provided so that you can write notes on each topic and work the corresponding

More information

Goals for Today. Clarify some Rydberg Concepts Absorption vs. emission

Goals for Today. Clarify some Rydberg Concepts Absorption vs. emission Note: Due to recent changes the exam 2 material for these slides ends at Ionization Energy Exceptions. You can omit Lewis Structures through General Formal Charge Rules. CH301 Unit 2 QUANTUM NUMBERS AND

More information

Chemistry 121: Atomic and Molecular Chemistry Topic 3: Atomic Structure and Periodicity

Chemistry 121: Atomic and Molecular Chemistry Topic 3: Atomic Structure and Periodicity Text Chapter 2, 8 & 9 3.1 Nature of light, elementary spectroscopy. 3.2 The quantum theory and the Bohr atom. 3.3 Quantum mechanics; the orbital concept. 3.4 Electron configurations of atoms 3.5 The periodic

More information

2. What is the wavelength, in nm, of light with an energy content of 550 kj/mol? a nm b nm c. 157 nm d. 217 nm e.

2. What is the wavelength, in nm, of light with an energy content of 550 kj/mol? a nm b nm c. 157 nm d. 217 nm e. 1. What is the frequency associated with radiation of 4.59 x 10-8 cm wavelength? a. 6.54 x 10 17 s -1 b. 6.54 x 10 15 s -1 c. 1.53 x 10-8 s -1 d. 13.8 s -1 e. 2.18 x 10 7 s -1 1 2. What is the wavelength,

More information

Ch. 7 The Quantum Mechanical Atom. Brady & Senese, 5th Ed.

Ch. 7 The Quantum Mechanical Atom. Brady & Senese, 5th Ed. Ch. 7 The Quantum Mechanical Atom Brady & Senese, 5th Ed. Index 7.1. Electromagnetic radiation provides the clue to the electronic structures of atoms 7.2. Atomic line spectra are evidence that electrons

More information

U N I T T E S T P R A C T I C E

U N I T T E S T P R A C T I C E South Pasadena AP Chemistry Name 8 Atomic Theory Period Date U N I T T E S T P R A C T I C E Part 1 Multiple Choice You should allocate 25 minutes to finish this portion of the test. No calculator should

More information

Exam 2. Remember to refer to the Periodic Table handout that is separate from this exam copy.

Exam 2. Remember to refer to the Periodic Table handout that is separate from this exam copy. 001 version last name first name signature McCord CH301 unique: 49885 TTh 9:30 am - 11 am Exam 2 Oct 15, 2018 Monday 7:30-9:00 PM A - Mi in BUR 106 Mo - Z in JES A121A Remember to refer to the Periodic

More information

McCord CH301 Exam 2 Oct 10, 2017

McCord CH301 Exam 2 Oct 10, 2017 452 version last name first name signature McCord CH301 Exam 2 Oct 10, 2017 50070 Tuesday Remember to refer to the Periodic Table handout that is separate from this exam copy. There are many conversion

More information

McCord CH301 Exam 2 Oct 10, 2017

McCord CH301 Exam 2 Oct 10, 2017 452 version last name first name signature McCord CH301 Exam 2 Oct 10, 2017 50070 Tuesday Remember to refer to the Periodic Table handout that is separate from this exam copy. There are many conversion

More information

Periodicity and the Electronic Structure of Atoms 國防醫學院生化學科王明芳老師

Periodicity and the Electronic Structure of Atoms 國防醫學院生化學科王明芳老師 Periodicity and the Electronic Structure of Atoms 國防醫學院生化學科王明芳老師 2018-10-2 1 2 Light and the Electromagnetic Spectrum Electromagnetic energy ( light ) is characterized by wavelength, frequency, and amplitude.

More information

WEEK 2: 4 SEP THRU 10 SEP; LECTURES 4-6

WEEK 2: 4 SEP THRU 10 SEP; LECTURES 4-6 Learning Objectives Energy: Light as energy Describe the wave nature of light, wavelength, and frequency using the equation c = λν What is meant by the particle nature of light? Calculate the energy of

More information

CHEMISTRY 107 Section 501 Exam #2 Version A October 20, 2017 Dr. Larry Brown

CHEMISTRY 107 Section 501 Exam #2 Version A October 20, 2017 Dr. Larry Brown NAME: (print) UIN #: CHEMISTRY 107 Section 501 Exam #2 Version A October 20, 2017 Dr. Larry Brown This is a 50-minute exam, and contains 23 multiple-choice questions and 3 free response problems. Point

More information

Particle Behavior of Light 1. Calculate the energy of a photon, mole of photons 2. Find binding energy of an electron (know KE) 3. What is a quanta?

Particle Behavior of Light 1. Calculate the energy of a photon, mole of photons 2. Find binding energy of an electron (know KE) 3. What is a quanta? Properties of Electromagnetic Radiation 1. What is spectroscopy, a continuous spectrum, a line spectrum, differences and similarities 2. Relationship of wavelength to frequency, relationship of E to λ

More information

Problems with the Wave Theory of Light (Photoelectric Effect)

Problems with the Wave Theory of Light (Photoelectric Effect) CHEM101 NOTES Properties of Light Found that the wave theory could not work for some experiments e.g. the photovoltaic effect This is because the classic EM view of light could not account for some of

More information

Chem 6, 10 Section Spring Exam 2 Solutions

Chem 6, 10 Section Spring Exam 2 Solutions Exam 2 Solutions 1. (4 + 6 + 5 points) Dartmouth s FM radio station, WDCR, broadcasts by emitting from its antenna photons of frequency 99.3 MHz (99.3 10 6 Hz). (a) What is the energy of a single WDCR

More information

Test #3 Last Name First Name Zumdahl, Chapters 6 and 7 November 2, 2004

Test #3 Last Name First Name Zumdahl, Chapters 6 and 7 November 2, 2004 Form H Chemistry 1441-023 Name (please print) Test #3 Last Name First Name Zumdahl, Chapters 6 and 7 November 2, 2004 Instructions: 1. This exam consists of 25 questions. 2. No scratch paper is allowed.

More information

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY All matter is made of atoms. There are a limited number of types of atoms; these are the elements. (EU 1.A) Development of Atomic Theory Atoms are so small

More information

CHEM Chapter 6. Basic Quantum Chemistry (Homework). WL36

CHEM Chapter 6. Basic Quantum Chemistry (Homework). WL36 CHEM 1411. Chapter 6. Basic Quantum Chemistry (Homework). WL36 1. The Bohr model of the hydrogen atom found its greatest support in experimental work on the photoelectric effect. A) True B) False 2. A

More information

I. Multiple Choice Questions (Type-I)

I. Multiple Choice Questions (Type-I) I. Multiple Choice Questions (Type-I) 1. Which of the following conclusions could not be derived from Rutherford s α -particle scattering experiement? (i) Most of the space in the atom is empty. (ii) The

More information

Unit 7. Atomic Structure

Unit 7. Atomic Structure Unit 7. Atomic Structure Upon successful completion of this unit, the students should be able to: 7.1 List the eight regions of the electromagnetic spectrum in the designated order and perform calculations

More information

Quantum Theory & Electronic Structure of Atoms. It s Unreal!! Check your intuition at the door.

Quantum Theory & Electronic Structure of Atoms. It s Unreal!! Check your intuition at the door. Quantum Theory & Electronic Structure of Atoms It s Unreal!! Check your intuition at the door. 1 Quantum Theory of the Atom Description of the atom and subatomic particles. We will focus on the electronic

More information

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY All matter is made of atoms. There are a limited number of types of atoms; these are the elements. (EU 1.A) Development of Atomic Theory Atoms are so small

More information

Test Bank for General Chemistry Atoms First 2nd Edition by John E. McMurry and Robert C. Fay

Test Bank for General Chemistry Atoms First 2nd Edition by John E. McMurry and Robert C. Fay Test Bank for General Chemistry Atoms First 2nd Edition by John E. McMurry and Robert C. Fay Link download full: https://digitalcontentmarket.org/download/test-bank-for-general-chemistry-atoms-f irst-2nd-edition-by-mcmurry-and-fay/

More information

Chem 110 Practice Midterm 2014

Chem 110 Practice Midterm 2014 Name Chem 110 Practice Midterm 2014 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following statements is true? 1) A) Two electrons

More information

Electromagnetic Radiation. Chapter 12: Phenomena. Chapter 12: Quantum Mechanics and Atomic Theory. Quantum Theory. Electromagnetic Radiation

Electromagnetic Radiation. Chapter 12: Phenomena. Chapter 12: Quantum Mechanics and Atomic Theory. Quantum Theory. Electromagnetic Radiation Chapter 12: Phenomena Phenomena: Different wavelengths of electromagnetic radiation were directed onto two different metal sample (see picture). Scientists then recorded if any particles were ejected and

More information

Test bank chapter (7)

Test bank chapter (7) Test bank chapter (7) Choose the most correct answer 1. The lowest energy state of an atom is referred to as its a) bottom state. b) ground state. c) fundamental state. d) original state. 2. All s orbitals

More information

Arrangement of Electrons in Atoms

Arrangement of Electrons in Atoms CHAPTER 4 REVIEW Arrangement of Electrons in Atoms Teacher Notes and Answers Chapter 4 SECTION 1 SHORT ANSWER 1. In order for an electron to be ejected from a metal surface, the electron must be struck

More information

CHAPTER STRUCTURE OF ATOM

CHAPTER STRUCTURE OF ATOM 12 CHAPTER STRUCTURE OF ATOM 1. The spectrum of He is expected to be similar to that [1988] H Li + Na He + 2. The number of spherical nodes in 3p orbitals are [1988] one three none two 3. If r is the radius

More information

Honors Chemistry Unit 3 ELECTRONS IN ATOMS

Honors Chemistry Unit 3 ELECTRONS IN ATOMS Honors Chemistry Unit 3 ELECTRONS IN ATOMS I. RADIATION A. Particles 1. alpha particle - helium nucleus with 2 protons, 2 neutrons 2. beta particle - electron or positron ejected from nucleus B. Energy

More information

Group Members: Your Name In Class Exercise #6. Photon A. Energy B

Group Members: Your Name In Class Exercise #6. Photon A. Energy B Group Members: Your Name In Class Exercise #6 Shell Structure of Atoms Part II Photoelectron Spectroscopy Photoelectron spectroscopy is closely related to the photoelectric effect. When high energy photons

More information

2) The number of cycles that pass through a stationary point is called A) wavelength. B) amplitude. C) frequency. D) area. E) median.

2) The number of cycles that pass through a stationary point is called A) wavelength. B) amplitude. C) frequency. D) area. E) median. Chemistry Structure and Properties 2nd Edition Tro Test Bank Full Download: http://testbanklive.com/download/chemistry-structure-and-properties-2nd-edition-tro-test-bank/ Chemistry: Structure & Properties,

More information

The Electronic Structures of Atoms Electromagnetic Radiation The wavelength of electromagnetic radiation has the symbol λ.

The Electronic Structures of Atoms Electromagnetic Radiation The wavelength of electromagnetic radiation has the symbol λ. CHAPTER 7 Atomic Structure Chapter 8 Atomic Electron Configurations and Periodicity 1 The Electronic Structures of Atoms Electromagnetic Radiation The wavelength of electromagnetic radiation has the symbol

More information

(3 pts) 2. In which gas sample do the molecules have a lower average kinetic energy? (A) Gas A (B) Gas B (C) Neither

(3 pts) 2. In which gas sample do the molecules have a lower average kinetic energy? (A) Gas A (B) Gas B (C) Neither Consider two samples of gas, A and B, as shown in the figure below. Both containers are at the same temperature and pressure. Gas A 1.0 L 0.32 g Gas B 1.0 L 0.48 g (3 pts) 1. Which gas sample contains

More information

Key Equations. Determining the smallest change in an atom's energy.

Key Equations. Determining the smallest change in an atom's energy. ATOMIC STRUCTURE AND PERIODICITY Matter and Energy Key Equations λν = c ΔE = hν Relating speed of a wave to its wavelength and frequency. Determining the smallest change in an atom's energy. H( λ =R n

More information

CHEMISTRY - KIRSS 2E CH.3 - ATOMIC STRUCTURE: EXPLAINING THE PROPERTIES OF ELEMENTS

CHEMISTRY - KIRSS 2E CH.3 - ATOMIC STRUCTURE: EXPLAINING THE PROPERTIES OF ELEMENTS !! www.clutchprep.com CONCEPT: THE NATURE OF LIGHT Visible light represents a small portion of the continuum of radiant energy known as. The visible light spectrum ranges from to. Its wave properties of

More information

Chemistry 1411 Practice Exam 2, Chapters 5-8 Brown

Chemistry 1411 Practice Exam 2, Chapters 5-8 Brown Chemistry 1411 Practice Exam 2, Chapters 5-8 Brown Some constants and equations: E = q + w q = C p T Heat = m T Cs h = 6.626 X 10 34 J. s c = 2.998 X 10 8 m/s R H = 2.18 X 10 18 J E = (2.18 X 10 18 J)(1/n

More information

Chapter 7 Problems: 16, 17, 19 23, 26, 27, 30, 31, 34, 38 41, 45, 49, 53, 60, 61, 65, 67, 75, 79, 80, 83, 87, 90, 91, 94, 95, 97, 101, 111, 113, 115

Chapter 7 Problems: 16, 17, 19 23, 26, 27, 30, 31, 34, 38 41, 45, 49, 53, 60, 61, 65, 67, 75, 79, 80, 83, 87, 90, 91, 94, 95, 97, 101, 111, 113, 115 Chapter 7 Problems: 16, 17, 19 23, 26, 27, 30, 31, 34, 38 41, 45, 49, 53, 60, 61, 65, 67, 75, 79, 80, 83, 87, 90, 91, 94, 95, 97, 101, 111, 113, 115 117, 121, 122, 125a Chapter 7 Atomic Structure and Periodicity

More information

3. Write ground-state electron configurations for any atom or ion using only the Periodic Table. (Sections 8.3 & 9.2)

3. Write ground-state electron configurations for any atom or ion using only the Periodic Table. (Sections 8.3 & 9.2) Lecture 2: learning objectives, readings, topics, and resources: 1. Understand the significance of the quantum numbers, understand how they can be used to code for the electron energy levels within atoms

More information

Copyright 2018 Dan Dill 1

Copyright 2018 Dan Dill 1 TP What electron cloud has 3 radial loops and 1 nodal plane? 1. 1s 2. 2s 3. 2p 4. 3s 5. 3p 6. 3d 7. 4s 8. 4p 9. 4d 10. None of the above Lecture 29 CH101 A2 (MWF 11:15 am) Wednesday, November 14, 2018

More information

Chapter 12: Phenomena

Chapter 12: Phenomena Chapter 12: Phenomena K Fe Phenomena: Different wavelengths of electromagnetic radiation were directed onto two different metal sample (see picture). Scientists then recorded if any particles were ejected

More information

Chem Discussion #13 Chapter 10. Correlation diagrams for diatomic molecules. TF s name: Your name: Discussion Section:

Chem Discussion #13 Chapter 10. Correlation diagrams for diatomic molecules. TF s name: Your name: Discussion Section: Chem 101 2016 Discussion #13 Chapter 10. Correlation diagrams for diatomic molecules. TF s name: Your name: Discussion Section: 1. Below is a plot of the first 10 ionization energies for a single atom

More information

PART 2 Electronic Structure and the Periodic Table. Reference: Chapter 7 8 in textbook

PART 2 Electronic Structure and the Periodic Table. Reference: Chapter 7 8 in textbook PART 2 Electronic Structure and the Periodic Table Reference: Chapter 7 8 in textbook 1 Experiment to Discover Atom Structure -particle: He 2+ mass number = 4 Nucleus and Electron Model 2 Atomic Structure

More information

SPARKS CH301. Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL. UNIT 2 Day 2. LM15, 16 & 17 due W 8:45AM

SPARKS CH301. Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL. UNIT 2 Day 2. LM15, 16 & 17 due W 8:45AM SPARKS CH301 Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL UNIT 2 Day 2 LM15, 16 & 17 due W 8:45AM QUIZ: CLICKER QUESTION Which of these types of light has the highest energy photons?

More information

ratio for cathode rays is very low.

ratio for cathode rays is very low. Q. 1 Which is not basic postulate of Dalton s atomic theory? Option 1 Atoms are neither created nor destroyed in a chemical reaction Option In a given compound, the relative number and kinds of atoms are

More information

Chapter 7. Characteristics of Atoms. 7.1 Electromagnetic Radiation. Chapter 7 1. The Quantum Mechanical Atom. Atoms: How do we study atoms?

Chapter 7. Characteristics of Atoms. 7.1 Electromagnetic Radiation. Chapter 7 1. The Quantum Mechanical Atom. Atoms: How do we study atoms? Chapter 7 The Quantum Mechanical Atom 1 Characteristics of Atoms Atoms: possess mass contain positive nuclei contain electrons occupy volume have various properties attract one another combine to form

More information

Energy and the Quantum Theory

Energy and the Quantum Theory Energy and the Quantum Theory Light electrons are understood by comparing them to light 1. radiant energy 2. travels through space 3. makes you feel warm Light has properties of waves and particles Amplitude:

More information

LIGHT AND THE QUANTUM MODEL

LIGHT AND THE QUANTUM MODEL LIGHT AND THE QUANTUM MODEL WAVES Wavelength ( ) - length of one complete wave Frequency ( ) - # of waves that pass a point during a certain time period hertz (Hz) = 1/s Amplitude (A) - distance from the

More information

General Chemistry. Contents. Chapter 9: Electrons in Atoms. Contents. 9-1 Electromagnetic Radiation. EM Radiation. Frequency, Wavelength and Velocity

General Chemistry. Contents. Chapter 9: Electrons in Atoms. Contents. 9-1 Electromagnetic Radiation. EM Radiation. Frequency, Wavelength and Velocity General Chemistry Principles and Modern Applications Petrucci Harwood Herring 8 th Edition Chapter 9: Electrons in Atoms Philip Dutton University of Windsor, Canada N9B 3P4 Contents 9-1 Electromagnetic

More information

The early periodic table based on atomic weight. (Section 5.1) Lets review: What is a hydrogen atom? 1 electron * nucleus H 1 proton

The early periodic table based on atomic weight. (Section 5.1) Lets review: What is a hydrogen atom? 1 electron * nucleus H 1 proton PERIODICITY AND ATOMIC STRUCTURE CHAPTER 5 How can we relate the structure of the atom to the way that it behaves chemically? The process of understanding began with a realization that many of the properties

More information

CHEMISTRY - ZUMDAHL 8E CH.7 - ATOMIC STRUCTURE & PERIODICITY.

CHEMISTRY - ZUMDAHL 8E CH.7 - ATOMIC STRUCTURE & PERIODICITY. !! www.clutchprep.com CONCEPT: THE NATURE OF LIGHT Visible light represents a small portion of the continuum of radiant energy known as. The visible light spectrum ranges from to. Its wave properties of

More information

PART 2 Electronic Structure and the Periodic Table. Reference: Chapter 7 8 in textbook

PART 2 Electronic Structure and the Periodic Table. Reference: Chapter 7 8 in textbook PART 2 Electronic Structure and the Periodic Table Reference: Chapter 7 8 in textbook 1 Early Atomic Models 2 Thomson s 1904 Model of the Atom Plumb Pudding Model He discovered the electron, a discovery

More information

CHEMISTRY - BROWN 13E CH.7 - PERIODIC PROPERTIES OF THE ELEMENTS

CHEMISTRY - BROWN 13E CH.7 - PERIODIC PROPERTIES OF THE ELEMENTS !! www.clutchprep.com CONCEPT: EFFECTIVE NUCLEAR CHARGE & SLATER S RULES When looking at any particular electron within an atom it experiences two major forces. A(n) force from the nucleus and a(n) force

More information

Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum. All EM radiation travels at the speed of light, c = 3 x 10 8 m/s

Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum. All EM radiation travels at the speed of light, c = 3 x 10 8 m/s Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum V I B G Y O R All EM radiation travels at the speed of light, c = 3 x 10 8 m/s Electromagnetic radiation is a wave with a wavelength

More information

CHAPTER 3 Atomic Structure: Explaining the Properties of Elements

CHAPTER 3 Atomic Structure: Explaining the Properties of Elements CHAPTER 3 Atomic Structure: Explaining the Properties of Elements We are going to learn about the electronic structure of the atom, and will be able to explain many things, including atomic orbitals, oxidation

More information

Chapter 9: Electrons in Atoms

Chapter 9: Electrons in Atoms General Chemistry Principles and Modern Applications Petrucci Harwood Herring 8 th Edition Chapter 9: Electrons in Atoms Philip Dutton University of Windsor, Canada N9B 3P4 Prentice-Hall 2002 Prentice-Hall

More information

CHEMISTRY 113 EXAM 3(A)

CHEMISTRY 113 EXAM 3(A) Summer 2003 CHEMISTRY 113 EXAM 3(A) 1. Specify radiation with the greatest energy from the following list: A. ultraviolet B. gamma C. infrared D. radio waves 2. The photoelectric effect is: A. reflection

More information

Provide a short and specific definition in YOUR OWN WORDS. Do not use the definition from the book. Electromagnetic Radiation

Provide a short and specific definition in YOUR OWN WORDS. Do not use the definition from the book. Electromagnetic Radiation Name: Provide a short and specific definition in YOUR OWN WORDS. Do not use the definition from the book Additional Notes: Electromagnetic Radiation Electromagnetic Spectrum Wavelength Frequency Photoelectric

More information

Chemistry (

Chemistry ( Question 2.1: (i) Calculate the number of electrons which will together weigh one gram. (ii) Calculate the mass and charge of one mole of electrons. Answer 2.1: (i) Mass of one electron = 9.10939 10 31

More information

A) I and III B) I and IV C) II and IV D) II and III E) III 5. Which of the following statements concerning quantum mechanics is/are true?

A) I and III B) I and IV C) II and IV D) II and III E) III 5. Which of the following statements concerning quantum mechanics is/are true? PX0311-0709 1. What is the wavelength of a photon having a frequency of 4.50 10 14 Hz? (, ) A) 667 nm B) 1.50 10 3 nm C) 4.42 10 31 nm D) 0.0895 nm E) 2.98 10 10 nm 2. When a particular metal is illuminated

More information

Ch 7 Quantum Theory of the Atom (light and atomic structure)

Ch 7 Quantum Theory of the Atom (light and atomic structure) Ch 7 Quantum Theory of the Atom (light and atomic structure) Electromagnetic Radiation - Electromagnetic radiation consists of oscillations in electric and magnetic fields. The oscillations can be described

More information

Quantum Theory and the Electronic Structure of Atoms

Quantum Theory and the Electronic Structure of Atoms Quantum Theory and the Electronic Structure of Atoms Chapter 7 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Properties of Waves Wavelength ( ) is the distance

More information

Atomic Term Symbols and Energy Splitting. λ=5890 Å

Atomic Term Symbols and Energy Splitting. λ=5890 Å Chemistry 362 Spring 2018 Dr. Jean M. Standard April 18, 2018 Atomic Term Symbols and Energy Splitting 1. Atomic Term Symbols and the Sodium D-Line The sodium D-line is responsible for the familiar orange

More information

November 06, Chapter 7 Atomic Struture. CHAPTER 7 Atomic Structure. Oct 27 9:34 AM ATOMIC STRUCTURE. Oct 27 9:34 AM

November 06, Chapter 7 Atomic Struture. CHAPTER 7 Atomic Structure. Oct 27 9:34 AM ATOMIC STRUCTURE. Oct 27 9:34 AM CHAPTER 7 Atomic Structure ATOMIC STRUCTURE 1 The Wave Nature of Light Most subatomic particles behave as PARTICLES and obey the physics of waves. Visible light Ultravioletlight Wavelength Frequency (Hertz

More information

THE NATURE OF THE ATOM. alpha particle source

THE NATURE OF THE ATOM. alpha particle source chapter THE NATURE OF THE ATOM www.tutor-homework.com (for tutoring, homework help, or help with online classes) Section 30.1 Rutherford Scattering and the Nuclear Atom 1. Which model of atomic structure

More information

Exam 2. Remember to refer to the Periodic Table handout that is separate from this exam copy.

Exam 2. Remember to refer to the Periodic Table handout that is separate from this exam copy. 001 version last name first name signature McCord CH301 unique: 49885 TTh 9:30 am - 11 am Exam 2 Oct 15, 2018 Monday 7:30-9:00 PM A - Mi in BUR 106 Mo - Z in JES A121A Remember to refer to the Periodic

More information

Chem 105 Final Exam. Here is the summary of the total 225 points plus 10 bonus points. Carefully read the questions. Good luck!

Chem 105 Final Exam. Here is the summary of the total 225 points plus 10 bonus points. Carefully read the questions. Good luck! May 3 rd, 2012 Name: CLID: Score: Chem 105 Final Exam There are 50 multiple choices that are worth 3 points each. There are 4 problems and 1 bonus problem. Try to answer the questions, which you know first,

More information

Atomic Structure and Atomic Spectra

Atomic Structure and Atomic Spectra Atomic Structure and Atomic Spectra Atomic Structure: Hydrogenic Atom Reading: Atkins, Ch. 10 (7 판 Ch. 13) The principles of quantum mechanics internal structure of atoms 1. Hydrogenic atom: one electron

More information

Name. system is +/? +/? undetermined A Lost energy, Did work, B Gained energy, + Did work Undetermined. C Gained energy, + Did work Undetermined

Name. system is +/? +/? undetermined A Lost energy, Did work, B Gained energy, + Did work Undetermined. C Gained energy, + Did work Undetermined Name 1. [4 points] An electron in the hydrogen atom can undergo only set transitions. Calculate the wavelength for an electron transitioning from n =15 to n =1. Is this visible, infrared, or ultraviolet

More information

Chem 6 Practice Exam 2

Chem 6 Practice Exam 2 These problems are from past Chem 6 exams. Each exam contained a page of universal constant values and common equations; yours will, too, along with a Periodic Table! The answers follow after all the questions.

More information

Electron Arrangement - Part 1

Electron Arrangement - Part 1 Brad Collins Electron Arrangement - Part 1 Chapter 8 Some images Copyright The McGraw-Hill Companies, Inc. Properties of Waves Wavelength (λ) is the distance between identical points on successive waves.

More information

8. Which of the following could be an isotope of chlorine? (A) 37 Cl 17 (B) 17 Cl 17 (C) 37 Cl 17 (D) 17 Cl 37.5 (E) 17 Cl 37

8. Which of the following could be an isotope of chlorine? (A) 37 Cl 17 (B) 17 Cl 17 (C) 37 Cl 17 (D) 17 Cl 37.5 (E) 17 Cl 37 Electronic Structure Worksheet 1 Given the following list of atomic and ionic species, find the appropriate match for questions 1-4. (A) Fe 2+ (B) Cl (C) K + (D) Cs (E) Hg + 1. Has the electron configuration:

More information

Vanden Bout/LaBrake/Crawford. Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL. Important Information

Vanden Bout/LaBrake/Crawford. Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL. Important Information Unit2Day2-Crawford Page 1 Unit2Day2-Crawford Monday, September 23, 2013 4:15 PM Vanden Bout/LaBrake/Crawford CH301 Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL UNIT 2 Day 2 CH302 Vanden

More information

A.P. Chemistry Practice Test - Ch. 7, Atomic Structure and Periodicity

A.P. Chemistry Practice Test - Ch. 7, Atomic Structure and Periodicity A.P. Chemistry Practice Test - Ch. 7, Atomic Structure and Periodicity 1) Ham radio operators often broadcast on the 6-meter band. The frequency of this electromagnetic radiation is MHz. A) 50 B) 20 C)

More information

Chem 1A, Fall 2015, Midterm Exam 1. Version A September 21, 2015 (Prof. Head-Gordon) 2

Chem 1A, Fall 2015, Midterm Exam 1. Version A September 21, 2015 (Prof. Head-Gordon) 2 Chem 1A, Fall 2015, Midterm Exam 1. Version A September 21, 2015 (Prof. Head-Gordon) 2 Name: Student ID: TA: Contents: 9 pages A. Multiple choice (7 points) B. Stoichiometry (10 points) C. Photoelectric

More information

Chem. 1A Final Practice Test 2

Chem. 1A Final Practice Test 2 Chem. 1A Final Practice Test 2 All work must be shown on the exam for partial credit. Points will be taken off for incorrect or missing units. Calculators are allowed. Cell phones may not be used as calculators.

More information

ATOMIC THEORY, PERIODICITY, and NUCLEAR CHEMISTRY

ATOMIC THEORY, PERIODICITY, and NUCLEAR CHEMISTRY ATOMIC THEORY, PERIODICITY, and NUCLEAR CHEMISTRY Note: For all questions referring to solutions, assume that the solvent is water unless otherwise stated. 1. The nuclide is radioactive and decays by the

More information

Chemistry 1A Midterm Exam 1 February 12, Potentially Useful Information. Violet Blue Green Yellow Orange Red Wavelength (nm)

Chemistry 1A Midterm Exam 1 February 12, Potentially Useful Information. Violet Blue Green Yellow Orange Red Wavelength (nm) Chemistry 1A Midterm Exam 1 February 12, 2013 Professor Pines 5 pages total Student Name: Student ID#: Potentially Useful Information Violet Blue Green Yellow Orange Red 400 500 600 700 Wavelength (nm)

More information

Copyright 2018 Dan Dill 1

Copyright 2018 Dan Dill 1 TP The wavelength of the electron wave in the ground state of H atom is about the size of the atom. In what region of the spectrum is light of similar wavelength? 1. Radio 2. Microwave 3. Infrared 4. Visible

More information

Chapter 6: Electronic Structure of Atoms

Chapter 6: Electronic Structure of Atoms Chapter 6: Electronic Structure of Atoms Learning Outcomes: Calculate the wavelength of electromagnetic radiation given its frequency or its frequency given its wavelength. Order the common kinds of radiation

More information

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 6 THE PERIODIC TABLE & ATOMIC STRUCTURE INSTR : FİLİZ ALSHANABLEH

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 6 THE PERIODIC TABLE & ATOMIC STRUCTURE INSTR : FİLİZ ALSHANABLEH C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 6 THE PERIODIC TABLE & ATOMIC STRUCTURE 0 1 INSTR : FİLİZ ALSHANABLEH CHAPTER 6 THE PERIODIC TABLE & ATOMIC STRUCTURE The Electromagnetic Spectrum The Wave

More information

Suggested time minutes (22 points) minutes (16 points) minutes (38 points) 4. 9 minutes (24 points) Total (100 points) Name

Suggested time minutes (22 points) minutes (16 points) minutes (38 points) 4. 9 minutes (24 points) Total (100 points) Name First Hour Exam 5.111 Write your name below. Do not open the exam until the start of the exam is announced. The exam is closed notes and closed book. 1. Read each part of each problem carefully and thoroughly.

More information

Name Class Date. Chapter: Arrangement of Electrons in Atoms

Name Class Date. Chapter: Arrangement of Electrons in Atoms Assessment Chapter Test A Chapter: Arrangement of Electrons in Atoms In the space provided, write the letter of the term that best completes each sentence or best answers each question. 1. Which of the

More information

Chem 111 Exam #2 November 8, J h = c E = h E. ΔH = energies of bonds broken - energies of bonds formed SHOW ALL WORK

Chem 111 Exam #2 November 8, J h = c E = h E. ΔH = energies of bonds broken - energies of bonds formed SHOW ALL WORK General Chemistry I NAME: Answer Key Chem 111 Exam #2 November 8, 2013 Some Equations and Constants for your use: -18-2.18 10 J h = c E = h E n = = 2 n mv o ΔH = energies of bonds broken - energies of

More information

Accounts for certain objects being colored. Used in medicine (examples?) Allows us to learn about structure of the atom

Accounts for certain objects being colored. Used in medicine (examples?) Allows us to learn about structure of the atom 1.1 Interaction of Light and Matter Accounts for certain objects being colored Used in medicine (examples?) 1.2 Wavelike Properties of Light Wavelength, : peak to peak distance Amplitude: height of the

More information

Gilbert Kirss Foster. Chapter3. Atomic Structure. Explaining the Properties of Elements

Gilbert Kirss Foster. Chapter3. Atomic Structure. Explaining the Properties of Elements Gilbert Kirss Foster Chapter3 Atomic Structure Explaining the Properties of Elements Chapter Outline 3.1 Waves of Light 3.2 Atomic Spectra 3.3 Particles of Light: Quantum Theory 3.4 The Hydrogen Spectrum

More information

Quantum Numbers. principal quantum number: n. angular momentum quantum number: l (azimuthal) magnetic quantum number: m l

Quantum Numbers. principal quantum number: n. angular momentum quantum number: l (azimuthal) magnetic quantum number: m l Quantum Numbers Quantum Numbers principal quantum number: n angular momentum quantum number: l (azimuthal) magnetic quantum number: m l Principal quantum number: n related to size and energy of orbital

More information

Chapter Test B. Chapter: Arrangement of Electrons in Atoms. possible angular momentum quantum numbers? energy level? a. 4 b. 8 c. 16 d.

Chapter Test B. Chapter: Arrangement of Electrons in Atoms. possible angular momentum quantum numbers? energy level? a. 4 b. 8 c. 16 d. Assessment Chapter Test B Chapter: Arrangement of Electrons in Atoms PART I In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question

More information

2008 Brooks/Cole 2. Frequency (Hz)

2008 Brooks/Cole 2. Frequency (Hz) Electromagnetic Radiation and Matter Oscillating electric and magnetic fields. Magnetic field Electric field Chapter 7: Electron Configurations and the Periodic Table Traveling wave moves through space

More information

Quantum Mechanics & Atomic Structure (Chapter 11)

Quantum Mechanics & Atomic Structure (Chapter 11) Quantum Mechanics & Atomic Structure (Chapter 11) Quantum mechanics: Microscopic theory of light & matter at molecular scale and smaller. Atoms and radiation (light) have both wave-like and particlelike

More information

Form Code X. 1. Which of the following transitions in a hydrogen atom would emit the longest wavelength photon?

Form Code X. 1. Which of the following transitions in a hydrogen atom would emit the longest wavelength photon? Form Code X NAME CHM 2045, Summer 2018 Exam Packet Instructions: Do your best and don t be anxious. Read the question, re-read the question, write down all given or valuable information, and write down

More information

Chapter 5. The Electromagnetic Spectrum. What is visible light? What is visible light? Which of the following would you consider dangerous?

Chapter 5. The Electromagnetic Spectrum. What is visible light? What is visible light? Which of the following would you consider dangerous? Which of the following would you consider dangerous? X-rays Radio waves Gamma rays UV radiation Visible light Microwaves Infrared radiation Chapter 5 Periodicity and Atomic Structure 2 The Electromagnetic

More information

Development of atomic theory

Development of atomic theory Development of atomic theory The chapter presents the fundamentals needed to explain and atomic & molecular structures in qualitative or semiquantitative terms. Li B B C N O F Ne Sc Ti V Cr Mn Fe Co Ni

More information

Chapter 7 The Structure of Atoms and Periodic Trends

Chapter 7 The Structure of Atoms and Periodic Trends Chapter 7 The Structure of Atoms and Periodic Trends Jeffrey Mack California State University, Sacramento Arrangement of Electrons in Atoms Electrons in atoms are arranged as SHELLS (n) SUBSHELLS (l) ORBITALS

More information

H!!!! = E! Lecture 7 - Atomic Structure. Chem 103, Section F0F Unit II - Quantum Theory and Atomic Structure Lecture 7. Lecture 7 - Introduction

H!!!! = E! Lecture 7 - Atomic Structure. Chem 103, Section F0F Unit II - Quantum Theory and Atomic Structure Lecture 7. Lecture 7 - Introduction Chem 103, Section F0F Unit II - Quantum Theory and Atomic Structure Lecture 7 Lecture 7 - Atomic Structure Reading in Silberberg - Chapter 7, Section 4 The Qunatum-Mechanical Model of the Atom The Quantum

More information

ELECTRONS IN ATOMS AND THE PERIODIC TABLE. Light and Energy. Chapter Nine

ELECTRONS IN ATOMS AND THE PERIODIC TABLE. Light and Energy. Chapter Nine ELECTRONS IN ATOMS AND THE PERIODIC TABLE Chapter Nine Light and Energy! Electromagnetic radiation (EM) is an especially important form of energy for scientific study.! Many types of radiant energy are

More information

CHEM Exam 4 November 30, Version A

CHEM Exam 4 November 30, Version A CHEM 1413.001 - Exam 4 November 30, 2016 - Version A Constants: h = 6.63x10-34 J s c = 3.00x10 8 m/s NA = 6.02x10 23 mol -1 Conversion Factors: Molar Masses: CH3OH - 32. Cl2-71. CHEM 1413.001 - Exam 4

More information