Chem Discussion #13 Chapter 10. Correlation diagrams for diatomic molecules. TF s name: Your name: Discussion Section:

Size: px
Start display at page:

Download "Chem Discussion #13 Chapter 10. Correlation diagrams for diatomic molecules. TF s name: Your name: Discussion Section:"

Transcription

1 Chem Discussion #13 Chapter 10. Correlation diagrams for diatomic molecules. TF s name: Your name: Discussion Section: 1. Below is a plot of the first 10 ionization energies for a single atom in 3 rd row of the periodic table. The x- axis shows which ionization (e.g. IE1, IE2, etc) and the y-axis gives how much energy in MJ/mo a. What 3 rd row element does the plot show? b. First ionization energy IE 1 is 10.36eV calculate Z eff for that element. c. The arrow points to the jump between the 6 th and 7 th ionization energy. Which of the following statements are true? i. The number of protons (Z) changed. ii. The effective nuclear charge (Zeff) changed. iii. The quantum number n of the electron that is ionized changed. iv. The radius of the ion decreased 2. From the following neutral atom electron configurations, label the one with the highest third ionization energy, and lowest third ionization energy. Explain your answers. a. 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 b. 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 c.1s 2 2s 2 2p 6 3s 2 3p 6 3. Which one will have the greatest ionization energy? Na +, Ne, F -,O 2-4. ( at Home) Rank the following in terms of increasing ionization energy: Na, Li, B, N, Ne 5. ( at Home) Rank the following in terms of increasing ionization energy: Li +, B +, N +, Ne +, Na + 1

2 6. (at home) Write the ground state electron configuration for the following atoms and ions and determine if each is paramagnetic or diamagnetic: Al, Al 3+, V, V Answer the following questions about manganese (Mn): a. What is the electron configuration? b. Circle the letters corresponding to the picture of occupied electron clouds. ( Hint you need to know what are n, l, and j for one electron in each of the occupied electron clouds? A B C D E F G H I 2

3 a. For the pictures below fill in the empty boxes with corresponding names of the orbitals( 1s,2s,3s, 4s, 2p,3p,3d) b. Use the radial probability densities below (electron cloud cross section below ) to estimate the size of an atom of Mn. (Look at the x axis) 3

4 Things you should know when you leave Discussion today Atomic Orbital (s, p, d, f) vs. Molecular Orbital (σ, σ *, NB, π, π *, πnb) a. Total Number of MO =Total Number of AO Constructive and destructive interference (in phase and out-of-phase interaction) a. Sigma bond is achieved by head on overlap b. Bonding MO (σ, π) - Constructive interference in phase interaction c. Antibonding MO (σ *, π * ) - Destructive interference out-of-phase interaction d. π formed from side-by-side overlap of available p AO π * is out-of-phase overlap of available p AO π is in-phase side-by-side overlap of available p AO Factors that affect the formation of MOs from AOs: S.O.E. a. Symmetry AOs must have a compatible orientation to achieve an overlap. b.overlap: If AO's have correct symmetry, consider how much they overlap. The greater the overlap, the greater the energy change relative to the AO energies. c. Energy: If the pair of AO's has the correct symmetry and greatest overlap, consider relative AO energies. 4

5 1. If you have two atoms that together have 5 atomic orbitals, when those atoms combine to form a molecule, how many molecular orbitals are you going to have? 2. For each of the AO combinations below, draw the resulting MO. What do we call that resulting MO? a. Discuss any axes of symmetry the MO may have. b. Is this MO destructive or constructive interference (or neither or both)? c. (at home) Now draw as many other combinations of AOs that give, *, MOs as you can, using only s and p AOs. Discuss the relative energies of the resultant MOs you just drew. d. (at home ) Now draw as many other combinations of AOs that give, * MOs. 3. Which below describes the pairs of AO's in Li2 according to increasing overlap and why? a. 1s + 1s < 2s + 2s < 1s + 2s b. 1s + 2s < 1s + 1s < 2s + 2s c. 1s + 1s < 1s + 2s < 2s + 2s 5

6 4. Draw correlation diagram for He2 + : Keep in mind that: 1sσ* is more unstable than 1sσ is stable. a. What is the bond order of He2 +? ( Hint: useful information on page 9) b. Put in the order of increasing bond length H2; H2 + and He2 +. (hint : find the bond orders for all the molecules or molecular ions) 5. (at Home) Draw the correlation diagram for the HeH molecule. Which molecule or molecular ion will have the shortest bond HeH 3+,HeH 2+, HeH +, HeH, HeH -? 6. (at home) AO1 and AO2 are going to form MOs. Assume AO1 and AO2 have correct symmetry, greatest overlap, and are closest in energy. AO1 has IE = 7 ev and AO2 has IE = 9 ev. Draw a picture of this, clearly indicating the relative energies of all AOs and MOs. For each MO, discuss which AO contributes more to it. 6

7 7. (at home) AO1 and AO2 are going to form MOs. Assume AO1 and AO2 have correct symmetry, greatest overlap, and are closest in energy. AO1 has IE = 2 ev and AO2 has IE = 13 ev. Draw a picture of this, clearly indicating the relative energies of all AOs and MOs. For each MO, discuss which AO contributes more to it. 8. (at home) Look at the diagrams in questions 6 and 7. Which one represents compound with the most ionic characteristic? 9. Consider the Ionization energies for H, Na, and F. Assume z is along the bond axis. a. Draw the correlation diagram for NaF and HF: An Element: IE H 1s 13.6 ev F 2s 25.0 ev F 2pz 17.4 ev Na 3s 5.1eV b. Discuss the relative ionic and covalent character of NaF verses HF. [Hint: It might help if you look at the picture you just drew.] 7

8 c. Which pair of AOs in HF will interact most strongly? a. H 1s + F 1s b. H 1s + F 2s c. H 1s + F 2pz d. H 1s + F 2py e. C and D equally d. The bond pair in NaF is in the Na 3s + F 2pz MO. The bond pair in HF is in the H 1s + F 2pz MO. Which of the following is true? a. The bond pair is almost entirely on the F of HF b. The bond pair is almost entirely on the H of HF. c. The bond pair is almost entirely on the F of NaF. d. The bond pair is almost entirely on the Na of NaF e. (a) and (d) 10. Generally, the valence electrons on different atoms, rather than the core electrons, interact with one another. Choose the best explanation. a. Adjacent valence electron waves have the greatest overlap. b. Adjacent valence electron waves have the same energy. c. Core electron clouds have the wrong symmetry. d. Core electron clouds move with the wrong frequency. 11. When is the interaction of two AO orbitals most favored? General MO Correlation Diagram for second row in the Periodic table. 8

9 a. Bond Order: # of e in filled bonding orbitals # of e in filled antibonding orbitals BO.. 2 or B. O. # of filled bonding orbitals # of filled antibonding orbitals 1. Draw two AO energy diagrams for the atoms in CN - one atom on the left and one atom on the right, leaving space in the middle. Draw a picture of each AO. Draw the MO energy diagram and pictures of the resulting MOs in between and fill them with the electrons for the molecule. a. Draw the MO diagram(hint : count how many AO you start with and how many valence electrons you have) 9

10 b. Calculate the bond order. c. Is CN - diamagnetic or paramagnetic? d. Write the molecular electron configuration. e. Are the electrons centered more on C or on the N? f. If an electron is removed, will this make the bond longer or shorter? 2. (At home on a separate piece of paper) Draw two AO energy diagrams for the following atoms in [C2, N2, O2, F2, HF, BF, HB +, HO + ], one atom on the left and one atom on the right, leaving space in the middle. Draw a picture of each AO. Draw the MO energy diagram and pictures of the resulting MOs in between and fill them with the electrons for the molecule. a. Calculate the bond order for each molecule. b. Discuss which of the molecular orbitals are responsible for single, double bonds, etc. c. Discuss the relative length, reactivity and strength of these bonds. d. What are the magnetic properties of these molecules? (Which one is diamagnetic and which one is paramagnetic.) 10

11 Chem 101 Discussion #13 Chapter 10 TF s name: Your name: Discussion Section: Final Exam OPTIONAL review session s schedule: Thursday December 15. Session 1 10am-11:50pm Session2 1pm -2:50pm 1. Exam1, Exam 2, / Chapter2,3,4,5/ Dimensional analysis/ Stoichiometry/ Limiting Reagent CAS 203 / MS/IR / Intermolecular Forces/ 2. Chapter 6 /Vapor pressure/gas phase verses Liquid phase verses solid phase/ CAS 213 Chemical reactions/precipitation Reaction & Solubilit/ Acid-base, Redox /Molar calculations /Dimensional analysis/δvaph, ΔfusH/ /Heat capacity/solubility of Ionic compounds/ 3. Chapter 8/ Light and 1 electron system / emission /absorption/ Energy of a photon/ KE/ Ionization/Hydrogen Family Album /Multi-electron Atoms / Quantum Numbers / Electron Configuration/ Trends/ Shielding/ CAS MOs Chapter 10/ Multi-electron Atoms Lewis Structures / FC/ ON / Electron Configuration/ Trends/ Shielding/ CAS Chapter 7/Enthalpy/ First law/ calorimeter/ Exam 3 CAS

CH 101Fall 2018 Discussion #13 Chapter 10 Your name: TF s name: Discussion Day/Time:

CH 101Fall 2018 Discussion #13 Chapter 10 Your name: TF s name: Discussion Day/Time: CH 101Fall 2018 Discussion #13 Chapter 10 Your name: TF s name: Discussion Day/Time: Things you should know when you leave Discussion today Atomic orbitals (s, p, d, f) vs. molecular orbitals (σ, σ *,

More information

2. Constructive and destructive interference (in phase and out-of-phase interaction) a. Sigma bond is achieved by head on overlap

2. Constructive and destructive interference (in phase and out-of-phase interaction) a. Sigma bond is achieved by head on overlap Discussion #1 Chapter 10 CH102 2018 MOs TF s name: Your name: Discussion Section: 1. Atomic Orbital (s, p, d, f) vs. Molecular Orbital (σ, σ *, NB, π, π *, π nb ) a. Total Number of MO =Total Number of

More information

SOE: Symmetry Overlap Energy Notes on General Chemistry

SOE: Symmetry Overlap Energy Notes on General Chemistry SOE: Symmetry Overlap Energy Notes on General Chemistry http://quantum.bu.edu/notes/generalchemistry/soesymmetryoverlapenergy.pdf Last updated Thursday, December 13, 2007 15:31:32-05:00 Copyright 2007

More information

Chem Discussion #13 Chapter 10. Correlation diagrams for diatomic molecules. Key

Chem Discussion #13 Chapter 10. Correlation diagrams for diatomic molecules. Key Chem 101 017 Discussio #13 Chapter 10. Correlatio diagrams for diatomic molecules. Key 1. Below is a plot of the first 10 ioizatio eergies for a sigle atom i 3 rd row of the periodic table. The x- axis

More information

CH 101Fall 2018 Discussion #12 Chapter 8, Mahaffy, 2e sections Your name: TF s name: Discussion Day/Time:

CH 101Fall 2018 Discussion #12 Chapter 8, Mahaffy, 2e sections Your name: TF s name: Discussion Day/Time: CH 11Fall 218 Discussion #12 Chapter 8, Mahaff, 2e sections 8.3-8.7 Your name: TF s name: Discussion Da/Time: Things ou should know when ou leave Discussion toda for one-electron atoms: ΔE matter=e n-e

More information

Copyright 2015 Dan Dill 1

Copyright 2015 Dan Dill 1 1. The kinetic energy of the antibonding of a pair of AO's is... Questions on Symmetry, Overlap, Energy CH1 Fall 2015 Boston University 1. greater than that for 2. about the same that for 3. less than

More information

NH 3 H 2 O N 2. Why do they make chemical bonds? Molecular Orbitals

NH 3 H 2 O N 2. Why do they make chemical bonds? Molecular Orbitals N 2 NH 3 H 2 O Why do they make chemical bonds? 5 Molecular Orbitals Why do they make chemical bonds? Stabilization Bond energy Types of Chemical Bonds Metallic Bond Ionic Bond Covalent Bond Covalent Bond

More information

Symmetry and Molecular Orbitals (I)

Symmetry and Molecular Orbitals (I) Symmetry and Molecular Orbitals (I) Simple Bonding Model http://chiuserv.ac.nctu.edu.tw/~htchiu/chemistry/fall-2005/chemical-bonds.htm Lewis Structures Octet Rule Resonance Formal Charge Oxidation Number

More information

Molecular Orbital Theory

Molecular Orbital Theory Molecular Orbital Theory Paramagnetic properties of O 2 pranjoto utomo Covalent Bonding Theory Valence Bond Theory useful for deriving shapes/polarity simple but inaccurate/deficient Molecular Orbital

More information

TYPES OF SYMMETRIES OF MO s s-s combinations of orbitals: , if they are antibonding. s-p combinatinos of orbitals: CHEMICAL BONDING.

TYPES OF SYMMETRIES OF MO s s-s combinations of orbitals: , if they are antibonding. s-p combinatinos of orbitals: CHEMICAL BONDING. TYPES OF SYMMETRIES OF MO s s-s combinations of : Orbitals Molecular Orbitals s s Node s s (g) (g) Bonding orbital Antibonding orbital (u) 4 (u) s-s combinations of atomic In the bonding MO there is increased

More information

Activity Molecular Orbital Theory

Activity Molecular Orbital Theory Activity 201 9 Molecular Orbital Theory Directions: This Guided Learning Activity (GLA) discusses the Molecular Orbital Theory and its application to homonuclear diatomic molecules. Part A describes the

More information

Learning Objectives and Worksheet VIII. Chemistry 1B-AL Fall Lectures (13-14) Molecular Orbital Theory of Covalent Bonding

Learning Objectives and Worksheet VIII. Chemistry 1B-AL Fall Lectures (13-14) Molecular Orbital Theory of Covalent Bonding Learning Objectives and Worksheet VIII Chemistry 1B-AL Fall 2016 Lectures (13-14) Molecular Orbital Theory of Covalent Bonding WE WILL BE COVERING CHAPTER 14 IN A DIFFERENT ORDER THAN THE TEXT: first we

More information

Molecular Bond Theory

Molecular Bond Theory Molecular Bond Theory Short comings of the localized electron model: electrons are not really localized so the concept of resonance was added no direct information about bond energies Molecular Orbital

More information

Ch. 9 Practice Questions

Ch. 9 Practice Questions Ch. 9 Practice Questions 1. The hybridization of the carbon atom in the cation CH + 3 is: A) sp 2 B) sp 3 C) dsp D) sp E) none of these 2. In the molecule C 2 H 4 the valence orbitals of the carbon atoms

More information

ANNOUNCEMENTS. If you have questions about your exam 2 grade, write to me or Chapter 8 homework due April. 13 th.

ANNOUNCEMENTS. If you have questions about your exam 2 grade, write to me or Chapter 8 homework due April. 13 th. ANNOUNCEMENTS If you have questions about your exam 2 grade, write to me or Chem200@mail.sdsu.edu. Chapter 8 homework due April. 13 th. Chapter 9 home work due April. 20th. Exam 3 is 4/14 at 2 pm. LECTURE

More information

5.111 Lecture Summary #13 Monday, October 6, 2014

5.111 Lecture Summary #13 Monday, October 6, 2014 5.111 Lecture Summary #13 Monday, October 6, 2014 Readings for today: Section 3.8 3.11 Molecular Orbital Theory (Same in 5 th and 4 th ed.) Read for Lecture #14: Sections 3.4, 3.5, 3.6 and 3.7 Valence

More information

Chapter 9. Covalent Bonding: Orbitals. Copyright 2017 Cengage Learning. All Rights Reserved.

Chapter 9. Covalent Bonding: Orbitals. Copyright 2017 Cengage Learning. All Rights Reserved. Chapter 9 Covalent Bonding: Orbitals Chapter 9 Table of Contents (9.1) (9.2) (9.3) (9.4) (9.5) (9.6) Hybridization and the localized electron model The molecular orbital model Bonding in homonuclear diatomic

More information

The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then

The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then 1 The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then filled with the available electrons according to

More information

CHEMISTRY - BROWN 13E CH.7 - PERIODIC PROPERTIES OF THE ELEMENTS

CHEMISTRY - BROWN 13E CH.7 - PERIODIC PROPERTIES OF THE ELEMENTS !! www.clutchprep.com CONCEPT: EFFECTIVE NUCLEAR CHARGE & SLATER S RULES When looking at any particular electron within an atom it experiences two major forces. A(n) force from the nucleus and a(n) force

More information

CB VII. Molecular Orbital (MO) Theory. General. Basic Principles. Basic Ideas. further improvement on Lewis, VSEPR & VB theory;

CB VII. Molecular Orbital (MO) Theory. General. Basic Principles. Basic Ideas. further improvement on Lewis, VSEPR & VB theory; chem101/3, D1 fa010 po 14 1 CB VII Molecular Orbital (MO) Theory chem101/3, D1 fa010 po 14 General further improvement on Lewis, VSEPR & VB theory; resulting in better info on: bond energy bond order magnetic

More information

Chem 400. Inorganic Chemistry. Practice Exam 2. 1 of of of of of of 5. 7 of 5. 8 of of 10.

Chem 400. Inorganic Chemistry. Practice Exam 2. 1 of of of of of of 5. 7 of 5. 8 of of 10. Chem 400 Inorganic Chemistry Practice Exam 2 1 of 10 2 of 10 3 of 20 4 of 10 5 of 20 6 of 5 7 of 5 8 of 10 9 of 10 Σ of 100 KEY Name (please print) 1. Using balanced chemical equations, give an explanation

More information

Goals for Today. Clarify some Rydberg Concepts Absorption vs. emission

Goals for Today. Clarify some Rydberg Concepts Absorption vs. emission Note: Due to recent changes the exam 2 material for these slides ends at Ionization Energy Exceptions. You can omit Lewis Structures through General Formal Charge Rules. CH301 Unit 2 QUANTUM NUMBERS AND

More information

11/29/2014. Problems with Valence Bond Theory. VB theory predicts many properties better than Lewis Theory

11/29/2014. Problems with Valence Bond Theory. VB theory predicts many properties better than Lewis Theory Problems with Valence Bond Theory VB theory predicts many properties better than Lewis Theory bonding schemes, bond strengths, bond lengths, bond rigidity however, there are still many properties of molecules

More information

Molecular Orbitals. Based on Inorganic Chemistry, Miessler and Tarr, 4 th edition, 2011, Pearson Prentice Hall

Molecular Orbitals. Based on Inorganic Chemistry, Miessler and Tarr, 4 th edition, 2011, Pearson Prentice Hall Molecular Orbitals Based on Inorganic Chemistry, Miessler and Tarr, 4 th edition, 2011, Pearson Prentice Hall Images from Miessler and Tarr Inorganic Chemistry 2011 obtained from Pearson Education, Inc.

More information

Chem Spring, 2017 Assignment 5 - Solutions

Chem Spring, 2017 Assignment 5 - Solutions Page 1 of 10 Chem 370 - Spring, 2017 Assignment 5 - Solutions 5.1 Additional combinations are p z ± d z 2, p x ±d xz, and p y ±d yz. p z ± d z 2 p x ±d xz or p y ±d yz 5.2 a. Li 2 has the configuration

More information

Chapter 10. VSEPR Model: Geometries

Chapter 10. VSEPR Model: Geometries Chapter 10 Molecular Geometry VSEPR Model: Geometries Valence Shell Electron Pair Repulsion Theory Electron pairs repel and get as far apart as possible Example: Water Four electron pairs Farthest apart

More information

Activity Molecular Orbital Theory

Activity Molecular Orbital Theory Activity 201 9 Molecular Orbital Theory Directions: This Guided Learning Activity (GLA) discusses the Molecular Orbital Theory and its application to homonuclear diatomic molecules. Part A describes the

More information

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2 The Delocalized Approach to Bonding: The localized models for bonding we have examined (Lewis and VBT) assume that all electrons are restricted to specific bonds between atoms or in lone pairs. In contrast,

More information

Midterm Exam I. CHEM 181: Introduction to Chemical Principles September 24, 2015 Key

Midterm Exam I. CHEM 181: Introduction to Chemical Principles September 24, 2015 Key Midterm Exam I CHEM 8: Introduction to Chemical Principles September 24, 205 Key. A Li 2+ ion in an unknown, highly excited electronic state, first emits a photon at a wavelength of 4.36 µm, and following

More information

Lecture B6 Molecular Orbital Theory. Sometimes it's good to be alone.

Lecture B6 Molecular Orbital Theory. Sometimes it's good to be alone. Lecture B6 Molecular Orbital Theory Sometimes it's good to be alone. Covalent Bond Theories 1. VSEPR (valence shell electron pair repulsion model). A set of empirical rules for predicting a molecular geometry

More information

Valence bond theory accounts, at least qualitatively, for the stability of the covalent bond in terms of overlapping atomic orbitals.

Valence bond theory accounts, at least qualitatively, for the stability of the covalent bond in terms of overlapping atomic orbitals. Molecular Orbital Theory Valence bond theory accounts, at least qualitatively, for the stability of the covalent bond in terms of overlapping atomic orbitals. Using the concept of hybridization, valence

More information

Chapter 10. VSEPR Model: Geometries

Chapter 10. VSEPR Model: Geometries Chapter 10 Molecular Geometry VSEPR Model: Geometries Valence Shell Electron Pair Repulsion Theory Electron pairs repel and get as far apart as possible Example: Water Four electron pairs Two bonds Two

More information

Name: Block: Date: Atomic Radius: the distance from the center of the nucleus to the outer most electrons in an atom.

Name: Block: Date: Atomic Radius: the distance from the center of the nucleus to the outer most electrons in an atom. Name: Block: Date: Chemistry 11 Trends Activity Assignment Atomic Radius: the distance from the center of the nucleus to the outer most electrons in an atom. Ionic Radius: the distance from the center

More information

Chemical Bonding. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory

Chemical Bonding. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Chemical Bonding Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Problems with Valence Bond Theory VB theory predicts properties better than Lewis theory bonding schemes, bond strengths,

More information

1a. (2 pts) Sketch the general trends (one big arrow across top and one down the side) for the first ionization energies on the periodic table

1a. (2 pts) Sketch the general trends (one big arrow across top and one down the side) for the first ionization energies on the periodic table Chm 451 Fall 2007 Exam 1 Name: First ionization energy. 1a. (2 pts) Sketch the general trends (one big arrow across top and one down the side) for the first ionization energies on the periodic table 1b.

More information

QUANTUM MECHANICS AND MOLECULAR STRUCTURE

QUANTUM MECHANICS AND MOLECULAR STRUCTURE 6 QUANTUM MECHANICS AND MOLECULAR STRUCTURE 6.1 Quantum Picture of the Chemical Bond 6.2 Exact Molecular Orbital for the Simplest Molecule: H + 2 6.3 Molecular Orbital Theory and the Linear Combination

More information

CHEM J-5 June 2014

CHEM J-5 June 2014 CHEM1101 2014-J-5 June 2014 The molecular orbital energy level diagrams for H 2, H 2 +, H 2 and O 2 are shown below. Fill in the valence electrons for each species in its ground state and label the types

More information

1. (1 pt each) Multiple Choice. What explanation accounts for these observations about periodic trends?

1. (1 pt each) Multiple Choice. What explanation accounts for these observations about periodic trends? Chm 451 with Dr. Mattson Exam 1 Name: 20 September 2011 1. (1 pt each) Multiple Choice. What explanation accounts for these observations about periodic trends? (a) The first ionization energy increases

More information

ANNOUNCEMENTS. If you have questions about your exam 2 grade, write to me or Chapter 7 homework due Nov, 9 th.

ANNOUNCEMENTS. If you have questions about your exam 2 grade, write to me or Chapter 7 homework due Nov, 9 th. ANNOUNCEMENTS If you have questions about your exam 2 grade, write to me or Chem200@sdsu.edu. Chapter 7 homework due Nov, 9 th. Chapter 8 homework due Nov. 16 th. Exam 3 is 11/17 at 2 pm. LECTURE OBJECTIVES

More information

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2 The Delocalized Approach to Bonding: The localized models for bonding we have examined (Lewis and VBT) assume that all electrons are restricted to specific bonds between atoms or in lone pairs. In contrast,

More information

Lecture 14 Chemistry 362 M. Darensbourg 2017 Spring term. Molecular orbitals for diatomics

Lecture 14 Chemistry 362 M. Darensbourg 2017 Spring term. Molecular orbitals for diatomics Lecture 14 Chemistry 362 M. Darensbourg 2017 Spring term Molecular orbitals for diatomics Molecular Orbital Theory of the Chemical Bond Simplest example - H 2 : two H atoms H A and H B Only two a.o.'s

More information

Bonding and Physical Properties The Molecular Orbital Theory

Bonding and Physical Properties The Molecular Orbital Theory Bonding and Physical Properties The Molecular Orbital Theory Ø Developed by F. Hund and R. S. Mulliken in 1932 Ø Diagram of molecular energy levels Ø Magnetic and spectral properties Paramagnetic vs. Diamagnetic

More information

Chapter 5. Molecular Orbitals

Chapter 5. Molecular Orbitals Chapter 5. Molecular Orbitals MO from s, p, d, orbitals: - Fig.5.1, 5.2, 5.3 Homonuclear diatomic molecules: - Fig. 5.7 - Para- vs. Diamagnetic Heteronuclear diatomic molecules: - Fig. 5.14 - ex. CO Hybrid

More information

COVALENT BONDING: ORBITALS

COVALENT BONDING: ORBITALS COVALENT BONDING: ORBITALS The localized electron model views a molecule as a collection of atoms bound together by sharing electrons between their atomic orbitals. The arrangement of valence electrons

More information

Chemistry 2000 Lecture 2: LCAO-MO theory for homonuclear diatomic molecules

Chemistry 2000 Lecture 2: LCAO-MO theory for homonuclear diatomic molecules Chemistry 2000 Lecture 2: LCAO-MO theory for homonuclear diatomic molecules Marc R. Roussel January 5, 2018 Marc R. Roussel Homonuclear diatomics January 5, 2018 1 / 17 MO theory for homonuclear diatomic

More information

MOLECULAR ORBITAL THEORY Chapter 10.8, Morrison and Boyd

MOLECULAR ORBITAL THEORY Chapter 10.8, Morrison and Boyd MOLECULAR ORBITAL THEORY Chapter 10.8, Morrison and Boyd more understanding: why oxygen is paramagnetic, why H2 + exists; explanation of excited electronic states (e.g., visible spectra) eliminates need

More information

Periodic Trends. Atomic Radius: The distance from the center of the nucleus to the outer most electrons in an atom.

Periodic Trends. Atomic Radius: The distance from the center of the nucleus to the outer most electrons in an atom. Periodic Trends Study and learn the definitions listed below. Then use the definitions and the periodic table provided to help you answer the questions in the activity. By the end of the activity you should

More information

Chapter 9. Covalent Bonding: Orbitals

Chapter 9. Covalent Bonding: Orbitals Chapter 9. Covalent onding: Orbitals Models to explain the structures and/or energies of the covalent molecules Localized Electron (LE) onding Model Lewis Structure Valence Shell Electron Pair Repulsion

More information

CHEMISTRY 110 EXAM 1 SEPTEMBER 20, 2010 FORM A

CHEMISTRY 110 EXAM 1 SEPTEMBER 20, 2010 FORM A CHEMISTRY 110 EXAM 1 SEPTEMBER 20, 2010 FORM A 1. What are the correct numbers of protons, neutrons and electrons in a 39 K + ion? p n e A. 20 19 18 B. 20 19 19 C. 19 20 18 D. 19 20 19 E. 20 19 20 2. Which

More information

Why? a. Define enthalpy of vaporization ΔvapH :

Why? a. Define enthalpy of vaporization ΔvapH : hem 101 2017 Discussion #6 hapter 6 Your name: TF s name: Discussion Day/Time: Things you should know when you leave Discussion today: 1. Vapor pressure 2. Gas phase verses Liquid phase verses solid phase

More information

Chapter 18 Molecular orbitals and spectroscopy Conjugation of bonds and resonance structures

Chapter 18 Molecular orbitals and spectroscopy Conjugation of bonds and resonance structures Chapter 18 Molecular orbitals and spectroscopy 18.1 Diatomic molecules 18.2 Polyatomic molecules 18.3 Conjugation of bonds and resonance structures 18.4 The interaction of light and matter (spectroscopy)

More information

A. General (10 points) 2 Points Each

A. General (10 points) 2 Points Each Chem 104A - Midterm II Total Exam Score closed text, closed notes, no calculators There are 100 total points. General advice - if you are stumped by one problem, move on to finish other problems and come

More information

CHEM1901/ J-5 June 2013

CHEM1901/ J-5 June 2013 CHEM1901/3 2013-J-5 June 2013 Oxygen exists in the troposphere as a diatomic molecule. 4 (a) Using arrows to indicate relative electron spin, fill the left-most valence orbital energy diagram for O 2,

More information

For more info visit Chemical bond is the attractive force which holds various constituents together in a molecule.

For more info visit  Chemical bond is the attractive force which holds various constituents together in a molecule. Chemical bond:- Chemical bond is the attractive force which holds various constituents together in a molecule. There are three types of chemical bonds: Ionic Bond, Covalent Bond, Coordinate Bond. Octet

More information

Chapter 10 Chemical Bonding II

Chapter 10 Chemical Bonding II Chapter 10 Chemical Bonding II Valence Bond Theory Valence Bond Theory: A quantum mechanical model which shows how electron pairs are shared in a covalent bond. Bond forms between two atoms when the following

More information

Organic Chemistry. Review Information for Unit 1. Atomic Structure MO Theory Chemical Bonds

Organic Chemistry. Review Information for Unit 1. Atomic Structure MO Theory Chemical Bonds Organic Chemistry Review Information for Unit 1 Atomic Structure MO Theory Chemical Bonds Atomic Structure Atoms are the smallest representative particle of an element. Three subatomic particles: protons

More information

Unit3Day4-LaBrake. Important Information. Is the molecule CH 2 Cl 2? Vanden Bout/LaBrake/Crawford CH301

Unit3Day4-LaBrake. Important Information. Is the molecule CH 2 Cl 2? Vanden Bout/LaBrake/Crawford CH301 Unit3Day4-LaBrake Page 1 Unit3Day4-LaBrake Monday, October 21, 2013 11:32 AM Vanden Bout/LaBrake/Crawford CH301 WHY DOES A FROG FLOAT IN A MAGNETIC FIELS? MORE ON BONDING THEORIES UNIT 3 Day 4 Important

More information

What are we going to learn today?

What are we going to learn today? UNIT3DAY4-LaB Page 1 UNIT3DAY4-LaB Tuesday, October 23, 2012 8:29 AM Vanden Bout/LaBrake CH301 WHY IS EVERYTHING SO DIFFERENT? MORE ON BONDING THEORIES UNIT 3 Day 4 Important Information LM22 DUE Th 9AM

More information

Name. CHM 115 EXAM #2 Practice KEY. a. N Cl b. N F c. F F d. I I e. N Br. a. K b. Be c. O d. Al e. S

Name. CHM 115 EXAM #2 Practice KEY. a. N Cl b. N F c. F F d. I I e. N Br. a. K b. Be c. O d. Al e. S Name CHM 115 EXAM #2 Practice KEY Circle the correct answer. (numbers 1-8, 2.5 points each) 1. Which of the following bonds should be the most polar? a. N Cl b. N F c. F F d. I I e. N Br 2. Choose the

More information

Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories

Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories C h e m i s t r y 1 A : C h a p t e r 1 0 P a g e 1 Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories Homework: Read Chapter 10: Work out sample/practice

More information

Drawing Lewis Structures

Drawing Lewis Structures Chapter 2 - Basic Concepts: molecules Bonding models: Valence-Bond Theory (VB) and Molecular Orbital Theory (MO) Lewis acids and bases When both of the electrons in the covalent bond formed by a Lewis

More information

Chemistry 1B, Fall 2012 Lectures 15-16

Chemistry 1B, Fall 2012 Lectures 15-16 Chemistry 1B Fall 2012 Quantum Mechanics of the Covalent Bond for chapter 14 animations and links see: http://switkes.chemistry.ucsc.edu/teaching/chem1b/www_other_links/ch14_links.htm 1 LISTEN UP!!! WE

More information

CHEMISTRY - CLUTCH CH.8 - PERIODIC PROPERTIES OF THE ELEMENTS

CHEMISTRY - CLUTCH CH.8 - PERIODIC PROPERTIES OF THE ELEMENTS !! www.clutchprep.com CONCEPT: ELECTRON CONFIGURATIONS In this chapter we will focus on how an element s - the distribution of electrons within the orbitals of its atoms relates to its chemical and physical

More information

7. Arrange the molecular orbitals in order of increasing energy and add the electrons.

7. Arrange the molecular orbitals in order of increasing energy and add the electrons. Molecular Orbital Theory I. Introduction. A. Ideas. 1. Start with nuclei at their equilibrium positions. 2. onstruct a set of orbitals that cover the complete nuclear framework, called molecular orbitals

More information

CHEMISTRY - KIRSS 2E CH.3 - ATOMIC STRUCTURE: EXPLAINING THE PROPERTIES OF ELEMENTS

CHEMISTRY - KIRSS 2E CH.3 - ATOMIC STRUCTURE: EXPLAINING THE PROPERTIES OF ELEMENTS !! www.clutchprep.com CONCEPT: THE NATURE OF LIGHT Visible light represents a small portion of the continuum of radiant energy known as. The visible light spectrum ranges from to. Its wave properties of

More information

AP CHEMISTRY: BONDING THEORIES REVIEW KEY p. 1

AP CHEMISTRY: BONDING THEORIES REVIEW KEY p. 1 AP CHEMISTRY: BONDING THEORIES REVIEW KEY p. 1 1) a) O-H PC b) Cs-Cl I c) H-Cl PC d) Br-Br NPC 2) differences in electronegativity determines amount of ity O3 0, P8 0, NO.5, CO2 1.0, CH4.4, H2S.4 answer

More information

Andrew Rosen *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same

Andrew Rosen *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same *Note: For hybridization, if an SP 2 is made, there is one unhybridized p orbital (because p usually has

More information

Valence Bond Theory Considers the interaction of separate atoms brought together as they form a molecule. Lewis structures Resonance considerations

Valence Bond Theory Considers the interaction of separate atoms brought together as they form a molecule. Lewis structures Resonance considerations CHEM 511 chapter 2 page 1 of 11 Chapter 2 Molecular Structure and Bonding Read the section on Lewis dot structures, we will not cover this in class. If you have problems, seek out a general chemistry text.

More information

CHAPTER 5: Bonding Theories - Explaining Molecular Geometry. Chapter Outline

CHAPTER 5: Bonding Theories - Explaining Molecular Geometry. Chapter Outline CHAPTER 5: Bonding Theories - Explaining Molecular Geometry Chapter Outline 5.1 Molecular Shape 5.2 Valence-Shell Electron-Pair Repulsion Theory (VSEPR) 5.3 Polar Bonds and Polar Molecules» What Makes

More information

Chapter 10: Chemical Bonding II. Bonding Theories

Chapter 10: Chemical Bonding II. Bonding Theories Chapter 10: Chemical Bonding II Dr. Chris Kozak Memorial University of Newfoundland, Canada Bonding Theories Previously, we saw how the shapes of molecules can be predicted from the orientation of electron

More information

1. How many electrons, protons and neutrons does 87 Sr 2+ have?

1. How many electrons, protons and neutrons does 87 Sr 2+ have? ***This is a sample exam is lacking some questions over chapter 12 as this is a new chapter for the general chemistry sequence this semester. For a sampling of some chapter 12 problems, see the additional

More information

Objective #1 (80 topics, due on 09/05 (11:59PM))

Objective #1 (80 topics, due on 09/05 (11:59PM)) Course Name: Chem 110 FA 2014 Course Code: N/A ALEKS Course: General Chemistry (First Semester) Instructor: Master Templates Course Dates: Begin: 06/27/2014 End: 06/27/2015 Course Content: 190 topics Textbook:

More information

CHEM 121 Lecture Planner

CHEM 121 Lecture Planner CHEM 121 Lecture Planner Lecture Lecture 1 Lecture 2 Lecture 3 Lecture 4 Lecture 5 Topics The Scientific Method Theories & Laws Quantitative Measurements vs Qualitative Measurements Accuracy & Precision

More information

Review Outline Chemistry 1B, Fall 2012

Review Outline Chemistry 1B, Fall 2012 Review Outline Chemistry 1B, Fall 2012 -------------------------------------- Chapter 12 -------------------------------------- I. Experiments and findings related to origin of quantum mechanics A. Planck:

More information

What Do Molecules Look Like?

What Do Molecules Look Like? What Do Molecules Look Like? The Lewis Dot Structure approach provides some insight into molecular structure in terms of bonding, but what about 3D geometry? Recall that we have two types of electron pairs:

More information

Molecular Orbital Theory. WX AP Chemistry Chapter 9 Adapted from: Luis Bonilla Abel Perez University of Texas at El Paso

Molecular Orbital Theory. WX AP Chemistry Chapter 9 Adapted from: Luis Bonilla Abel Perez University of Texas at El Paso Molecular Orbital Theory WX AP Chemistry Chapter 9 Adapted from: Luis Bonilla Abel Perez University of Texas at El Paso Molecular Orbital Theory The goal of molecular orbital theory is to describe molecules

More information

Molecular Orbital Theory

Molecular Orbital Theory Molecular Orbital Theory 1. MO theory suggests that atomic orbitals of different atoms combine to create MOLECULAR ORBITALS 2. Electrons in these MOLECULAR ORBITALS belong to the molecule as whole 3. This

More information

Some important constants. c = x 10 8 m s -1 m e = x kg N A = x 10

Some important constants. c = x 10 8 m s -1 m e = x kg N A = x 10 CH101 GENERAL CHEMISTRY I MID TERM EXAMINATION FALL SEMESTER 2008 Wednesday 22 October 2008: 1900 2100 Attempt all SIX questions A copy of the periodic table is supplied Some important constants h = 6.626

More information

Chapter 9 Molecular Geometry Valence Bond and Molecular Orbital Theory

Chapter 9 Molecular Geometry Valence Bond and Molecular Orbital Theory Chapter 9 Molecular Geometry Valence Bond and Molecular Orbital Theory Chapter Objectives: Learn the basics of Valence Bond Theory and Molecular Orbital Theory and how they are used to model covalent bonding.

More information

Molecular Orbital Theory This means that the coefficients in the MO will not be the same!

Molecular Orbital Theory This means that the coefficients in the MO will not be the same! Diatomic molecules: Heteronuclear molecules In heteronuclear diatomic molecules, the relative contribution of atomic orbitals to each MO is not equal. Some MO s will have more contribution from AO s on

More information

Molecular Geometry and Bonding Theories. Chapter 9

Molecular Geometry and Bonding Theories. Chapter 9 Molecular Geometry and Bonding Theories Chapter 9 Molecular Shapes CCl 4 Lewis structures give atomic connectivity; The shape of a molecule is determined by its bond angles VSEPR Model Valence Shell Electron

More information

Funsheet 8.0 [SCIENCE 10 REVIEW] Gu 2015

Funsheet 8.0 [SCIENCE 10 REVIEW] Gu 2015 Funsheet 8.0 [SCIENCE 10 REVIEW] Gu 2015 1. Fill in the following tables. Symbol # # protons electrons # neutrons Atomic number Mass Number Atomic Mass Charge 56 54 83 18 16 32 35 47 1 19 40 1+ 92 241

More information

Your full name (PLEASE PRINT) Second hour test page 1 of 5 October 24, 2003 Your scheduled Tuesday quiz section (please circle) B hr E hr

Your full name (PLEASE PRINT) Second hour test page 1 of 5 October 24, 2003 Your scheduled Tuesday quiz section (please circle) B hr E hr EM 111 Your full name (PLEASE PRINT) Second hour test page 1 of 5 October 24, 2003 Your scheduled Tuesday quiz section (please circle) B hr E hr 1 Your scheduled Tuesday quiz instructor: You may use a

More information

Can atomic orbitals explain these shapes or angles? What s in Chapter 9: Shapes of molecules affect: reactivity physical properties

Can atomic orbitals explain these shapes or angles? What s in Chapter 9: Shapes of molecules affect: reactivity physical properties What s in Chapter 9: Can atomic orbitals explain these shapes or angles? Shapes of molecules affect: reactivity physical properties Shapes of molecules explained by: VSEPR Valence bond theory Why molecules

More information

Atoms and Periodic Properties

Atoms and Periodic Properties Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Unit 01 (Chp 6,7): Atoms and Periodic Properties John D. Bookstaver St. Charles Community College

More information

Houston Community College System. Chemistry EXAM # 3A Sample

Houston Community College System. Chemistry EXAM # 3A Sample Houston Community College System Chemistry 1411 EXAM # A Sample 1 CHEM 1411 EXAM # (Chapters 8, 9,10,and 11) Name: Score: Directions- please answer the following multiple-choice questions next to each

More information

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY All matter is made of atoms. There are a limited number of types of atoms; these are the elements. (EU 1.A) Development of Atomic Theory Atoms are so small

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Take Home Exam Chem 1A Fall 2008 - Chapters 6 to 9: You may us any resource you wish accept people. On your honor, you may not ask another person for help. Show your work on every answer. Partial credit

More information

Structure and Bonding of Organic Molecules

Structure and Bonding of Organic Molecules Chem 220 Notes Page 1 Structure and Bonding of Organic Molecules I. Types of Chemical Bonds A. Why do atoms forms bonds? Atoms want to have the same number of electrons as the nearest noble gas atom (noble

More information

4 Diatomic molecules

4 Diatomic molecules s manual for Burrows et.al. Chemistry 3 Third edition 4 Diatomic molecules Answers to worked examples WE 4.1 The Lewis model (on p. 174 in Chemistry 3 ) Use the Lewis model to describe the bonding in (a)

More information

Chem Discussion #12 Chapter 8 and 10 Your name/ TF s name: Discussion Day/Time:

Chem Discussion #12 Chapter 8 and 10 Your name/ TF s name: Discussion Day/Time: Chem 0 07 Discussion # Chapter 8 and 0 Your name/ TF s name: Discussion Da/Time: Things ou should know when ou leave Discussion toda for one-electron atoms: En = -R n = -.79 0-8 J n = -3.6eV ΔEmatter=En-Em

More information

Summation of Periodic Trends

Summation of Periodic Trends Summation of Periodic Trends Factors Affecting Atomic Orbital Energies The Effect of Nuclear Charge (Z effective ) Higher nuclear charge lowers orbital energy (stabilizes the system) by increasing nucleus-electron

More information

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. Dr. V.M. Williamson Texas A & M University Student Version

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. Dr. V.M. Williamson Texas A & M University Student Version Molecular Geometry Dr. V.M. Williamson Texas A & M University Student Version Valence Shell Electron Pair Repulsion- VSEPR 1. Valence e- to some extent 2. Electron pairs move as far away as possible to

More information

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. VSEPR: Electronic Geometries VSEPR

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. VSEPR: Electronic Geometries VSEPR Molecular Geometry Dr. V.M. Williamson Texas A & M University Student Version Valence Shell Electron Pair Repulsion- VSEPR 1. Valence e- to some extent 2. Electron pairs move as far away as possible to

More information

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency. Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

Course Goals for CHEM150

Course Goals for CHEM150 Course Goals for CHEM150 Students will use their understanding of electrostatics and Coulomb's Law to predict changes in potential energy for a given atomic/molecular system. Students will use their understanding

More information

Summation of Periodic Trends Factors Affecting Atomic Orbital Energies

Summation of Periodic Trends Factors Affecting Atomic Orbital Energies Summation of Periodic Trends Factors Affecting Atomic Orbital Energies The Effect of Nuclear Charge (Z effective ) Higher nuclear charge lowers orbital energy (stabilizes the system) by increasing nucleus-electron

More information

CH301 Fall 2012 Name: KEY VandenBout/LaBrake UNIT 2 READINESS ASSESSMENT QUIZ (RAQ) THIS QUIZ WILL BE PACED WITH CLICKER QUESTIONS

CH301 Fall 2012 Name: KEY VandenBout/LaBrake UNIT 2 READINESS ASSESSMENT QUIZ (RAQ) THIS QUIZ WILL BE PACED WITH CLICKER QUESTIONS CH301 Fall 2012 Name: KEY VandenBout/LaBrake UNIT 2 READINESS ASSESSMENT QUIZ (RAQ) THIS QUIZ WILL BE PACED WITH CLICKER QUESTIONS 1. A laser pulse shines for 10 s delivering a total energy of 4 mj of

More information

CHEMISTRY. Chapter 8 ADVANCED THEORIES OF COVALENT BONDING Kevin Kolack, Ph.D. The Cooper Union HW problems: 6, 7, 12, 21, 27, 29, 41, 47, 49

CHEMISTRY. Chapter 8 ADVANCED THEORIES OF COVALENT BONDING Kevin Kolack, Ph.D. The Cooper Union HW problems: 6, 7, 12, 21, 27, 29, 41, 47, 49 CHEMISTRY Chapter 8 ADVANCED THEORIES OF COVALENT BONDING Kevin Kolack, Ph.D. The Cooper Union HW problems: 6, 7, 12, 21, 27, 29, 41, 47, 49 2 CH. 8 OUTLINE 8.1 Valence Bond Theory 8.2 Hybrid Atomic Orbitals

More information

Tentative content material to be covered for Exam 2 (Wednesday, November 2, 2005)

Tentative content material to be covered for Exam 2 (Wednesday, November 2, 2005) Tentative content material to be covered for Exam 2 (Wednesday, November 2, 2005) Chapter 16 Quantum Mechanics and the Hydrogen Atom 16.1 Waves and Light 16.2 Paradoxes in Classical Physics 16.3 Planck,

More information