Symmetry and Molecular Orbitals (I)

Size: px
Start display at page:

Download "Symmetry and Molecular Orbitals (I)"

Transcription

1 Symmetry and Molecular Orbitals (I)

2 Simple Bonding Model Lewis Structures Octet Rule Resonance Formal Charge Oxidation Number Hypervalence

3 Resonance and Formal Charge A 0 A +1

4 VSEPR Some Molecules

5 VSEPR Some Molecules

6 VSEPR Model Less Repulsion More Repulsion Bond Length Bond Strength

7 Why Sharing Electron Forms Covalent Bond? Without Electrons, Internuclei Repulsion Forces Pushes Nuclei Apart. Sharing Electrons (in some area around the nuclei) Generates Attractive Force to Bind Nucleus Together.

8 Why Sharing Electron Forms Anti- Bond? In Some Area, Sharing Electrons Generates Repulsive Force.

9 Bonding and Antibonding Region Around The Nuclei has Binding (bonding) and Antibinding (antibonding) Zones.

10 Spherical Boundary Surface of s and p Orbitals

11 Spherical Boundary Surface of d Orbitals

12 Spherical Boundary Surface of f Orbitals

13 Valence Bond Theory VB Theory is a quantum mechanical model describes the distribution of electrons in bonds. Developed from Lewis theory and the VSEPR model. Usually provides bonding picture with localized view. Simple VB theory cannot explain bonding in polyatomic molecules. The concept of Hybridization is developed to explain different geometry variations. Describes molecular geometry easier. Using Delocalization and Resonance to explain extended distribution of electrons over many atoms in a substance.

14 Valence Bond Theory N 2 s p p p

15 Square of a Wavefunction is Probability Density

16 Constructive and Destructive Interference

17 Hybridization Linear Combination of Atomic Orbitals of an Atom forms a new set of orbitals. Hybridization divides the electron density distribution of an atom into new areas. (sp)a = (1/2) 1/2 ( (s) + (p)) (sp)b = (1/2) 1/2 ( (s) - (p)) (sp 2 )A = (1/3) 1/2 (s) + (2/3) 1/2 (px) (sp 2 )B = (1/3) 1/2 (s) - (1/6) 1/2 (px) + (1/2) 1/2 (py) (sp 2 )C = (1/3) 1/2 (s) - (1/6) 1/2 (px) - (1/2) 1/2 (py) (sp 3 )A = (1/2)( (s) + (px) + (py) + (pz)) (sp 3 )B = (1/2)( (s) + (px) - (py) - (pz)) (sp 3 )C = (1/2)( (s) - (px) + (py) - (pz)) (sp 3 )D = (1/2)( (s) - (px) - (py) + (pz))

18 Hybridization sp

19 Hybridization sp + -

20 Hybridization sp2

21 Hybridization sp2

22 Hybridization sp 2 + p

23 Hybridization sp3

24 Hybridization sp3

25 Hybridization H 2 O Bonds

26 Hybridization C 2 H 2 Bonds

27 Molecular Orbital Theory Electrons occupy orbitals that spread through the entire molecule. Providing bonding pictures with non-localized view. Deals with entire area surrounding a molecule. Hyperchem Lite CACAO98 (Beta Version)

28 Rules of Molecular Orbitals Rules for forming bonding and antibonding MOs number of total molecular orbitals = number of total atomic orbitals atomic orbitals have the right symmetry atomic orbitals overlap well atomic orbitals have similar energy Rules for filling electrons are the same for MOs and AOs. start filling from the lowest energy orbital follows Pauli exclusion principle and Hund's rule Provides molecular energy information Explains magnetic behavior Can provide molecular structural explanation, but more difficult to comprehend than VB theory

29 Bonding Molecular Orbitals

30 Bonding Molecular Orbitals Constructive Interference Symmetric: i

31 Antibonding Molecular Orbitals

32 Antibonding Molecular Orbitals Destructive Interference Anti-symmetric: i

33 Molecular Orbital Energy Level Diagram Better Overlap => Higher E Bond Order = ½(# of B.O. e - - # of A.O. e - ) Diamagnetic: all e - paired Paramagnetic: with e - unpaired B.O. Magnetic Property E E H + 2 H 2 ½ 1 P D H 2 - ½ P He 2 0 -

34 Overlap of MOs Wrong symmetry Right symmetry Bad Overlap Good Overlap Wrong symmetry

35 MO Symmetry bond: no nodal plane passing through internuclear axis bond: 1 nodal plane passing through internuclear axis bond: 2 nodal planes passing through internuclear axis

36 P Orbitals

37 P Orbitals

38 MO Symmetry g: gerade u: ungerade + + B.MO A.MO

39 MO Energies of Period 2 M 2 Molecules

40 Energy Levels of Many Electron Atoms in Periodic Table

41 M 2 MO Energy Level Diagrams O 2 F 2 Li 2 N 2 1 g 1 g 1 u 1 u 1 g Higher Z eff 2s 2p more separated 2s e - closer to nuclei 2s MOs more like 2s AOs s-s overlap not effective 1 g 2s and 2p z in same space between nuclei Greater 1 u 2 g repulsion 2s 2p z MOs same symmetry More mixing

42 MO of Period 2 M 2 Molecules B.O Magnet. D D P D D P D LUMO Lowest Unoccupied Molecular Orbital HOMO Highest Occupied Molecular Orbital

43 Photoelectron Spectroscopy E k = h I measured known calculated E(MO)

44 UV photoelectron Spectrum of N2

45 Heteronuclear Diatomic Molecules A more electronegative B less electronegative

46 CO MO Energy Level Diagram 1 g 2 1 u g 2

47 CO MO Energy Level Diagram

48 CO MO Energy Level Diagram

49 ICl MO Energy Level Diagram 1 g 1 u 1 g

50 HF MO Energy Level Diagram H + F - AMO H :F: : : NBMO BMO

51 Bond Order, Strength and Length

52 Bond Strength and Length C-C N-N C-N,C-O O-O

General Chemistry I (2012) Lecture by B. H. Hong

General Chemistry I (2012) Lecture by B. H. Hong 3.8 The Limitations of Lewis's Theory 3.9 Molecular Orbitals The valence-bond (VB) and molecular orbital (MO) theories are both procedures for constructing approximate wavefunctions of electrons. The MO

More information

Valence Bond Theory Considers the interaction of separate atoms brought together as they form a molecule. Lewis structures Resonance considerations

Valence Bond Theory Considers the interaction of separate atoms brought together as they form a molecule. Lewis structures Resonance considerations CHEM 511 chapter 2 page 1 of 11 Chapter 2 Molecular Structure and Bonding Read the section on Lewis dot structures, we will not cover this in class. If you have problems, seek out a general chemistry text.

More information

Chapter 14: Phenomena

Chapter 14: Phenomena Chapter 14: Phenomena p p Phenomena: Scientists knew that in order to form a bond, orbitals on two atoms must overlap. However, p x, p y, and p z orbitals are located 90 from each other and compounds like

More information

Chapter 18 Molecular orbitals and spectroscopy Conjugation of bonds and resonance structures

Chapter 18 Molecular orbitals and spectroscopy Conjugation of bonds and resonance structures Chapter 18 Molecular orbitals and spectroscopy 18.1 Diatomic molecules 18.2 Polyatomic molecules 18.3 Conjugation of bonds and resonance structures 18.4 The interaction of light and matter (spectroscopy)

More information

Molecular Orbital Theory

Molecular Orbital Theory Molecular Orbital Theory Paramagnetic properties of O 2 pranjoto utomo Covalent Bonding Theory Valence Bond Theory useful for deriving shapes/polarity simple but inaccurate/deficient Molecular Orbital

More information

Molecular Orbitals. Based on Inorganic Chemistry, Miessler and Tarr, 4 th edition, 2011, Pearson Prentice Hall

Molecular Orbitals. Based on Inorganic Chemistry, Miessler and Tarr, 4 th edition, 2011, Pearson Prentice Hall Molecular Orbitals Based on Inorganic Chemistry, Miessler and Tarr, 4 th edition, 2011, Pearson Prentice Hall Images from Miessler and Tarr Inorganic Chemistry 2011 obtained from Pearson Education, Inc.

More information

In this lecture we will understand how the molecular orbitals are formed from the interaction of atomic orbitals.

In this lecture we will understand how the molecular orbitals are formed from the interaction of atomic orbitals. Lecture 7 Title: Understanding of Molecular Orbital Page-1 In this lecture we will understand how the molecular orbitals are formed from the interaction of atomic orbitals. We will see how the electrons

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories PART I Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information

11/29/2014. Problems with Valence Bond Theory. VB theory predicts many properties better than Lewis Theory

11/29/2014. Problems with Valence Bond Theory. VB theory predicts many properties better than Lewis Theory Problems with Valence Bond Theory VB theory predicts many properties better than Lewis Theory bonding schemes, bond strengths, bond lengths, bond rigidity however, there are still many properties of molecules

More information

The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then

The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then 1 The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then filled with the available electrons according to

More information

General Physical Chemistry II

General Physical Chemistry II General Physical Chemistry II Lecture 10 Aleksey Kocherzhenko October 7, 2014" Last time " promotion" Promotion and hybridization" [He] 2s 2 2p x 1 2p y 1 2p z0 " 2 unpaired electrons" [He] 2s 1 2p x 1

More information

CB VII. Molecular Orbital (MO) Theory. General. Basic Principles. Basic Ideas. further improvement on Lewis, VSEPR & VB theory;

CB VII. Molecular Orbital (MO) Theory. General. Basic Principles. Basic Ideas. further improvement on Lewis, VSEPR & VB theory; chem101/3, D1 fa010 po 14 1 CB VII Molecular Orbital (MO) Theory chem101/3, D1 fa010 po 14 General further improvement on Lewis, VSEPR & VB theory; resulting in better info on: bond energy bond order magnetic

More information

Chemical Bonding. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory

Chemical Bonding. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Chemical Bonding Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Problems with Valence Bond Theory VB theory predicts properties better than Lewis theory bonding schemes, bond strengths,

More information

Valence bond theory accounts, at least qualitatively, for the stability of the covalent bond in terms of overlapping atomic orbitals.

Valence bond theory accounts, at least qualitatively, for the stability of the covalent bond in terms of overlapping atomic orbitals. Molecular Orbital Theory Valence bond theory accounts, at least qualitatively, for the stability of the covalent bond in terms of overlapping atomic orbitals. Using the concept of hybridization, valence

More information

Chapter 10. VSEPR Model: Geometries

Chapter 10. VSEPR Model: Geometries Chapter 10 Molecular Geometry VSEPR Model: Geometries Valence Shell Electron Pair Repulsion Theory Electron pairs repel and get as far apart as possible Example: Water Four electron pairs Farthest apart

More information

Chapter 9. Covalent Bonding: Orbitals

Chapter 9. Covalent Bonding: Orbitals Chapter 9. Covalent onding: Orbitals Models to explain the structures and/or energies of the covalent molecules Localized Electron (LE) onding Model Lewis Structure Valence Shell Electron Pair Repulsion

More information

Chapter 9 Molecular Geometry and Bonding Theories

Chapter 9 Molecular Geometry and Bonding Theories Lecture Presentation Chapter 9 Geometry James F. Kirby Quinnipiac University Hamden, CT Shapes Lewis Structures show bonding and lone pairs, but do not denote shape. However, we use Lewis Structures to

More information

5.111 Lecture Summary #13 Monday, October 6, 2014

5.111 Lecture Summary #13 Monday, October 6, 2014 5.111 Lecture Summary #13 Monday, October 6, 2014 Readings for today: Section 3.8 3.11 Molecular Orbital Theory (Same in 5 th and 4 th ed.) Read for Lecture #14: Sections 3.4, 3.5, 3.6 and 3.7 Valence

More information

Lecture B6 Molecular Orbital Theory. Sometimes it's good to be alone.

Lecture B6 Molecular Orbital Theory. Sometimes it's good to be alone. Lecture B6 Molecular Orbital Theory Sometimes it's good to be alone. Covalent Bond Theories 1. VSEPR (valence shell electron pair repulsion model). A set of empirical rules for predicting a molecular geometry

More information

Molecular Bond Theory

Molecular Bond Theory Molecular Bond Theory Short comings of the localized electron model: electrons are not really localized so the concept of resonance was added no direct information about bond energies Molecular Orbital

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information

Chapter 10. VSEPR Model: Geometries

Chapter 10. VSEPR Model: Geometries Chapter 10 Molecular Geometry VSEPR Model: Geometries Valence Shell Electron Pair Repulsion Theory Electron pairs repel and get as far apart as possible Example: Water Four electron pairs Two bonds Two

More information

NH 3 H 2 O N 2. Why do they make chemical bonds? Molecular Orbitals

NH 3 H 2 O N 2. Why do they make chemical bonds? Molecular Orbitals N 2 NH 3 H 2 O Why do they make chemical bonds? 5 Molecular Orbitals Why do they make chemical bonds? Stabilization Bond energy Types of Chemical Bonds Metallic Bond Ionic Bond Covalent Bond Covalent Bond

More information

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2 The Delocalized Approach to Bonding: The localized models for bonding we have examined (Lewis and VBT) assume that all electrons are restricted to specific bonds between atoms or in lone pairs. In contrast,

More information

Andrew Rosen *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same

Andrew Rosen *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same *Note: For hybridization, if an SP 2 is made, there is one unhybridized p orbital (because p usually has

More information

PHYSICAL CHEMISTRY I. Chemical Bonds

PHYSICAL CHEMISTRY I. Chemical Bonds PHYSICAL CHEMISTRY I Chemical Bonds Review The QM description of bonds is quite good Capable of correctly calculating bond energies and reaction enthalpies However it is quite complicated and sometime

More information

ANNOUNCEMENTS. If you have questions about your exam 2 grade, write to me or Chapter 8 homework due April. 13 th.

ANNOUNCEMENTS. If you have questions about your exam 2 grade, write to me or Chapter 8 homework due April. 13 th. ANNOUNCEMENTS If you have questions about your exam 2 grade, write to me or Chem200@mail.sdsu.edu. Chapter 8 homework due April. 13 th. Chapter 9 home work due April. 20th. Exam 3 is 4/14 at 2 pm. LECTURE

More information

Chemistry 1B, Fall 2012 Lectures 15-16

Chemistry 1B, Fall 2012 Lectures 15-16 Chemistry 1B Fall 2012 Quantum Mechanics of the Covalent Bond for chapter 14 animations and links see: http://switkes.chemistry.ucsc.edu/teaching/chem1b/www_other_links/ch14_links.htm 1 LISTEN UP!!! WE

More information

Molecular Orbital Approach to Bonding

Molecular Orbital Approach to Bonding Molecular Orbital Approach to Bonding Chemistry 362; spring 2019 Marcetta Y. Darensbourg, Professor Xuemei Yang, Graduate Assistant Kyle Burns, Graduate Assistant The following slides were modified from

More information

Lecture 14 Chemistry 362 M. Darensbourg 2017 Spring term. Molecular orbitals for diatomics

Lecture 14 Chemistry 362 M. Darensbourg 2017 Spring term. Molecular orbitals for diatomics Lecture 14 Chemistry 362 M. Darensbourg 2017 Spring term Molecular orbitals for diatomics Molecular Orbital Theory of the Chemical Bond Simplest example - H 2 : two H atoms H A and H B Only two a.o.'s

More information

Tentative content material to be covered for Exam 2 (Wednesday, November 2, 2005)

Tentative content material to be covered for Exam 2 (Wednesday, November 2, 2005) Tentative content material to be covered for Exam 2 (Wednesday, November 2, 2005) Chapter 16 Quantum Mechanics and the Hydrogen Atom 16.1 Waves and Light 16.2 Paradoxes in Classical Physics 16.3 Planck,

More information

MOLECULAR ORBITAL THEORY Chapter 10.8, Morrison and Boyd

MOLECULAR ORBITAL THEORY Chapter 10.8, Morrison and Boyd MOLECULAR ORBITAL THEORY Chapter 10.8, Morrison and Boyd more understanding: why oxygen is paramagnetic, why H2 + exists; explanation of excited electronic states (e.g., visible spectra) eliminates need

More information

Chapter 12: Chemical Bonding II: Additional Aspects

Chapter 12: Chemical Bonding II: Additional Aspects General Chemistry Principles and Modern Applications Petrucci Harwood Herring 8 th Edition Chapter 12: Chemical Bonding II: Additional Aspects Philip Dutton University of Windsor, Canada N9B 3P4 Prentice-Hall

More information

QUANTUM MECHANICS AND MOLECULAR STRUCTURE

QUANTUM MECHANICS AND MOLECULAR STRUCTURE 6 QUANTUM MECHANICS AND MOLECULAR STRUCTURE 6.1 Quantum Picture of the Chemical Bond 6.2 Exact Molecular Orbital for the Simplest Molecule: H + 2 6.3 Molecular Orbital Theory and the Linear Combination

More information

Chapter 10. Structure Determines Properties! Molecular Geometry. Chemical Bonding II

Chapter 10. Structure Determines Properties! Molecular Geometry. Chemical Bonding II Chapter 10 Chemical Bonding II Structure Determines Properties! Properties of molecular substances depend on the structure of the molecule The structure includes many factors, including: the skeletal arrangement

More information

Bonding and Physical Properties The Molecular Orbital Theory

Bonding and Physical Properties The Molecular Orbital Theory Bonding and Physical Properties The Molecular Orbital Theory Ø Developed by F. Hund and R. S. Mulliken in 1932 Ø Diagram of molecular energy levels Ø Magnetic and spectral properties Paramagnetic vs. Diamagnetic

More information

Shapes of Molecules. Lewis structures are useful but don t allow prediction of the shape of a molecule.

Shapes of Molecules. Lewis structures are useful but don t allow prediction of the shape of a molecule. Shapes of Molecules Lewis structures are useful but don t allow prediction of the shape of a molecule. H O H H O H Can use a simple theory based on electron repulsion to predict structure (for non-transition

More information

General Chemistry. Contents. Chapter 12: Chemical Bonding II: Additional Aspects What a Bonding Theory Should Do. Potential Energy Diagram

General Chemistry. Contents. Chapter 12: Chemical Bonding II: Additional Aspects What a Bonding Theory Should Do. Potential Energy Diagram General Chemistry Principles and Modern Applications Petrucci Harwood Herring 8 th Edition Chapter 12: Chemical Bonding II: Additional Aspects Philip Dutton University of Windsor, Canada N9B 3P4 Contents

More information

MO theory is better for spectroscopy (Exited State Properties; Ionization)

MO theory is better for spectroscopy (Exited State Properties; Ionization) CHEM 2060 Lecture 25: MO Theory L25-1 Molecular Orbital Theory (MO theory) VB theory treats bonds as electron pairs. o There is a real emphasis on this point (over-emphasis actually). VB theory is very

More information

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model.

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model. Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model. Determine whether a molecule is polar or nonpolar based

More information

Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories

Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories C h e m i s t r y 1 A : C h a p t e r 1 0 P a g e 1 Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories Homework: Read Chapter 10: Work out sample/practice

More information

Chapter 9. Covalent Bonding: Orbitals

Chapter 9. Covalent Bonding: Orbitals Chapter 9 Covalent Bonding: Orbitals Chapter 9 Table of Contents 9.1 Hybridization and the Localized Electron Model 9.2 The Molecular Orbital Model 9.3 Bonding in Homonuclear Diatomic Molecules 9.4 Bonding

More information

Molecular-Orbital Theory

Molecular-Orbital Theory Prof. Dr. I. Nasser atomic and molecular physics -551 (T-11) April 18, 01 Molecular-Orbital Theory You have to explain the following statements: 1- Helium is monatomic gas. - Oxygen molecule has a permanent

More information

Topic 2. Structure and Bonding Models of Covalent Compounds of p-block Elements

Topic 2. Structure and Bonding Models of Covalent Compounds of p-block Elements Topic 2 2-1 Structure and Bonding Models of Covalent Compounds of p-block Elements Bonding 2-2 Many different approaches to describe bonding: Ionic Bonding: Elements with large electronegativity differences;

More information

5.111 Principles of Chemical Science

5.111 Principles of Chemical Science MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.111 Lecture Summary

More information

Activity Molecular Orbital Theory

Activity Molecular Orbital Theory Activity 201 9 Molecular Orbital Theory Directions: This Guided Learning Activity (GLA) discusses the Molecular Orbital Theory and its application to homonuclear diatomic molecules. Part A describes the

More information

What Do Molecules Look Like?

What Do Molecules Look Like? What Do Molecules Look Like? The Lewis Dot Structure approach provides some insight into molecular structure in terms of bonding, but what about 3D geometry? Recall that we have two types of electron pairs:

More information

Learning Objectives and Worksheet VIII. Chemistry 1B-AL Fall Lectures (13-14) Molecular Orbital Theory of Covalent Bonding

Learning Objectives and Worksheet VIII. Chemistry 1B-AL Fall Lectures (13-14) Molecular Orbital Theory of Covalent Bonding Learning Objectives and Worksheet VIII Chemistry 1B-AL Fall 2016 Lectures (13-14) Molecular Orbital Theory of Covalent Bonding WE WILL BE COVERING CHAPTER 14 IN A DIFFERENT ORDER THAN THE TEXT: first we

More information

Chapter 10 Chemical Bonding II

Chapter 10 Chemical Bonding II Chapter 10 Chemical Bonding II Valence Bond Theory Valence Bond Theory: A quantum mechanical model which shows how electron pairs are shared in a covalent bond. Bond forms between two atoms when the following

More information

Chapter 9. Covalent Bonding: Orbitals

Chapter 9. Covalent Bonding: Orbitals Chapter 9 Covalent Bonding: Orbitals EXERCISE! Draw the Lewis structure for methane, CH 4. What is the shape of a methane molecule? tetrahedral What are the bond angles? 109.5 o H H C H H Copyright Cengage

More information

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2 The Delocalized Approach to Bonding: The localized models for bonding we have examined (Lewis and VBT) assume that all electrons are restricted to specific bonds between atoms or in lone pairs. In contrast,

More information

CHEMISTRY 112 LECTURE EXAM II Material

CHEMISTRY 112 LECTURE EXAM II Material CHEMISTRY 112 LECTURE EXAM II Material Part I Chemical Bonding I Lewis Theory Chapter 9 pages 376-386 A. Drawing electron dot structures HOW TO: 1. Write e- dot structure for the individual atoms. 2. a)

More information

Molecular Geometry and Bonding Theories. Chapter 9

Molecular Geometry and Bonding Theories. Chapter 9 Molecular Geometry and Bonding Theories Chapter 9 Molecular Shapes CCl 4 Lewis structures give atomic connectivity; The shape of a molecule is determined by its bond angles VSEPR Model Valence Shell Electron

More information

Chapter 9. Covalent Bonding: Orbitals. Copyright 2017 Cengage Learning. All Rights Reserved.

Chapter 9. Covalent Bonding: Orbitals. Copyright 2017 Cengage Learning. All Rights Reserved. Chapter 9 Covalent Bonding: Orbitals Chapter 9 Table of Contents (9.1) (9.2) (9.3) (9.4) (9.5) (9.6) Hybridization and the localized electron model The molecular orbital model Bonding in homonuclear diatomic

More information

Ch. 9- Molecular Geometry and Bonding Theories

Ch. 9- Molecular Geometry and Bonding Theories Ch. 9- Molecular Geometry and Bonding Theories 9.0 Introduction A. Lewis structures do not show one of the most important aspects of molecules- their overall shapes B. The shape and size of molecules-

More information

Hybridization and Molecular Orbital (MO) Theory

Hybridization and Molecular Orbital (MO) Theory ybridization and Molecular Orbital (MO) Theory Chapter 10 istorical Models G.N.Lewis and I. Langmuir (~1920) laid out foundations Ionic species were formed by electron transfer Covalent molecules arise

More information

Chemistry: The Central Science. Chapter 9: Molecular Geometry and Bonding Theory

Chemistry: The Central Science. Chapter 9: Molecular Geometry and Bonding Theory Chemistry: The Central Science Chapter 9: Molecular Geometry and Bonding Theory The shape and size of a molecule of a particular substance, together with the strength and polarity of its bonds, largely

More information

Chemistry 1B, Fall 2013 Lectures 15-16

Chemistry 1B, Fall 2013 Lectures 15-16 Chemistry 1, Fall 2013 Lectures 1516 Chemistry 1 Fall 2013 Lectures 1516 Quantum Mechanics of the Covalent ond LISTEN UP!!! WE WILL E COVERING SECOND PRT OF CHPTER 14 (pp 676688) FIRST You will go CRZY

More information

Molecular Orbital Theory This means that the coefficients in the MO will not be the same!

Molecular Orbital Theory This means that the coefficients in the MO will not be the same! Diatomic molecules: Heteronuclear molecules In heteronuclear diatomic molecules, the relative contribution of atomic orbitals to each MO is not equal. Some MO s will have more contribution from AO s on

More information

Chapter 9. Chemical Bonding II: Molecular Geometry and Bonding Theories

Chapter 9. Chemical Bonding II: Molecular Geometry and Bonding Theories Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories Topics Molecular Geometry Molecular Geometry and Polarity Valence Bond Theory Hybridization of Atomic Orbitals Hybridization in Molecules

More information

Chapter 5. Molecular Orbitals

Chapter 5. Molecular Orbitals Chapter 5. Molecular Orbitals MO from s, p, d, orbitals: - Fig.5.1, 5.2, 5.3 Homonuclear diatomic molecules: - Fig. 5.7 - Para- vs. Diamagnetic Heteronuclear diatomic molecules: - Fig. 5.14 - ex. CO Hybrid

More information

Chapter 10: Chemical Bonding II. Bonding Theories

Chapter 10: Chemical Bonding II. Bonding Theories Chapter 10: Chemical Bonding II Dr. Chris Kozak Memorial University of Newfoundland, Canada Bonding Theories Previously, we saw how the shapes of molecules can be predicted from the orientation of electron

More information

Chemistry 2000 Lecture 1: Introduction to the molecular orbital theory

Chemistry 2000 Lecture 1: Introduction to the molecular orbital theory Chemistry 2000 Lecture 1: Introduction to the molecular orbital theory Marc R. Roussel January 5, 2018 Marc R. Roussel Introduction to molecular orbitals January 5, 2018 1 / 24 Review: quantum mechanics

More information

Molecular Orbital Theory

Molecular Orbital Theory Molecular Orbital Theory 1. MO theory suggests that atomic orbitals of different atoms combine to create MOLECULAR ORBITALS 2. Electrons in these MOLECULAR ORBITALS belong to the molecule as whole 3. This

More information

Molecular Orbital Theory. WX AP Chemistry Chapter 9 Adapted from: Luis Bonilla Abel Perez University of Texas at El Paso

Molecular Orbital Theory. WX AP Chemistry Chapter 9 Adapted from: Luis Bonilla Abel Perez University of Texas at El Paso Molecular Orbital Theory WX AP Chemistry Chapter 9 Adapted from: Luis Bonilla Abel Perez University of Texas at El Paso Molecular Orbital Theory The goal of molecular orbital theory is to describe molecules

More information

problem very complex is applied to bonding in a molecule as a whole i.e., includes interaction of all nuclei & e s

problem very complex is applied to bonding in a molecule as a whole i.e., includes interaction of all nuclei & e s CB VII Molecular Orbital (MO) Theory Ref 11: 5 14-1 General further improvement on Lewis, VSEPR & VB theory; resulting in better info on: bond energy bond order magnetic properties of molecules...... 14-2

More information

EXAM II Material. Part I Chemical Bonding I Lewis Theory Chapter 9 pages A. Drawing electron dot structures HOW TO:

EXAM II Material. Part I Chemical Bonding I Lewis Theory Chapter 9 pages A. Drawing electron dot structures HOW TO: CHEMISTRY 112 LECTURE EXAM II Material Part I Chemical Bonding I Lewis Theory Chapter 9 pages 376-386 A. Drawing electron dot structures HOW TO: 1. Write e- dot structure for the individual atoms. 2. a)

More information

Covalent Bonding: Orbitals

Covalent Bonding: Orbitals Hybridization and the Localized Electron Model Covalent Bonding: Orbitals A. Hybridization 1. The mixing of two or more atomic orbitals of similar energies on the same atom to produce new orbitals of equal

More information

CHEMISTRY. Chapter 8 ADVANCED THEORIES OF COVALENT BONDING Kevin Kolack, Ph.D. The Cooper Union HW problems: 6, 7, 12, 21, 27, 29, 41, 47, 49

CHEMISTRY. Chapter 8 ADVANCED THEORIES OF COVALENT BONDING Kevin Kolack, Ph.D. The Cooper Union HW problems: 6, 7, 12, 21, 27, 29, 41, 47, 49 CHEMISTRY Chapter 8 ADVANCED THEORIES OF COVALENT BONDING Kevin Kolack, Ph.D. The Cooper Union HW problems: 6, 7, 12, 21, 27, 29, 41, 47, 49 2 CH. 8 OUTLINE 8.1 Valence Bond Theory 8.2 Hybrid Atomic Orbitals

More information

Drawing Lewis Structures

Drawing Lewis Structures Chapter 2 - Basic Concepts: molecules Bonding models: Valence-Bond Theory (VB) and Molecular Orbital Theory (MO) Lewis acids and bases When both of the electrons in the covalent bond formed by a Lewis

More information

Chapter 4. Molecular Structure and Orbitals

Chapter 4. Molecular Structure and Orbitals Chapter 4 Molecular Structure and Orbitals Chapter 4 Table of Contents (4.1) (4.2) (4.3) (4.4) (4.5) (4.6) (4.7) Molecular structure: The VSEPR model Bond polarity and dipole moments Hybridization and

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9 Molecular Geometry and Bonding Theories MOLECULAR SHAPES 2 Molecular Shapes Lewis Structures show bonding and lone pairs do not denote shape Use Lewis Structures to determine shapes Molecular

More information

Molecular Shape and Molecular Polarity. Molecular Shape and Molecular Polarity. Molecular Shape and Molecular Polarity

Molecular Shape and Molecular Polarity. Molecular Shape and Molecular Polarity. Molecular Shape and Molecular Polarity Molecular Shape and Molecular Polarity When there is a difference in electronegativity between two atoms, then the bond between them is polar. It is possible for a molecule to contain polar bonds, but

More information

ANNOUNCEMENTS. If you have questions about your exam 2 grade, write to me or Chapter 7 homework due Nov, 9 th.

ANNOUNCEMENTS. If you have questions about your exam 2 grade, write to me or Chapter 7 homework due Nov, 9 th. ANNOUNCEMENTS If you have questions about your exam 2 grade, write to me or Chem200@sdsu.edu. Chapter 7 homework due Nov, 9 th. Chapter 8 homework due Nov. 16 th. Exam 3 is 11/17 at 2 pm. LECTURE OBJECTIVES

More information

Page III-8-1 / Chapter Eight Lecture Notes MAR. Two s orbitals overlap. One s & one p. overlap. Two p orbitals. overlap MAR

Page III-8-1 / Chapter Eight Lecture Notes MAR. Two s orbitals overlap. One s & one p. overlap. Two p orbitals. overlap MAR Bonding and Molecular Structure: Orbital ybridization and Molecular Orbitals Chapter 8 Page III-8-1 / Chapter Eight Lecture Notes Advanced Theories of Chemical Bonding Chemistry 222 Professor Michael Russell

More information

7. Arrange the molecular orbitals in order of increasing energy and add the electrons.

7. Arrange the molecular orbitals in order of increasing energy and add the electrons. Molecular Orbital Theory I. Introduction. A. Ideas. 1. Start with nuclei at their equilibrium positions. 2. onstruct a set of orbitals that cover the complete nuclear framework, called molecular orbitals

More information

Activity Molecular Orbital Theory

Activity Molecular Orbital Theory Activity 201 9 Molecular Orbital Theory Directions: This Guided Learning Activity (GLA) discusses the Molecular Orbital Theory and its application to homonuclear diatomic molecules. Part A describes the

More information

Chapter 9: Molecular Geometry and Bonding Theories

Chapter 9: Molecular Geometry and Bonding Theories Chapter 9: Molecular Geometry and Bonding Theories 9.1 Molecular Geometries -Bond angles: angles made by the lines joining the nuclei of the atoms in a molecule -Bond angles determine overall shape of

More information

Review Outline Chemistry 1B, Fall 2012

Review Outline Chemistry 1B, Fall 2012 Review Outline Chemistry 1B, Fall 2012 -------------------------------------- Chapter 12 -------------------------------------- I. Experiments and findings related to origin of quantum mechanics A. Planck:

More information

Chapter 4 Symmetry and Chemical Bonding

Chapter 4 Symmetry and Chemical Bonding Chapter 4 Symmetry and Chemical Bonding 4.1 Orbital Symmetries and Overlap 4.2 Valence Bond Theory and Hybrid Orbitals 4.3 Localized and Delocalized Molecular Orbitals 4.4 MX n Molecules with Pi-Bonding

More information

Molecular shape is only discussed when there are three or more atoms connected (diatomic shape is obvious).

Molecular shape is only discussed when there are three or more atoms connected (diatomic shape is obvious). Chapter 10 Molecular Geometry (Ch9 Jespersen, Ch10 Chang) The arrangement of the atoms of a molecule in space is the molecular geometry. This is what gives the molecules their shape. Molecular shape is

More information

Chapter 10 Theories of Covalent Bonding

Chapter 10 Theories of Covalent Bonding Chapter 10 Theories of Covalent Bonding 1 Atomic Orbitals Molecules Bonding and 2 Molecular Structure Questions How are molecules held together? Why is O 2 paramagnetic? And how is this property connected

More information

Chapter 4 Symmetry and Chemical Bonding

Chapter 4 Symmetry and Chemical Bonding Chapter 4 Symmetry and Chemical Bonding 4.1 Orbital Symmetries and Overlap 4.2 Valence Bond Theory and Hybrid Orbitals 4.3 Localized and Delocalized Molecular Orbitals 4.4 MX n Molecules with Pi-Bonding

More information

Chapter 8. Molecular Shapes. Valence Shell Electron Pair Repulsion Theory (VSEPR) What Determines the Shape of a Molecule?

Chapter 8. Molecular Shapes. Valence Shell Electron Pair Repulsion Theory (VSEPR) What Determines the Shape of a Molecule? PowerPoint to accompany Molecular Shapes Chapter 8 Molecular Geometry and Bonding Theories Figure 8.2 The shape of a molecule plays an important role in its reactivity. By noting the number of bonding

More information

Chemical Bonding. The Octet Rule

Chemical Bonding. The Octet Rule Chemical Bonding There are basically two types of chemical bonds: 1. Covalent bonds electrons are shared by more than one nucleus 2. Ionic bonds electrostatic attraction between ions creates chemical bond

More information

UNIT III Chemical Bonding There are two basic approaches to chemical bonding based on the results of quantum mechanics. These are the Valence Bond

UNIT III Chemical Bonding There are two basic approaches to chemical bonding based on the results of quantum mechanics. These are the Valence Bond UNIT III Chemical Bonding There are two basic approaches to chemical bonding based on the results of quantum mechanics. These are the Valence Bond Theory (VB) and the Molecular Orbital theory (MO). 1)

More information

Experiment 15: Atomic Orbitals, Bond Length, and Molecular Orbitals

Experiment 15: Atomic Orbitals, Bond Length, and Molecular Orbitals Experiment 15: Atomic Orbitals, Bond Length, and Molecular Orbitals Introduction Molecular orbitals result from the mixing of atomic orbitals that overlap during the bonding process allowing the delocalization

More information

1s atomic orbital 2s atomic orbital 2s atomic orbital (with node) 2px orbital 2py orbital 2pz orbital

1s atomic orbital 2s atomic orbital 2s atomic orbital (with node) 2px orbital 2py orbital 2pz orbital Atomic Orbitals 1s atomic orbital 2s atomic orbital 2s atomic orbital (with node) 2px orbital 2py orbital 2pz orbital Valence Bond Theory and ybridized Atomic Orbitals Bonding in 2 1s 1s Atomic Orbital

More information

Chemistry 6 (9 am section) Spring Covalent Bonding

Chemistry 6 (9 am section) Spring Covalent Bonding Chemistry 6 (9 am section) Spring 000 Covalent Bonding The stability of the bond in molecules such as H, O, N and F is associated with a sharing (equal) of the VALENCE ELECTRONS between the BONDED ATOMS.

More information

Chapter 9 Molecular Geometry and Bonding Theories

Chapter 9 Molecular Geometry and Bonding Theories Chapter 9 Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Lewis structures give atomic connectivity (which atoms are physically connected). By noting the number of bonding and nonbonding electron

More information

TYPES OF SYMMETRIES OF MO s s-s combinations of orbitals: , if they are antibonding. s-p combinatinos of orbitals: CHEMICAL BONDING.

TYPES OF SYMMETRIES OF MO s s-s combinations of orbitals: , if they are antibonding. s-p combinatinos of orbitals: CHEMICAL BONDING. TYPES OF SYMMETRIES OF MO s s-s combinations of : Orbitals Molecular Orbitals s s Node s s (g) (g) Bonding orbital Antibonding orbital (u) 4 (u) s-s combinations of atomic In the bonding MO there is increased

More information

Homework #7. Chapter 14. Covalent Bonding Orbitals

Homework #7. Chapter 14. Covalent Bonding Orbitals omework #7 hapter 14 ovalent Bonding rbitals 7. Both M theory and LE model use quantum mechanics to describe bonding. In the LE model, wavefunctions on one atom are mixed to form hybridized orbitals. In

More information

Molecular Structure and Orbitals

Molecular Structure and Orbitals CHEM 1411 General Chemistry Chemistry: An Atoms First Approach by Zumdahl 2 5 Molecular Structure and Orbitals Chapter Objectives: Learn the basics of Valence Bond Theory and Molecular Orbital Theory and

More information

Molecular structure and bonding

Molecular structure and bonding Chemistry 481(01) Spring 2017 Instructor: Dr. Upali Siriwardane e-mail: upali@latech.edu Office: CTH 311 Phone 257-4941 Office Hours: M,W 8:00-9:00 & 11:00-12:00 am; Tu,Th, F 9:30-11:30 a.m. April 4, 2017:

More information

Chapter 9 Molecular Geometry Valence Bond and Molecular Orbital Theory

Chapter 9 Molecular Geometry Valence Bond and Molecular Orbital Theory Chapter 9 Molecular Geometry Valence Bond and Molecular Orbital Theory Chapter Objectives: Learn the basics of Valence Bond Theory and Molecular Orbital Theory and how they are used to model covalent bonding.

More information

Molecular Orbital Theory. Which of the following has zero bond order? N ) O F. The bond order of superoxide ion [ O ] is ).5.5 3. Bonding electrons present in N molecule are ) 4 6 0 4. Bond order of H

More information

Lecture 9 Electronic Spectroscopy

Lecture 9 Electronic Spectroscopy Lecture 9 Electronic Spectroscopy Molecular Orbital Theory: A Review - LCAO approximaton & AO overlap - Variation Principle & Secular Determinant - Homonuclear Diatomic MOs - Energy Levels, Bond Order

More information

Chapters 9&10 Structure and Bonding Theories

Chapters 9&10 Structure and Bonding Theories Chapters 9&10 Structure and Bonding Theories Ionic Radii Ions, just like atoms, follow a periodic trend in their radii. The metal ions in a given period are smaller than the non-metal ions in the same

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Linear Trigonal 180 o planar 120 o Tetrahedral 109.5 o Trigonal Bipyramidal 120 and 90 o Octahedral 90 o linear Linear

More information

Molecular Orbitals. Chapter 9. Sigma bonding orbitals. Sigma bonding orbitals. Pi bonding orbitals. Sigma and pi bonds

Molecular Orbitals. Chapter 9. Sigma bonding orbitals. Sigma bonding orbitals. Pi bonding orbitals. Sigma and pi bonds Molecular Orbitals Chapter 9 Orbitals and Covalent Bond The overlap of atomic orbitals from separate atoms makes molecular orbitals Each molecular orbital has room for two electrons Two types of MO Sigma

More information