Lecture 3: Thermodynamics

Size: px
Start display at page:

Download "Lecture 3: Thermodynamics"

Transcription

1 3 LAWS OF THERMODYNAMICS Lecture 3: Thermodynamics Matter and energy are conserved Margaret A. Daugherty Fall 2004 Entropy always increases Absolute zero is unattainable System and Surroundings 1st Law of Thermodynamics Relationship of heat,work, internal energy & Enthalpy Bookkeeping function to keep track of: heat transfers work expenditures Total E of a system & its surroundings is a constant E = E final - E start = Q + W Q: heat absorbed by system; W: work done on system Energy cannot be created or destroyed.

2 Biological Systems and Enthalpy, H: Calorimetry & van t Hoff plots: Determination of enthalpy Definition: H = E + PV N <--> U Calorimetry For a biological system: Temperature Pressure Volume constant! K eq =[U]/[N] Measure K as a function of T H = -R dlnkeq d(1/t) Work is a function of V & P W = V P + P V; pressure and volume are constant W = O H = +533 kj/mol H = E = Q Enthalpy is equal to the heat absorbed in a biological process H < 0 exothermic H > 0 endothermic 2nd Law of Thermodynamics Systems of molecules have a natural tendency to randomization or disorder; The degree of randomness or disorder is measured by a function of state called the entropy (S); 1M NaCl 0.5M NaCl The entropy of an isolated system will tend to increase to a maximum value. For an isolated system, the favored direction: S = S final - S initial > 0 Diffusion of a solute Second Law: Entropy and Disorder S = entropy 1). Systems proceed from an ordered to a disordered state 2). Reversible processes - entropy of Sys + Sur is unchanged Irreversible process = entropy of Sys + Sur increases 3). All process tend to equilibrium - minimum potential energy Three cases S = positive S = zero S = negative Disorder! Reaction will tend to occur Reaction is reversible; at equilibrium Order! Reaction is unfavorable

3 Entropy: the equations S = k log W k = Boltzmann s constant 1.38 x J/K W = # of possible ways to arrange a system at a given temperature Third Law: Absolute zero is unattainable What is absolute zero? A temperature where entropy is zero! Absolute zero = 0 K Conversion to Celsius = degrees K C The entropy of any perfectly crystalline substance approaches zero as absolute zero is approached ds rev = dq/t Relates entropy to heat absorbed The heat capacity, Cp, allows us to have an absolute entropy scale T S = CpdlnT or Cp = dh/dt 0 If Cp < 0, molecules become more restricted; if Cp > 0, molecules aquire new ways to move Gibbs Free Energy, G: Is a reaction feasible? Three Ways To Have Thermodynamically Favored Reactions ( G = H - T S; G < 0) For a reaction A <--> B H negative S positive H very negative S negative H positive S very positive Keq = [B]/[A] G = -RTlnKeq Gibbs Free Energy Relates 1 rst and 2 nd Laws of Thermodynamics J. Willard Gibbs G = H - T S

4 State Functions Functions of State depend only on the initial and final states - not on the path taken. initial G = G init - G final final State Functions G H S Volume Temperature Pressure Not State Functions Work Heat What do thermodynamic quantities tell us? G H S Cp 1). Favorable v. favorable unfavorable 2). Unfavorable favorable unfavorable H-bonds less labile 3). Unfavorable unfavorable unfavorable H-bonds more labile Standard State Free Energy Standard state: 25C,1 atm, concentration of all solutes = 1 M A + B < --> C + D G = G o + RTln [C][D] constant for a specific reaction [C][D] Keq = At equilibrium G = 0 and [C][D] = Keq our criteria for spontaneity is G Standard State Free Energy: ph* G o = standard state free energy at ph 7.0 For reactions that evolve protons: A --> B + H + G o = G o + RTln[H + ] For reactions that absorb protons: A - + H + --> AH G o = G o - RTln[H + ] G o = - RTln Keq *Note that 1 M H + = ph 0, which is unphysiological

5 Physiologically, we don t operate at 1 M solution conditions A + B < --> C + D G = G o + RTln [C][D] Phosphocreatine + H > creatine + Pi G o = kj/mol at 37C Coupled processes: How we actually survive! Problem: Formation of ATP is energetically unfavorable ADP + P i ---> ATP G = + 55 kj/mol Solution: Couple this reaction to a favorable reaction PEP + H > pyruvate + P i G = -78 kj/mol G = RT ln (0.001 x 0.001) (0.001) What we end up with: G = kj/mol Muscle uses p-creatine to regenerate ATP from ADP G = -23 kj/mol Note: coupling occurs via enzymes; in this case, pyruvate kinase (see CH 18) Chemically, why is ATP so good? Reactants: electrostatic repulsion causes bond strain (4 neg charges) --- destabilizes molecule Products: stabilized by ionization and resonance + Pi Entropically favorable: 1 reactant --> 2 products 4 resonance hybrids REVIEW 1). Living organisms are thermodynamically open systems. 2). Living organisms operate under the laws of thermodynamics. 3). First law: H = Q: H < 0 for spontaneous reaction 4). Second law: Systems tend to maximize entropy, S > 0 for spont. rxn. 5). Third law: Cp provides information on molecular order in a reaction. 6). G provide information on spontaneity; relates H & S. 7). Thermodynamic quantities provide chemical information on reactions. 8). Standard state free energy allows us to compare biochemical reactions. 9). Metabolically, we can couple unfavorable reactions to favorable reactions. 10). High energy phosphate molecules drive metabolic reactions. 11). ATP has an intermediate energy among the high energy phosphate molecules, which positions it as an energy donor and energy acceptor. Thus various chemical reactions can be coupled in a controlled manner. 12). Various chemical factors contribute to the large G o for ATP hydrolysis.

Energy in Chemical and Biochemical Reactions

Energy in Chemical and Biochemical Reactions Energy in Chemical and Biochemical Reactions Reaction Progress Diagram for Exothermic Reaction Reactants activated complex Products ENERGY A + B Reactants E a C + D Products Δ rxn Reaction coordinate The

More information

Chapter 3: Energy and Work. Energy and Work, con t. BCH 4053 Spring 2003 Chapter 3 Lecture Notes. Slide 1. Slide 2

Chapter 3: Energy and Work. Energy and Work, con t. BCH 4053 Spring 2003 Chapter 3 Lecture Notes. Slide 1. Slide 2 BCH 4053 Spring 2003 Chapter 3 Lecture Notes 1 Chapter 3: Thermodynamics of Biological Systems 2 Energy and Work Work = force x distance Energy = ability to do work Mechanical Energy Kinetic Energy = mv

More information

UNIT 9 IB MATERIAL KINETICS & THERMODYNAMICS

UNIT 9 IB MATERIAL KINETICS & THERMODYNAMICS UNIT 9 IB MATERIAL KINETICS & THERMODYNAMICS Name: ESSENTIALS: Know, Understand, and Be Able To State that combustion and neutralization are exothermic processes. Calculate the heat energy change when

More information

Chapter 19 Chemical Thermodynamics Entropy and free energy

Chapter 19 Chemical Thermodynamics Entropy and free energy Chapter 19 Chemical Thermodynamics Entropy and free energy Learning goals and key skills: Understand the meaning of spontaneous process, reversible process, irreversible process, and isothermal process.

More information

Chapter 19 Chemical Thermodynamics Entropy and free energy

Chapter 19 Chemical Thermodynamics Entropy and free energy Chapter 19 Chemical Thermodynamics Entropy and free energy Learning goals and key skills: Explain and apply the terms spontaneous process, reversible process, irreversible process, and isothermal process.

More information

Thermodynamics is the study of energy and its effects on matter

Thermodynamics is the study of energy and its effects on matter 00Note Set 3 1 THE ENERGETICS OF LIFE Thermodynamics and Bioenergetics: Thermodynamics is the study of energy and its effects on matter Bioenergetics is the quantitative analysis of how organisms gain

More information

ENTROPY HEAT HEAT FLOW. Enthalpy 3/24/16. Chemical Thermodynamics. Thermodynamics vs. Kinetics

ENTROPY HEAT HEAT FLOW. Enthalpy 3/24/16. Chemical Thermodynamics. Thermodynamics vs. Kinetics Chemical Thermodynamics The chemistry that deals with energy exchange, entropy, and the spontaneity of a chemical process. HEAT The energy that flows into or out of system because of a difference in temperature

More information

Lecture 2: Biological Thermodynamics [PDF] Key Concepts

Lecture 2: Biological Thermodynamics [PDF] Key Concepts Lecture 2: Biological Thermodynamics [PDF] Reading: Berg, Tymoczko & Stryer: pp. 11-14; pp. 208-210 problems in textbook: chapter 1, pp. 23-24, #4; and thermodynamics practice problems [PDF] Updated on:

More information

Chapter 19 Chemical Thermodynamics

Chapter 19 Chemical Thermodynamics Chapter 19 Chemical Thermodynamics Kinetics How fast a rxn. proceeds Equilibrium How far a rxn proceeds towards completion Thermodynamics Study of energy relationships & changes which occur during chemical

More information

THERMODYNAMICS. Topic: 4 Spontaneous processes and criteria for spontaneity, entropy as a state function. VERY SHORT ANSWER QUESTIONS

THERMODYNAMICS. Topic: 4 Spontaneous processes and criteria for spontaneity, entropy as a state function. VERY SHORT ANSWER QUESTIONS THERMODYNAMICS Topic: 4 Spontaneous processes and criteria for spontaneity, entropy as a state function. VERY SHORT ANSWER QUESTIONS 1. State Hess s law? Ans. Hess s law: The total heat change in a reaction

More information

Chapter 11 Spontaneous Change and Equilibrium

Chapter 11 Spontaneous Change and Equilibrium Chapter 11 Spontaneous Change and Equilibrium 11-1 Enthalpy and Spontaneous Change 11-2 Entropy 11-3 Absolute Entropies and Chemical Reactions 11-4 The Second Law of Thermodynamics 11-5 The Gibbs Function

More information

Principles of Bioenergetics. Lehninger 3 rd ed. Chapter 14

Principles of Bioenergetics. Lehninger 3 rd ed. Chapter 14 1 Principles of Bioenergetics Lehninger 3 rd ed. Chapter 14 2 Metabolism A highly coordinated cellular activity aimed at achieving the following goals: Obtain chemical energy. Convert nutrient molecules

More information

Chapter 20: Thermodynamics

Chapter 20: Thermodynamics Chapter 20: Thermodynamics Thermodynamics is the study of energy (including heat) and chemical processes. First Law of Thermodynamics: Energy cannot be created nor destroyed. E universe = E system + E

More information

Chapter 19 Chemical Thermodynamics

Chapter 19 Chemical Thermodynamics Chapter 19 Chemical Thermodynamics Kinetics How fast a rxn. proceeds Equilibrium How far a rxn proceeds towards completion Thermodynamics Study of energy relationships & changes which occur during chemical

More information

3.1 Metabolism and Energy

3.1 Metabolism and Energy 3.1 Metabolism and Energy Metabolism All of the chemical reactions in a cell To transform matter and energy Step-by-step sequences metabolic pathways Metabolic Pathways Anabolic reactions Build large molecules

More information

Chapter 17. Free Energy and Thermodynamics. Chapter 17 Lecture Lecture Presentation. Sherril Soman Grand Valley State University

Chapter 17. Free Energy and Thermodynamics. Chapter 17 Lecture Lecture Presentation. Sherril Soman Grand Valley State University Chapter 17 Lecture Lecture Presentation Chapter 17 Free Energy and Thermodynamics Sherril Soman Grand Valley State University First Law of Thermodynamics You can t win! The first law of thermodynamics

More information

Department of Chemistry and Biochemistry University of Lethbridge. Biochemistry II. Bioenergetics

Department of Chemistry and Biochemistry University of Lethbridge. Biochemistry II. Bioenergetics Department of Chemistry and Biochemistry University of Lethbridge II. Bioenergetics Slide 1 Bioenergetics Bioenergetics is the quantitative study of energy relationships and energy conversion in biological

More information

THERMODYNAMICS. Dr. Sapna Gupta

THERMODYNAMICS. Dr. Sapna Gupta THERMODYNAMICS Dr. Sapna Gupta FIRST LAW OF THERMODYNAMICS Thermodynamics is the study of heat and other forms of energy involved in chemical or physical processes. First Law of Thermodynamics Energy cannot

More information

Lecture 27 Thermodynamics: Enthalpy, Gibbs Free Energy and Equilibrium Constants

Lecture 27 Thermodynamics: Enthalpy, Gibbs Free Energy and Equilibrium Constants Physical Principles in Biology Biology 3550 Fall 2017 Lecture 27 Thermodynamics: Enthalpy, Gibbs Free Energy and Equilibrium Constants Wednesday, 1 November c David P. Goldenberg University of Utah goldenberg@biology.utah.edu

More information

Bioenergetics, or biochemical thermodynamics, is the study of the energy changes accompanying biochemical reactions. Biologic systems are essentially

Bioenergetics, or biochemical thermodynamics, is the study of the energy changes accompanying biochemical reactions. Biologic systems are essentially Bioenergetics Bioenergetics, or biochemical thermodynamics, is the study of the energy changes accompanying biochemical reactions. Biologic systems are essentially isothermic and use chemical energy to

More information

Free Energy. because H is negative doesn't mean that G will be negative and just because S is positive doesn't mean that G will be negative.

Free Energy. because H is negative doesn't mean that G will be negative and just because S is positive doesn't mean that G will be negative. Biochemistry 462a Bioenergetics Reading - Lehninger Principles, Chapter 14, pp. 485-512 Practice problems - Chapter 14: 2-8, 10, 12, 13; Physical Chemistry extra problems, free energy problems Free Energy

More information

Chpt 19: Chemical. Thermodynamics. Thermodynamics

Chpt 19: Chemical. Thermodynamics. Thermodynamics CEM 152 1 Reaction Spontaneity Can we learn anything about the probability of a reaction occurring based on reaction enthaplies? in general, a large, negative reaction enthalpy is indicative of a spontaneous

More information

Chapter 19 Chemical Thermodynamics

Chapter 19 Chemical Thermodynamics Chapter 19 Chemical Thermodynamics Spontaneous Processes Entropy and the Second Law of Thermodynamics The Molecular Interpretation of Entropy Entropy Changes in Chemical Reactions Gibbs Free Energy Free

More information

BIOCHEMISTRY. František Vácha. JKU, Linz.

BIOCHEMISTRY. František Vácha. JKU, Linz. BIOCHEMISTRY František Vácha http://www.prf.jcu.cz/~vacha/ JKU, Linz Recommended reading: D.L. Nelson, M.M. Cox Lehninger Principles of Biochemistry D.J. Voet, J.G. Voet, C.W. Pratt Principles of Biochemistry

More information

Thermodynamics of Biological Systems ...

Thermodynamics of Biological Systems ... Chapter 3 Thermodynamics of Biological Systems........................ Chapter utline v Thermodynamic concepts Systems Isolated systems cannot exchange matter or energy with surroundings Closed systems

More information

Thermodynamics. Chem 36 Spring The study of energy changes which accompany physical and chemical processes

Thermodynamics. Chem 36 Spring The study of energy changes which accompany physical and chemical processes Thermodynamics Chem 36 Spring 2002 Thermodynamics The study of energy changes which accompany physical and chemical processes Why do we care? -will a reaction proceed spontaneously? -if so, to what extent?

More information

Lecture 2. Review of Basic Concepts

Lecture 2. Review of Basic Concepts Lecture 2 Review of Basic Concepts Thermochemistry Enthalpy H heat content H Changes with all physical and chemical changes H Standard enthalpy (25 C, 1 atm) (H=O for all elements in their standard forms

More information

10/26/2010. An Example of a Polar Reaction: Addition of H 2 O to Ethylene. to Ethylene

10/26/2010. An Example of a Polar Reaction: Addition of H 2 O to Ethylene. to Ethylene 6.5 An Example of a Polar Reaction: Addition of H 2 O to Ethylene Addition of water to ethylene Typical polar process Acid catalyzed addition reaction (Electophilic addition reaction) Polar Reaction All

More information

Chapter Eighteen. Thermodynamics

Chapter Eighteen. Thermodynamics Chapter Eighteen Thermodynamics 1 Thermodynamics Study of energy changes during observed processes Purpose: To predict spontaneity of a process Spontaneity: Will process go without assistance? Depends

More information

Chapter 19. Entropy, Free Energy, and Equilibrium

Chapter 19. Entropy, Free Energy, and Equilibrium Chapter 19 Entropy, Free Energy, and Equilibrium Spontaneous Physical and Chemical Processes A waterfall runs downhill A lump of sugar dissolves in a cup of coffee At 1 atm, water freezes below 0 0 C and

More information

OCN 623: Thermodynamic Laws & Gibbs Free Energy. or how to predict chemical reactions without doing experiments

OCN 623: Thermodynamic Laws & Gibbs Free Energy. or how to predict chemical reactions without doing experiments OCN 623: Thermodynamic Laws & Gibbs Free Energy or how to predict chemical reactions without doing experiments Definitions Extensive properties Depend on the amount of material e.g. # of moles, mass or

More information

Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase

Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase changes Apply the second law of thermodynamics to chemical

More information

THERMODYNAMICS. Topic: 5 Gibbs free energy, concept, applications to spontaneous and non-spontaneous processes VERY SHORT ANSWER QUESTIONS

THERMODYNAMICS. Topic: 5 Gibbs free energy, concept, applications to spontaneous and non-spontaneous processes VERY SHORT ANSWER QUESTIONS THERMODYNAMICS Topic: 5 Gibbs free energy, concept, applications to spontaneous and non-spontaneous processes 1. What is Gibbs energy? VERY SHORT ANSWER QUESTIONS Gibbs energy (G): The amount of energy

More information

Thermodynamics: Directionality of Chemical Reactions

Thermodynamics: Directionality of Chemical Reactions Thermodynamics: Directionality of Chemical Reactions Josian W. Gibbs 1839-1903. Pioneered concepts of chemical thermodynamics and free energy. Ludwig Boltzmann 1844-1906. Famous for his equation statistically

More information

Chapter 17: Spontaneity, Entropy, and Free Energy

Chapter 17: Spontaneity, Entropy, and Free Energy Chapter 17: Spontaneity, Entropy, and Free Energy Review of Chemical Thermodynamics System: the matter of interest Surroundings: everything in the universe which is not part of the system Closed System:

More information

2054, Chap. 8, page 1

2054, Chap. 8, page 1 2054, Chap. 8, page 1 I. Metabolism: Energetics, Enzymes, and Regulation (Chapter 8) A. Energetics and work 1. overview a. energy = ability to do work (1) chemical, transport, mechanical (2) ultimate source

More information

reduction kj/mol

reduction kj/mol 1. Glucose is oxidized to water and CO 2 as a result of glycolysis and the TCA cycle. The net heat of reaction for the oxidation is -2870 kj/mol. a) How much energy is required to produce glucose from

More information

Chemical Thermodynamics. Chapter 18

Chemical Thermodynamics. Chapter 18 Chemical Thermodynamics Chapter 18 Thermodynamics Spontaneous Processes Entropy and Second Law of Thermodynamics Entropy Changes Gibbs Free Energy Free Energy and Temperature Free Energy and Equilibrium

More information

First Law of Thermodynamics. Example of Spontaneous Rxns. Reversible and Irreversible 8/2/2016

First Law of Thermodynamics. Example of Spontaneous Rxns. Reversible and Irreversible 8/2/2016 First Law of Thermodynamics The first law of thermodynamics states that the energy of the universe is conserved. If one object loses energy, another has to gain that energy. The mathematical relationship

More information

Lecture 28 Thermodynamics: Gibbs Free Energy, Equilibrium Constants and the Entropy Change for a Bimolecular Reaction

Lecture 28 Thermodynamics: Gibbs Free Energy, Equilibrium Constants and the Entropy Change for a Bimolecular Reaction Physical Principles in Biology Biology 3550 Fall 2017 Lecture 28 Thermodynamics: Gibbs Free Energy, Equilibrium Constants and the Entropy Change for a Bimolecular Reaction Monday, 6 November c David P.

More information

Gibb s Free Energy. This value represents the maximum amount of useful work (non PV-work) that can be obtained by a system.

Gibb s Free Energy. This value represents the maximum amount of useful work (non PV-work) that can be obtained by a system. Gibb s Free Energy 1. What is Gibb s free energy? What is its symbol? This value represents the maximum amount of useful work (non PV-work) that can be obtained by a system. It is symbolized by G. We only

More information

- BIOENERGETICS - DR. A. TARAB DEPT. OF BIOCHEMISTRY HKMU

- BIOENERGETICS - DR. A. TARAB DEPT. OF BIOCHEMISTRY HKMU - BIOENERGETICS - DR. A. TARAB DEPT. OF BIOCHEMISTRY HKMU Bioenergetics the field of biochemistry concerned with the transfer and use of energy by biological system BIOLOGICAL IMPORTANCE: Suitable fuel

More information

Chemical Thermodynamics

Chemical Thermodynamics Page III-16-1 / Chapter Sixteen Lecture Notes Chemical Thermodynamics Thermodynamics and Kinetics Chapter 16 Chemistry 223 Professor Michael Russell How to predict if a reaction can occur, given enough

More information

Contents and Concepts

Contents and Concepts Contents and Concepts 1. First Law of Thermodynamics Spontaneous Processes and Entropy A spontaneous process is one that occurs by itself. As we will see, the entropy of the system increases in a spontaneous

More information

Chemistry 5.07SC Biological Chemistry I Fall Semester, 2013

Chemistry 5.07SC Biological Chemistry I Fall Semester, 2013 Chemistry 5.07SC Biological Chemistry I Fall Semester, 2013 Lecture 10. Biochemical Transformations II. Phosphoryl transfer and the kinetics and thermodynamics of energy currency in the cell: ATP and GTP.

More information

Study of energy changes that accompany physical and chemical changes.

Study of energy changes that accompany physical and chemical changes. Thermodynamics: Study of energy changes that accompany physical and chemical changes. First Law of Thermodynamics: Energy is niether created nor destroyed but simply converted from one form to another.

More information

*The entropy of a system may decrease, but the entropy of the system plus its surroundings must always increase

*The entropy of a system may decrease, but the entropy of the system plus its surroundings must always increase AP biology Notes: Metabolism Metabolism = totality of an organism's chemical process concerned with managing cellular resources. Metabolic reactions are organized into pathways that are orderly series

More information

4/19/2016. Chapter 17 Free Energy and Thermodynamics. First Law of Thermodynamics. First Law of Thermodynamics. The Energy Tax.

4/19/2016. Chapter 17 Free Energy and Thermodynamics. First Law of Thermodynamics. First Law of Thermodynamics. The Energy Tax. Chemistry: A Molecular Approach, 2nd Ed. Nivaldo Tro First Law of Thermodynamics Chapter 17 Free Energy and Thermodynamics You can t win! First Law of Thermodynamics: Energy cannot be created or destroyed

More information

Basic Concepts of Metabolism. Stages of Catabolism. Key intermediates 10/12/2015. Chapter 15, Stryer Short Course

Basic Concepts of Metabolism. Stages of Catabolism. Key intermediates 10/12/2015. Chapter 15, Stryer Short Course Basic Concepts of Metabolism Chapter 15, Stryer Short Course Digestion Formation of key intermediate small molecules Formation of ATP Stages of Catabolism Key intermediates 1 Fundamental Needs for Energy

More information

Unit 7 Kinetics and Thermodynamics

Unit 7 Kinetics and Thermodynamics 17.1 The Flow of Energy Heat and Work Unit 7 Kinetics and Thermodynamics I. Energy Transformations A. Temperature 1. A measure of the average kinetic energy of the particles in a sample of matter B. Heat

More information

1 of 8 Class notes lectures 6a, b, c

1 of 8 Class notes lectures 6a, b, c 1 of 8 Class notes lectures 6a, b, c Last time: 1) entropy calculations 2) Gibb s Free energy Today: Field Trip READ CHAPT 15.11 before coming to field trip. Be prepared to ask questions and take notes.

More information

a) Write the reaction that occurs (pay attention to and label ends correctly) 5 AGCTG CAGCT > 5 AGCTG 3 3 TCGAC 5

a) Write the reaction that occurs (pay attention to and label ends correctly) 5 AGCTG CAGCT > 5 AGCTG 3 3 TCGAC 5 Chem 315 Applications Practice Problem Set 1.As you learned in Chem 315, DNA higher order structure formation is a two step process. The first step, nucleation, is entropically the least favorable. The

More information

ATP. 1941, Fritz Lipmann & Herman Kalckar - ATP role in metabolism. ATP: structure. adenosine triphosphate

ATP. 1941, Fritz Lipmann & Herman Kalckar - ATP role in metabolism. ATP: structure. adenosine triphosphate ATP Living systems need energy to do (i) mechanical work (muscles, cellular motion) (ii) transport of molecules and ions (ion channels) (iii) synthesis of macromolecules (DNA, proteins) Energy must come

More information

Thermodynamics. Thermodynamically favored reactions ( spontaneous ) Enthalpy Entropy Free energy

Thermodynamics. Thermodynamically favored reactions ( spontaneous ) Enthalpy Entropy Free energy Thermodynamics Thermodynamically favored reactions ( spontaneous ) Enthalpy Entropy Free energy 1 Thermodynamically Favored Processes Water flows downhill. Sugar dissolves in coffee. Heat flows from hot

More information

Thermodynamics and Equilibrium. Chemical thermodynamics is concerned with energy relationships in chemical reactions.

Thermodynamics and Equilibrium. Chemical thermodynamics is concerned with energy relationships in chemical reactions. 1 of 7 Thermodynamics and Equilibrium Chemical thermodynamics is concerned with energy relationships in chemical reactions. In addition to enthalpy (H), we must consider the change in randomness or disorder

More information

Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics

Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics Objectives In this Lecture you will learn the following The need for studying thermodynamics to understand chemical and biological processes.

More information

Energy is the capacity to do work

Energy is the capacity to do work 1 of 10 After completing this chapter, you should, at a minimum, be able to do the following. This information can be found in my lecture notes for this and other chapters and also in your text. Correctly

More information

Chapter 17. Spontaneity, Entropy, and Free Energy

Chapter 17. Spontaneity, Entropy, and Free Energy Chapter 17 Spontaneity, Entropy, and Free Energy Thermodynamics Thermodynamics is the study of the relationship between heat and other forms of energy in a chemical or physical process. Thermodynamics

More information

Chapter 19. Chemical Thermodynamics

Chapter 19. Chemical Thermodynamics Chapter 19. Chemical Thermodynamics 19.1 Spontaneous Processes Chemical thermodynamics is concerned with energy relationships in chemical reactions. We consider enthalpy and we also consider entropy in

More information

Chapter 15 part 2. Biochemistry I Introduction to Metabolism Bioenergetics: Thermodynamics in Biochemistry. ATP 4- + H 2 O ADP 3- + P i + H +

Chapter 15 part 2. Biochemistry I Introduction to Metabolism Bioenergetics: Thermodynamics in Biochemistry. ATP 4- + H 2 O ADP 3- + P i + H + Biochemistry I Introduction to Metabolism Bioenergetics: Thermodynamics in Biochemistry ATP 4- + 2 ADP 3- + P i 2- + + Chapter 15 part 2 Dr. Ray 1 Energy flow in biological systems: Energy Transformations

More information

Chapter 16. Thermodynamics. Thermochemistry Review. Calculating H o rxn. Predicting sign for H o rxn. Creative Commons License

Chapter 16. Thermodynamics. Thermochemistry Review. Calculating H o rxn. Predicting sign for H o rxn. Creative Commons License Chapter 16 Thermodynamics GCC CHM152 Creative Commons License Images and tables in this file have been used from the following sources: OpenStax: Creative Commons Attribution License 4.0. ChemWiki (CC

More information

G = (G C+ G D ) (G A + G B ) = ΣG P ΣG R Η = (H C+ H D ) (H A + H B ) = ΣΗ P ΣΗ S = (S C+ S D ) (S A + S B ) = ΣS P ΣS R BACKGROUND

G = (G C+ G D ) (G A + G B ) = ΣG P ΣG R Η = (H C+ H D ) (H A + H B ) = ΣΗ P ΣΗ S = (S C+ S D ) (S A + S B ) = ΣS P ΣS R BACKGROUND BACKGRUND BACKGRUND Α + Β = C + D G = Η Τ Τ S G = (G C+ G D ) (G A + G B ) = ΣG P ΣG R Η = (H C+ H D ) (H A + H B ) = ΣΗ P ΣΗ R S = (S C+ S D ) (S A + S B ) = ΣS P ΣS R 1 Standard versus Physiological

More information

Thermodynamics: Entropy, Free Energy, and Equilibrium

Thermodynamics: Entropy, Free Energy, and Equilibrium Chapter 16 Thermodynamics: Entropy, Free Energy, and Equilibrium spontaneous nonspontaneous In this chapter we will determine the direction of a chemical reaction and calculate equilibrium constant using

More information

Chapter 6- An Introduction to Metabolism*

Chapter 6- An Introduction to Metabolism* Chapter 6- An Introduction to Metabolism* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. The Energy of Life

More information

Second Law of Thermodynamics

Second Law of Thermodynamics Second Law of Thermodynamics First Law: the total energy of the universe is a constant Second Law: The entropy of the universe increases in a spontaneous process, and remains unchanged in a process at

More information

Chapter 10 Lecture Notes: Thermodynamics

Chapter 10 Lecture Notes: Thermodynamics Chapter 10 Lecture Notes: Thermodynamics During this unit of study, we will cover three main areas. A lot of this information is NOT included in your text book, which is a shame. Therefore, the notes you

More information

Contents and Concepts

Contents and Concepts Contents and Concepts 1. First Law of Thermodynamics Spontaneous Processes and Entropy A spontaneous process is one that occurs by itself. As we will see, the entropy of the system increases in a spontaneous

More information

Contents and Concepts

Contents and Concepts Contents and Concepts 1. First Law of Thermodynamics Spontaneous Processes and Entropy A spontaneous process is one that occurs by itself. As we will see, the entropy of the system increases in a spontaneous

More information

Ch. 19 Entropy and Free Energy: Spontaneous Change

Ch. 19 Entropy and Free Energy: Spontaneous Change Ch. 19 Entropy and Free Energy: Spontaneous Change 19-1 Spontaneity: The Meaning of Spontaneous Change 19-2 The Concept of Entropy 19-3 Evaluating Entropy and Entropy Changes 19-4 Criteria for Spontaneous

More information

UNIT 15: THERMODYNAMICS

UNIT 15: THERMODYNAMICS UNIT 15: THERMODYNAMICS ENTHALPY, DH ENTROPY, DS GIBBS FREE ENERGY, DG ENTHALPY, DH Energy Changes in Reactions Heat is the transfer of thermal energy between two bodies that are at different temperatures.

More information

Entropy, Free Energy, and Equilibrium

Entropy, Free Energy, and Equilibrium Entropy, Free Energy, and Equilibrium Chapter 17 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Spontaneous Physical and Chemical Processes A waterfall runs

More information

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition MME 2010 METALLURGICAL THERMODYNAMICS II Fundamentals of Thermodynamics for Systems of Constant Composition Thermodynamics addresses two types of problems: 1- Computation of energy difference between two

More information

Chapter 17 Spontaneity, Entropy, and Free Energy

Chapter 17 Spontaneity, Entropy, and Free Energy Chapter 17 Spontaneity, Entropy, and Free Energy Thermodynamics The study of energy and its transformations 1 st Law of Thermodynamics The total energy of the Universe is constant Energy can therefore

More information

BIOLOGICAL SCIENCE. Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge. FIFTH EDITION Freeman Quillin Allison

BIOLOGICAL SCIENCE. Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge. FIFTH EDITION Freeman Quillin Allison BIOLOGICAL SCIENCE FIFTH EDITION Freeman Quillin Allison 8 Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge Roadmap 8 In this chapter you will learn how Enzymes use

More information

Activity: Identifying forms of energy

Activity: Identifying forms of energy Activity: Identifying forms of energy INTRODUCTION TO METABOLISM Metabolism Metabolism is the sum of all chemical reactions in an organism Metabolic pathway begins with a specific molecule and ends with

More information

Ch 17 Free Energy and Thermodynamics - Spontaneity of Reaction

Ch 17 Free Energy and Thermodynamics - Spontaneity of Reaction Ch 17 Free Energy and Thermodynamics - Spontaneity of Reaction Modified by Dr. Cheng-Yu Lai spontaneous nonspontaneous Spontaneous Processes Processes that are spontaneous in one direction are nonspontaneous

More information

Chemistry and the material world Unit 4, Lecture 4 Matthias Lein

Chemistry and the material world Unit 4, Lecture 4 Matthias Lein Chemistry and the material world 123.102 Unit 4, Lecture 4 Matthias Lein Gibbs ree energy Gibbs ree energy to predict the direction o a chemical process. Exergonic and endergonic reactions. Temperature

More information

Thermodynamics II. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Thermodynamics II. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Thermodynamics II Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Spontaneous Physical and Chemical Processes A waterfall runs downhill A lump of sugar dissolves

More information

Free-energy change ( G) and entropy change ( S)

Free-energy change ( G) and entropy change ( S) Free-energy change ( G) and entropy change ( S) A SPONTANEOUS PROCESS (e.g. diffusion) will proceed on its own without any external influence. A problem with H A reaction that is exothermic will result

More information

General Chemistry I. Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University. Module 4: Chemical Thermodynamics

General Chemistry I. Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University. Module 4: Chemical Thermodynamics General Chemistry I Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University Module 4: Chemical Thermodynamics Zeroth Law of Thermodynamics. First Law of Thermodynamics (state quantities:

More information

2013, 2011, 2009, 2008 AP

2013, 2011, 2009, 2008 AP Lecture 15 Thermodynamics I Heat vs. Temperature Enthalpy and Work Endothermic and Exothermic Reactions Average Bond Enthalpy Thermodynamics The relationship between chemical reactions and heat. What causes

More information

Chapter 17 Spontaneity, Entropy, and Free Energy

Chapter 17 Spontaneity, Entropy, and Free Energy Chapter 17 Spontaneity, Entropy, and Free Energy Thermodynamics The study of energy and its transformations 1 st Law of Thermodynamics The total energy of the Universe is constant Energy can therefore

More information

OCR Chemistry A H432

OCR Chemistry A H432 All the energy changes we have considered so far have been in terms of enthalpy, and we have been able to predict whether a reaction is likely to occur on the basis of the enthalpy change associated with

More information

Chapter Seventeen Thermodynamics: Spontaneity, Entropy, and Free Energy

Chapter Seventeen Thermodynamics: Spontaneity, Entropy, and Free Energy 1 Thermodynamics: Spontaneity, Entropy, and Free Energy 2 Introductory Concepts Thermodynamics examines the relationship between heat (q) and work (w) Spontaneity is the notion of whether or not a process

More information

Gibbs Free Energy Study Guide Name: Date: Period:

Gibbs Free Energy Study Guide Name: Date: Period: Gibbs Free Energy Study Guide Name: Date: Period: The basic goal of chemistry is to predict whether or not a reaction will occur when reactants are brought together. Ways to predict spontaneous reactions

More information

3/30/2017. Section 17.1 Spontaneous Processes and Entropy Thermodynamics vs. Kinetics. Chapter 17. Spontaneity, Entropy, and Free Energy

3/30/2017. Section 17.1 Spontaneous Processes and Entropy Thermodynamics vs. Kinetics. Chapter 17. Spontaneity, Entropy, and Free Energy Chapter 17 Spontaneity, Entropy, and Thermodynamics vs. Kinetics Domain of Kinetics Rate of a reaction depends on the pathway from reactants to products. Thermodynamics tells us whether a reaction is spontaneous

More information

Entropy, Free Energy and the Direction of Chemical Reactions

Entropy, Free Energy and the Direction of Chemical Reactions Thermodynamics: Entropy, Free Energy and the Direction of Chemical Reactions Dr.ssa Rossana Galassi 320 4381420 rossana.galassi@unicam.it 20-1 Thermodynamics: Entropy, Free Energy, and the Direction of

More information

Ch 18 Free Energy and Thermodynamics:

Ch 18 Free Energy and Thermodynamics: P a g e 1 Ch 18 Free Energy and Thermodynamics: Homework: Read Ch 18, Work out sample/practice exercises in the sections as you read, Ch 18: 27, 31, 33, 41, 43, 47, 51, 55, 61, 63, 67, 71, 77, 87 Check

More information

Disorder and Entropy. Disorder and Entropy

Disorder and Entropy. Disorder and Entropy Disorder and Entropy Suppose I have 10 particles that can be in one of two states either the blue state or the red state. How many different ways can we arrange those particles among the states? All particles

More information

Lecture 6 Free Energy

Lecture 6 Free Energy Lecture 6 Free Energy James Chou BCMP21 Spring 28 A quick review of the last lecture I. Principle of Maximum Entropy Equilibrium = A system reaching a state of maximum entropy. Equilibrium = All microstates

More information

Chemical thermodynamics the area of chemistry that deals with energy relationships

Chemical thermodynamics the area of chemistry that deals with energy relationships Chemistry: The Central Science Chapter 19: Chemical Thermodynamics Chemical thermodynamics the area of chemistry that deals with energy relationships 19.1: Spontaneous Processes First law of thermodynamics

More information

Flow of Energy. Flow of Energy. Energy and Metabolism. Chapter 6

Flow of Energy. Flow of Energy. Energy and Metabolism. Chapter 6 Energy and Metabolism Chapter 6 Flow of Energy Energy: the capacity to do work -kinetic energy: the energy of motion -potential energy: stored energy Energy can take many forms: mechanical electric current

More information

Thermodynamics. Thermodynamics of Chemical Reactions. Enthalpy change

Thermodynamics. Thermodynamics of Chemical Reactions. Enthalpy change Thermodynamics 1 st law (Cons of Energy) Deals with changes in energy Energy in chemical systems Total energy of an isolated system is constant Total energy = Potential energy + kinetic energy E p mgh

More information

Biochemical Pathways

Biochemical Pathways Biochemical Pathways Living organisms can be divided into two large groups according to the chemical form in which they obtain carbon from the environment. Autotrophs can use carbon dioxide from the atmosphere

More information

Chapter 9 in Chang Text

Chapter 9 in Chang Text Section 8.0: CHEMICAL EQUILIBRIUM Chapter 9 in Chang Text ..the direction of spontaneous change at constant T and P is towards lower values of Gibbs Energy (G). this also applies to chemical reactions

More information

Thermochemistry Lecture

Thermochemistry Lecture Thermochemistry Lecture Jennifer Fang 1. Enthalpy 2. Entropy 3. Gibbs Free Energy 4. q 5. Hess Law 6. Laws of Thermodynamics ENTHALPY total energy in all its forms; made up of the kinetic energy of the

More information

The Factors that Determine the Equilibrium State

The Factors that Determine the Equilibrium State The Factors that Determine the Equilibrium State The equilibrium state (or the ratio of products to reactants) is determined by two factors: 1. Energy Systems tend to move toward a state of minimum potential

More information

An Introduction to Metabolism

An Introduction to Metabolism LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 8 An Introduction to Metabolism

More information

CHAPTER 15 Metabolism: Basic Concepts and Design

CHAPTER 15 Metabolism: Basic Concepts and Design CHAPTER 15 Metabolism: Basic Concepts and Design Chapter 15 An overview of Metabolism Metabolism is the sum of cellular reactions - Metabolism the entire network of chemical reactions carried out by living

More information

I PUC CHEMISTRY CHAPTER - 06 Thermodynamics

I PUC CHEMISTRY CHAPTER - 06 Thermodynamics I PUC CHEMISTRY CHAPTER - 06 Thermodynamics One mark questions 1. Define System. 2. Define surroundings. 3. What is an open system? Give one example. 4. What is closed system? Give one example. 5. What

More information