Thermodynamics. Thermodynamically favored reactions ( spontaneous ) Enthalpy Entropy Free energy

Size: px
Start display at page:

Download "Thermodynamics. Thermodynamically favored reactions ( spontaneous ) Enthalpy Entropy Free energy"

Transcription

1 Thermodynamics Thermodynamically favored reactions ( spontaneous ) Enthalpy Entropy Free energy 1

2 Thermodynamically Favored Processes Water flows downhill. Sugar dissolves in coffee. Heat flows from hot object to cold object. A car fender rusts Why not the reverse? 2

3 Thermodynamically Favored Processes Driven by two factors: Enthalpy decrease and/or Entropy increase 3

4 Potential Energy Enthalpy: Many exothermic processes are spontaneous. Lower E a PE reactants time products DH 4

5 Enthalpy CH 4 + 2O 2 CO 2 + H 2 O DH = -890 kj spontaneous (caution rate may be slow) 2H 2 O 2H 2 + O 2 DH = +570 kj Forget about it. 5

6 Enthalpy Recall enthalpy changes are related to bond energies & IM forces of reactants and products. Molecules with strong bonds (high bond energies) are relatively stable and have low potential energy. e.g. H 2 O and CO 2 are often reaction products due to their low PE. 6

7 Enthalpy You might think only exothermic reactions are thermodynamically favored. but H 2 O(s) H 2 O(l) at 25 o C DH = +6.0 kj Ice melts, but is endothermic! 7

8 Entropy (S) Entropy also helps determines whether a reaction is spontaneous. What is it? 8

9 Gedanken Gas Y At 1 atm Gas B At 1 atm What happens when the valve is opened? Why? 9

10 Entropy The gases mix because of Entropy is actually the dispersal of matter and energy. 10

11 Entropy If you drop a glass, what happens? If you drop the broken pieces, do they reform the glass? low S high S 11

12 Changing Entropy: #1 Increasing entropy (+DS) solid liquid gas increased dispersal of matter 12

13 Changing Entropy: #2 Dissolution: H 2 O NaCl(s) Na + (aq) + Cl - (aq) 1.Ionization: increases entropy 2.Mixing: increases entropy 3.Hydration: decreases entropy 13

14 Changing Entropy: #3 Entropy increases in reactions where the number of product molecules is greater than reactant molecules. (matter becomes more dispersed) 4H 3 PO 4 P 4 O H 2 O 14

15 Changing Entropy: #4 Entropy increases greatly in reactions where moles of gas increase. CaCO 3 (s) CaO(s) + CO 2 (g) 0 mol gas 1 mol gas Gases have high entropy due to the dispersal of matter. 15

16 Changing Entropy: #5 Increasing temperature raises the kinetic energy which increases the disorder (entropy). Raising T disperses KE 16

17 Entropy Prediction Is DS positive or negative? CO 2 sublimes Br 2 (l) freezes Sugar is dissolved in water 17

18 Predict DS Is DS positive or negative? 2H 2 (g) + O 2 (g) 2H 2 O(g) 18

19 3 rd Law of Thermodynamics The entropy of a perfect crystalline substance at 0 K is zero. Unlike enthalpy, entropy values are absolute. (no arbitrary reference point) 19

20 Calculating Entropy For the reaction: aa + bb cc + dd Calculate DS from table of standard entropies. (appendix 3; 25 o C and 1 atm) DS o = SnS o (prod) SnS o (react) 20

21 units Calculating Entropy N 2 (g) + 3H 2 (g) 2NH 3 (g) S o (J/mol. K) DS o = 2(193J/K) (1)192J/K 3(131J/K) = -199 J/mol rxn. K Decrease in entropy as expected. 21

22 Calculating Entropy Your turn. H 2 (g) + Cl 2 (g) 2HCl(g) S o (J/mol. K) Does entropy go up or down? 22

23 2 nd Law of Thermodynamics The entropy of the universe increases in a spontaneous reaction and is unchanged in a equilibrium process. 23

24 2 nd Law of Thermodynamics A simple function can be derived from the 2 nd law that describes whether a reaction is spontaneous. G = Gibb s Free Energy 24

25 Gibb s Free Energy DG o = DH o TDS o DG o < 0 reaction spontaneous ( exergonic ) DG o > 0 reaction nonspontaneous (spontaneous in reverse) ( endergonic ) DG o = 0 system at equilibrium 25

26 Standards for DG o Gas 1 atm Liquid pure substance Solid pure substance Elements DG o = 0 Solution 1 M concentration Temp. 25 o C 26

27 Calculating Free Energy 1. From standard DG values fo (appendix 3; 1 mole,1atm, 25 o C). This works just like DH and DS o. fo 2. From DH o and DS o and T using the free energy equation. DG o = DH o TDS o 27

28 Standard DG o H 2 (g) + Br 2 (l) 2HBr(g) DG fo kj/mol most stable form of element DG o = 2(-53.2kJ) 1(0) 1(0) = kj/mol rxn (at 25 o C) Spontaneous!!! 28

29 DG = DH TDS Is a Reaction Spontaneous? DH is + (endo) DH is (exo) DS is + (more random) DS is (less random) 29

30 Spontaneous? Try It! CaCO 3 (s) CaO(s) + CO 2 (g) DH o f (kj/mol) DS o (J/mol. K) Use appendix 3 data (above) to calculate DH o rxn & DS o rxn. Be careful with units. 30

31 Spontaneous? Try It! CaCO 3 (s) CaO(s) + CO 2 (g) 2. Use DH & DS to calc. rxno rxno DG at 25 o C. rxno 3. Is this reaction spontaneous at 25 o C? 4. At what T does this reaction become spontaneous? 31

32 P (CO2) (atm) Free Energy: Interpretation 3 CaCO 3 (s) 2 1 CaO(s) + CO 2 (g) CO 2 hits std. pressure (1atm) 0 Temperature ( o C) 32

33 Coupled Reactions Although some reactions are not thermodynamically favored (+DG), they can be made to happen by coupling to a thermodynamically favored second reaction. 33

34 Coupled Reactions The production of lead from PbS ore by heating is nonspontaneous. Write the net reaction and calculate DG o rxn when this reaction is coupled with the oxidation of sulfur to SO 2. DG rxn o PbS(s) Pb(s) + S(s) +99kJ S(s) + O 2 (g) SO 2 (g) -300kJ 34

35 External Energy External energy can be used to drive reactions where DG is positive. thermal energy electrical energy light energy e.g. photosynthesis DG = 2880 kj/mol rxn hn + 6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2 35

36 Free Energy: Reminders 1.Be careful of units (kj vs. J, & T) 2. AP units for chemical reactions: 2Al(s) + 3Cl 2 (g) 2AlCl 3 (s) DH o and DG o are kj/mol rxn DS o = J/mol rxn. K 36

37 Free Energy: Reminders 3. DH o & DS o are only exact at 25 o C, but using them to calculate DG o at other temperatures is good enough. (DH o & DS o don t change much with temperature.) 37

38 Free Energy: Reminders 4. Spontaneous reactions (thermodynamically favored) may appear not to occur if the reaction rate is slow due to high activation energy. kinetically controlled reaction 38

39 Controlled by Thermodynamics Controlled by kinetics 39

40 Kinetically Controlled Reaction Graphite is the most stable form of carbon under standard conditions C diamond (s) C graphite (s) DG o = -3 kj/mol rxn (spontaneous) However it is too slow to be observed due to high E a. 40

41 Free Energy: Reminders 5. External energy can be used to drive reactions that are not thermodynamically favored. 2H 2 O(l) 2H 2 (g) + O 2 (g) can be driven by electrical energy Photosynthesis, initiated by photon absorption 41

42 Phase Transitions (e.g. ice water at 0 o C) System is in equilibrium, so: DG o = 0 = DH o -TDS o DS o = DHo T 42

43 Melt Ice at 0 o C DS o = DHo T = = 6010 J 273 K = 22 J/mol. K DH fus T Entropy increases while melting, as expected 43

44 Phase Change: Try It!!! 1.What is the entropy change for freezing benzene at its freezing point of 5.5 o C? (DH fus is 10.9 kj)? 2.Is this process spontaneous? 44

45 Free Energy & Equilibrium aa(aq) + bb(aq) cc(aq) + dd(aq) If reactants start in standard states (1 M), as reaction proceeds, the chemicals are no longer in their standard states. 45

46 Free Energy & Equilibrium As the reaction proceeds, the free energy change (DG) is related to standard free energy change (DG o ) by: DG = DG o + RT lnq reaction quotient, Q, remember? 46

47 Free Energy & Equilibrium aa + bb cc + dd DG = DG o + RT lnq = DG o + RT ln [C]c [D] d [A] a [B] b R = J/mol. K 47

48 Try It N 2 (g) + 3H 2 (g) 2NH 3 (g) P o (atm) What is DG at these initial pressures and 25 o C? (DG o f = -17 kj/mol) Predict the reaction direction. 48

49 Free Energy & Equilibrium At equilibrium: DG = DG o + RT lnq 0 K and DG o = -RT lnk and the net reaction stops. 49

50 Free Energy & Equilibrium DG = DG o + RT lnq zero negative positive Case 1. If reaction is spontaneous (DG o negative), reaction will proceed toward products to a great extent until the RT lnq equals DG o. 50

51 Free Energy & Equilibrium DG = DG o + RT lnq zero positive negative Case 2. If reaction is non- spont. (DG o positive), reaction will proceed toward products to only a small extent until the RT lnq equals DG o. 51

52 Free Energy & Equilibrium At equilibrium: DG o = -RT lnk (K p for gases and K c for solutions) Note: the larger the K, the more negative DG o (reaction goes more toward products). 52

53 Free Energy & Equilibrium DG o = -RT ln K K lnk DG o > < Products favored & spontaneous Reactants favored & nonspontaneous 53

54 Free Energy & Equilibrium DG o = -RT ln K Rearranges to: lnk = - DGo RT and: K = e -DGo /RT RT at room temperature ~ 2.4kJ/mol. So if DG ~ 2.4kJ/mol, K ~ 1, otherwise K will be very large or very small. 54

55 Free Energy & Equilibrium DG o = -RT lnk Measuring DG o (via DH o & DS o ) is a convenient way to measure K for many reactions. 55

56 Calculating K from DG o Try It!!! Calculate K p at 25 o C: 2H 2 O(l) 2H 2 (g) + O 2 (g) G fo kj Does your answer make sense? 56

57 Calculating DG o from K Calculate DG o for the aqueous dissolution of AgCl at 25 o C. K sp = 1.6 x AgCl(s) Ag + (aq) + Cl - (aq) Does your answer make sense? 57

58 One More!!! N 2 (g) + 3H 2 (g) 2NH 3 (g) P o (atm) What is DG at these initial pressures? Predict reaction direction. (K p = 6.59 x 10 5 at 25 o C) 58

59 The End 59

60 Warm-up What is the ph when 25 ml of 0.12 M HI is mixed with 32 ml of M Ba(OH) 2? 60

61 Warm-up Salt water is evaporated to dryness. What happens to the entropy of: Na + ions and Cl - ions? water? 61

62 Warm-up N 2 (g) + 3H 2 (g) 2NH 3 (g) S o (J/K) H o (kj) Under standard conditions, what temperature is this a spontaneous reaction? 62

63 Warm-up What is the sign of DG when the equilibrium constant is very small? Is the reaction spontaneous (Explain using the equation relating these two variables.) 63

64 Warm-up What is the difference between DG & DG o? For a given reaction, when does DG rxn = DG o? What is DG o and DS o when water condenses at 100 o C? (DH vap = 40.6 kj/mol) 64

Entropy, Free Energy, and Equilibrium

Entropy, Free Energy, and Equilibrium Entropy, Free Energy, and Equilibrium Chapter 17 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Spontaneous Physical and Chemical Processes A waterfall runs

More information

Reaction Rates & Equilibrium. What determines how fast a reaction takes place? What determines the extent of a reaction?

Reaction Rates & Equilibrium. What determines how fast a reaction takes place? What determines the extent of a reaction? Reaction Rates & Equilibrium What determines how fast a reaction takes place? What determines the extent of a reaction? Reactants Products 1 Reaction Rates Vary TNT exploding. A car rusting. Dead plants

More information

Reaction Rates & Equilibrium. What determines how fast a reaction takes place? What determines the extent of a reaction?

Reaction Rates & Equilibrium. What determines how fast a reaction takes place? What determines the extent of a reaction? Reaction Rates & Equilibrium What determines how fast a reaction takes place? What determines the extent of a reaction? Reactants Products 1 Reaction Rates Vary TNT exploding. A car rusting. Dead plants

More information

Disorder and Entropy. Disorder and Entropy

Disorder and Entropy. Disorder and Entropy Disorder and Entropy Suppose I have 10 particles that can be in one of two states either the blue state or the red state. How many different ways can we arrange those particles among the states? All particles

More information

Chapter 19. Entropy, Free Energy, and Equilibrium

Chapter 19. Entropy, Free Energy, and Equilibrium Chapter 19 Entropy, Free Energy, and Equilibrium Spontaneous Physical and Chemical Processes A waterfall runs downhill A lump of sugar dissolves in a cup of coffee At 1 atm, water freezes below 0 0 C and

More information

Chapter 20: Thermodynamics

Chapter 20: Thermodynamics Chapter 20: Thermodynamics Thermodynamics is the study of energy (including heat) and chemical processes. First Law of Thermodynamics: Energy cannot be created nor destroyed. E universe = E system + E

More information

Chapter Eighteen. Thermodynamics

Chapter Eighteen. Thermodynamics Chapter Eighteen Thermodynamics 1 Thermodynamics Study of energy changes during observed processes Purpose: To predict spontaneity of a process Spontaneity: Will process go without assistance? Depends

More information

Chapter 16. Thermodynamics. Thermochemistry Review. Calculating H o rxn. Predicting sign for H o rxn. Creative Commons License

Chapter 16. Thermodynamics. Thermochemistry Review. Calculating H o rxn. Predicting sign for H o rxn. Creative Commons License Chapter 16 Thermodynamics GCC CHM152 Creative Commons License Images and tables in this file have been used from the following sources: OpenStax: Creative Commons Attribution License 4.0. ChemWiki (CC

More information

Ch 17 Free Energy and Thermodynamics - Spontaneity of Reaction

Ch 17 Free Energy and Thermodynamics - Spontaneity of Reaction Ch 17 Free Energy and Thermodynamics - Spontaneity of Reaction Modified by Dr. Cheng-Yu Lai spontaneous nonspontaneous Spontaneous Processes Processes that are spontaneous in one direction are nonspontaneous

More information

Chapter 17. Spontaneity, Entropy, and Free Energy

Chapter 17. Spontaneity, Entropy, and Free Energy Chapter 17 Spontaneity, Entropy, and Free Energy Thermodynamics Thermodynamics is the study of the relationship between heat and other forms of energy in a chemical or physical process. Thermodynamics

More information

Unit 5: Spontaneity of Reaction. You need to bring your textbooks everyday of this unit.

Unit 5: Spontaneity of Reaction. You need to bring your textbooks everyday of this unit. Unit 5: Spontaneity of Reaction You need to bring your textbooks everyday of this unit. THE LAWS OF THERMODYNAMICS 1 st Law of Thermodynamics Energy is conserved ΔE = q + w 2 nd Law of Thermodynamics A

More information

Thermodynamics Spontaneity. 150/151 Thermochemistry Review. Spontaneity. Ch. 16: Thermodynamics 12/14/2017

Thermodynamics Spontaneity. 150/151 Thermochemistry Review. Spontaneity. Ch. 16: Thermodynamics 12/14/2017 Ch. 16: Thermodynamics Geysers are a dramatic display of thermodynamic principles in nature. As water inside the earth heats up, it rises to the surface through small channels. Pressure builds up until

More information

Chapter 17: Spontaneity, Entropy, and Free Energy

Chapter 17: Spontaneity, Entropy, and Free Energy Chapter 17: Spontaneity, Entropy, and Free Energy Review of Chemical Thermodynamics System: the matter of interest Surroundings: everything in the universe which is not part of the system Closed System:

More information

Thermodynamics. Chem 36 Spring The study of energy changes which accompany physical and chemical processes

Thermodynamics. Chem 36 Spring The study of energy changes which accompany physical and chemical processes Thermodynamics Chem 36 Spring 2002 Thermodynamics The study of energy changes which accompany physical and chemical processes Why do we care? -will a reaction proceed spontaneously? -if so, to what extent?

More information

Entropy and Free Energy

Entropy and Free Energy Page 1 Entropy and Free Energy How to predict if a reaction can occur at a reasonable rate? KINEICS Chapter 17 How to predict if a reaction can occur, given enough time? HERMODYNAMICS 1 Objectives Spontaneity

More information

4/19/2016. Chapter 17 Free Energy and Thermodynamics. First Law of Thermodynamics. First Law of Thermodynamics. The Energy Tax.

4/19/2016. Chapter 17 Free Energy and Thermodynamics. First Law of Thermodynamics. First Law of Thermodynamics. The Energy Tax. Chemistry: A Molecular Approach, 2nd Ed. Nivaldo Tro First Law of Thermodynamics Chapter 17 Free Energy and Thermodynamics You can t win! First Law of Thermodynamics: Energy cannot be created or destroyed

More information

Spontaneity, Entropy, and Free Energy

Spontaneity, Entropy, and Free Energy Spontaneity, Entropy, and Free Energy A ball rolls spontaneously down a hill but not up. Spontaneous Processes A reaction that will occur without outside intervention; product favored Most reactants are

More information

CHAPTER 12: Thermodynamics Why Chemical Reactions Happen

CHAPTER 12: Thermodynamics Why Chemical Reactions Happen CHAPTER 12: Thermodynamics Why Chemical Reactions Happen Useful energy is being "degraded" in the form of unusable heat, light, etc. A tiny fraction of the sun's energy is used to produce complicated,

More information

Thermodynamics. 1. Which of the following processes causes an entropy decrease?

Thermodynamics. 1. Which of the following processes causes an entropy decrease? Thermodynamics 1. Which of the following processes causes an entropy decrease? A. boiling water to form steam B. dissolution of solid KCl in water C. mixing of two gases in one container D. beach erosion

More information

Thermodynamics II. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Thermodynamics II. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Thermodynamics II Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Spontaneous Physical and Chemical Processes A waterfall runs downhill A lump of sugar dissolves

More information

What s free about Gibbs free energy?

What s free about Gibbs free energy? What s free about Gibbs free energy? The change in free energy for a process equals the maximum work that can be done by the system on the surroundings in a spontaneous process occurring at constant temperature

More information

Thermodynamic Fun. Quick Review System vs. Surroundings 6/17/2014. In thermochemistry, the universe is divided into two parts:

Thermodynamic Fun. Quick Review System vs. Surroundings 6/17/2014. In thermochemistry, the universe is divided into two parts: Thermodynamic Fun Quick Review System vs. Surroundings In thermochemistry, the universe is divided into two parts: The tem: The physical process or chemical reaction in which we are interested. We can

More information

Lecture 4. The Second Law of Thermodynamics

Lecture 4. The Second Law of Thermodynamics Lecture 4. The Second Law of Thermodynamics LIMITATION OF THE FIRST LAW: -Does not address whether a particular process is spontaneous or not. -Deals only with changes in energy. Consider this examples:

More information

Lecture 2. Review of Basic Concepts

Lecture 2. Review of Basic Concepts Lecture 2 Review of Basic Concepts Thermochemistry Enthalpy H heat content H Changes with all physical and chemical changes H Standard enthalpy (25 C, 1 atm) (H=O for all elements in their standard forms

More information

Chapter 19 Chemical Thermodynamics Entropy and free energy

Chapter 19 Chemical Thermodynamics Entropy and free energy Chapter 19 Chemical Thermodynamics Entropy and free energy Learning goals and key skills: Explain and apply the terms spontaneous process, reversible process, irreversible process, and isothermal process.

More information

Contents and Concepts

Contents and Concepts Contents and Concepts 1. First Law of Thermodynamics Spontaneous Processes and Entropy A spontaneous process is one that occurs by itself. As we will see, the entropy of the system increases in a spontaneous

More information

Contents and Concepts

Contents and Concepts Contents and Concepts 1. First Law of Thermodynamics Spontaneous Processes and Entropy A spontaneous process is one that occurs by itself. As we will see, the entropy of the system increases in a spontaneous

More information

Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase

Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase changes Apply the second law of thermodynamics to chemical

More information

Chapter 8 Thermochemistry: Chemical Energy. Chemical Thermodynamics

Chapter 8 Thermochemistry: Chemical Energy. Chemical Thermodynamics Chapter 8 Thermochemistry: Chemical Energy Chapter 8 1 Chemical Thermodynamics Chemical Thermodynamics is the study of the energetics of a chemical reaction. Thermodynamics deals with the absorption or

More information

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy THERMOCHEMISTRY Thermodynamics Study of energy and its interconversions Energy is TRANSFORMED in a chemical reaction (POTENTIAL to KINETIC) HEAT (energy transfer) is also usually produced or absorbed -SYSTEM:

More information

Chapter 17. Free Energy and Thermodynamics. Chapter 17 Lecture Lecture Presentation. Sherril Soman Grand Valley State University

Chapter 17. Free Energy and Thermodynamics. Chapter 17 Lecture Lecture Presentation. Sherril Soman Grand Valley State University Chapter 17 Lecture Lecture Presentation Chapter 17 Free Energy and Thermodynamics Sherril Soman Grand Valley State University First Law of Thermodynamics You can t win! The first law of thermodynamics

More information

Chapter 16. Spontaneity, Entropy and Free energy

Chapter 16. Spontaneity, Entropy and Free energy Chapter 16 Spontaneity, Entropy and Free energy Contents Spontaneous Process and Entropy Entropy and the second law of thermodynamics The effect of temperature on spontaneity Free energy Entropy changes

More information

Chapter 19 Chemical Thermodynamics Entropy and free energy

Chapter 19 Chemical Thermodynamics Entropy and free energy Chapter 19 Chemical Thermodynamics Entropy and free energy Learning goals and key skills: Understand the meaning of spontaneous process, reversible process, irreversible process, and isothermal process.

More information

Chapter 11 Spontaneous Change and Equilibrium

Chapter 11 Spontaneous Change and Equilibrium Chapter 11 Spontaneous Change and Equilibrium 11-1 Enthalpy and Spontaneous Change 11-2 Entropy 11-3 Absolute Entropies and Chemical Reactions 11-4 The Second Law of Thermodynamics 11-5 The Gibbs Function

More information

Thermodynamics: Free Energy and Entropy. Suggested Reading: Chapter 19

Thermodynamics: Free Energy and Entropy. Suggested Reading: Chapter 19 Thermodynamics: Free Energy and Entropy Suggested Reading: Chapter 19 System and Surroundings System: An object or collection of objects being studied. Surroundings: Everything outside of the system. the

More information

In previous chapters we have studied: Why does a change occur in the first place? Methane burns but not the reverse CH 4 + 2O 2 CO 2 + 2H 2 O

In previous chapters we have studied: Why does a change occur in the first place? Methane burns but not the reverse CH 4 + 2O 2 CO 2 + 2H 2 O Chapter 19. Spontaneous Change: Entropy and Free Energy In previous chapters we have studied: How fast does the change occur How is rate affected by concentration and temperature How much product will

More information

Thermodynamics: Directionality of Chemical Reactions

Thermodynamics: Directionality of Chemical Reactions Thermodynamics: Directionality of Chemical Reactions Josian W. Gibbs 1839-1903. Pioneered concepts of chemical thermodynamics and free energy. Ludwig Boltzmann 1844-1906. Famous for his equation statistically

More information

Entropy. Spontaneity. Entropy. Entropy mol of N 2 at 1 atm or 1 mol of N 2 at atm. process a process that occurs without intervention

Entropy. Spontaneity. Entropy. Entropy mol of N 2 at 1 atm or 1 mol of N 2 at atm. process a process that occurs without intervention Entropy Spontaneity process a process that occurs without intervention can be fast or slow Entropy (s) the measure of molecular randomness or disorder Think of entropy as the amount of chaos Entropy Predict

More information

Chemical Thermodynamics. Chapter 18

Chemical Thermodynamics. Chapter 18 Chemical Thermodynamics Chapter 18 Thermodynamics Spontaneous Processes Entropy and Second Law of Thermodynamics Entropy Changes Gibbs Free Energy Free Energy and Temperature Free Energy and Equilibrium

More information

Contents and Concepts

Contents and Concepts Contents and Concepts 1. First Law of Thermodynamics Spontaneous Processes and Entropy A spontaneous process is one that occurs by itself. As we will see, the entropy of the system increases in a spontaneous

More information

Chpt 19: Chemical. Thermodynamics. Thermodynamics

Chpt 19: Chemical. Thermodynamics. Thermodynamics CEM 152 1 Reaction Spontaneity Can we learn anything about the probability of a reaction occurring based on reaction enthaplies? in general, a large, negative reaction enthalpy is indicative of a spontaneous

More information

THERMODYNAMICS. Dr. Sapna Gupta

THERMODYNAMICS. Dr. Sapna Gupta THERMODYNAMICS Dr. Sapna Gupta FIRST LAW OF THERMODYNAMICS Thermodynamics is the study of heat and other forms of energy involved in chemical or physical processes. First Law of Thermodynamics Energy cannot

More information

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy THERMOCHEMISTRY Thermodynamics Study of energy and its interconversions Energy is TRANSFORMED in a chemical reaction (POTENTIAL to KINETIC) HEAT (energy transfer) is also usually produced or absorbed -SYSTEM:

More information

Chemical Thermodynamics

Chemical Thermodynamics Page III-16-1 / Chapter Sixteen Lecture Notes Chemical Thermodynamics Thermodynamics and Kinetics Chapter 16 Chemistry 223 Professor Michael Russell How to predict if a reaction can occur, given enough

More information

Saturday Study Session 1 3 rd Class Student Handout Thermochemistry

Saturday Study Session 1 3 rd Class Student Handout Thermochemistry Saturday Study Session 1 3 rd Class Student Handout Thermochemistry Multiple Choice Identify the choice that best completes the statement or answers the question. 1. C 2 H 4 (g) + 3 O 2 (g) 2 CO 2 (g)

More information

1 A reaction that is spontaneous.

1 A reaction that is spontaneous. Slide 1 / 55 1 A reaction that is spontaneous. A B C D E is very rapid will proceed without outside intervention is also spontaneous in the reverse direction has an equilibrium position that lies far to

More information

AP* Chemistry Spontaneity: Entropy and Free Energy

AP* Chemistry Spontaneity: Entropy and Free Energy WHAT DRIVES A REACTION TO BE SPONTANEOUS? AP* Chemistry Spontaneity: Entropy and Free Energy Dr. Valverde s AP Chemistry Class Chapter 17 Review: Spontaneity, Entropy, and Free Energy (1) ENTHALPY ( H)

More information

ENTHALPY, ENTROPY AND FREE ENERGY CHANGES

ENTHALPY, ENTROPY AND FREE ENERGY CHANGES ENTHALPY, ENTROPY AND FREE ENERGY CHANGES Refer to the following figures for Exercises 1-6. The lines on the vertical axis represent the allowed energies. Assume constant spacing between levels to determine

More information

Chapter 8 Thermochemistry: Chemical Energy

Chapter 8 Thermochemistry: Chemical Energy Chapter 8 Thermochemistry: Chemical Energy 國防醫學院生化學科王明芳老師 2011-11-8 & 2011-11-15 Chapter 8/1 Energy and Its Conservation Conservation of Energy Law: Energy cannot be created or destroyed; it can only be

More information

Warm up. 1) What is the conjugate acid of NH 3? 2) What is the conjugate base of HNO 2? 3) If the ph is 9.2, what is the [H 3 O + ], poh, and [OH - ]?

Warm up. 1) What is the conjugate acid of NH 3? 2) What is the conjugate base of HNO 2? 3) If the ph is 9.2, what is the [H 3 O + ], poh, and [OH - ]? Warm up 1) What is the conjugate acid of NH 3? 2) What is the conjugate base of HNO 2? 3) If the ph is 9.2, what is the [H 3 O + ], poh, and [OH - ]? 4) What is the concentration of H 2 SO 4 if 30.1 ml

More information

Thermodynamics: Entropy, Free Energy, and Equilibrium

Thermodynamics: Entropy, Free Energy, and Equilibrium Chapter 16 Thermodynamics: Entropy, Free Energy, and Equilibrium spontaneous nonspontaneous In this chapter we will determine the direction of a chemical reaction and calculate equilibrium constant using

More information

Chapter 7 Chemical Reactions: Energy, Rates, and Equilibrium

Chapter 7 Chemical Reactions: Energy, Rates, and Equilibrium Chapter 7 Chemical Reactions: Energy, Rates, and Equilibrium Introduction This chapter considers three factors: a) Thermodynamics (Energies of Reactions) a reaction will occur b) Kinetics (Rates of Reactions)

More information

CHM 112 Chapter 16 Thermodynamics Study Guide

CHM 112 Chapter 16 Thermodynamics Study Guide CHM 112 Chapter 16 Thermodynamics Study Guide Remember from Chapter 5: Thermodynamics deals with energy relationships in chemical reactions Know the definitions of system, surroundings, exothermic process,

More information

Energy is the capacity to do work

Energy is the capacity to do work 1 of 10 After completing this chapter, you should, at a minimum, be able to do the following. This information can be found in my lecture notes for this and other chapters and also in your text. Correctly

More information

Advanced Chemistry Practice Problems

Advanced Chemistry Practice Problems Thermodynamics: Review of Thermochemistry 1. Question: What is the sign of DH for an exothermic reaction? An endothermic reaction? Answer: ΔH is negative for an exothermic reaction and positive for an

More information

Second Law of Thermodynamics

Second Law of Thermodynamics Second Law of Thermodynamics First Law: the total energy of the universe is a constant Second Law: The entropy of the universe increases in a spontaneous process, and remains unchanged in a process at

More information

Le Châtelier's Principle. Chemical Equilibria & the Application of Le Châtelier s Principle to General Equilibria. Using Le Châtelier's Principle

Le Châtelier's Principle. Chemical Equilibria & the Application of Le Châtelier s Principle to General Equilibria. Using Le Châtelier's Principle Chemical Equilibria & the Application of Le Châtelier s Principle to General Equilibria CHEM 107 T. Hughbanks Le Châtelier's Principle When a change is imposed on a system at equilibrium, the system will

More information

Introductory Inorganic Chemistry

Introductory Inorganic Chemistry Introductory Inorganic Chemistry What is Inorganic Chemistry? As: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 3 Classes of Inorganic Substances Elements Ionic Compounds Covalent Compounds Atomic/Molecular

More information

Energy. Different types of energy exist (heat, potential, kinetic, chemical, nuclear etc.)

Energy. Different types of energy exist (heat, potential, kinetic, chemical, nuclear etc.) Change in Energy Energy Different types of energy exist (heat, potential, kinetic, chemical, nuclear etc.) Heat - the energy transferred between objects that are at different temperatures. Unit of heat

More information

Advanced Thermodynamics. Unit 10 - Chapter 18 Enthalpy, Entropy, And Free Energy

Advanced Thermodynamics. Unit 10 - Chapter 18 Enthalpy, Entropy, And Free Energy Advanced Thermodynamics Unit 1 - Chapter 18 Enthalpy, Entropy, And Free Energy Definition of Enthalpy Def n: Property of a substance that can be used to determine the heat absorbed or released in a chemical

More information

Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16

Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16 Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16 1980 - #7 (a) State the physical significance of entropy. Entropy (S) is a measure of randomness or disorder in a system. (b) From each of

More information

Chapter 19 Chemical Thermodynamics

Chapter 19 Chemical Thermodynamics Chapter 19 Chemical Thermodynamics Kinetics How fast a rxn. proceeds Equilibrium How far a rxn proceeds towards completion Thermodynamics Study of energy relationships & changes which occur during chemical

More information

1. III only 2. II, III. 3. II only. 4. I only 5. I, III. 6. I, II, III correct

1. III only 2. II, III. 3. II only. 4. I only 5. I, III. 6. I, II, III correct Version 001 EXAM 8 PRACTICE PROBLEMS chemistry (78712) 1 This print-out should have 20 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. 001

More information

Chapter 19. Chemical Thermodynamics. Chemical Thermodynamics

Chapter 19. Chemical Thermodynamics. Chemical Thermodynamics Chapter 19 Enthalpy A thermodynamic quantity that equal to the internal energy of a system plus the product of its volume and pressure exerted on it by its surroundings; Enthalpy is the amount of energy

More information

Thermodynamics. Thermodynamics of Chemical Reactions. Enthalpy change

Thermodynamics. Thermodynamics of Chemical Reactions. Enthalpy change Thermodynamics 1 st law (Cons of Energy) Deals with changes in energy Energy in chemical systems Total energy of an isolated system is constant Total energy = Potential energy + kinetic energy E p mgh

More information

AP Chemistry Chapter 16 Assignment. Part I Multiple Choice

AP Chemistry Chapter 16 Assignment. Part I Multiple Choice Page 1 of 7 AP Chemistry Chapter 16 Assignment Part I Multiple Choice 1984 47. CH 4 (g) + 2 O 2 (g) CO 2 (g) + 2 H 2 O(l) H = 889.1 kj H f H 2 O(l) = 285.8 kj mol 1 H f CO 2 (g) = 393.3 kj mol 1 What is

More information

Entropy, Free Energy and the Direction of Chemical Reactions

Entropy, Free Energy and the Direction of Chemical Reactions Thermodynamics: Entropy, Free Energy and the Direction of Chemical Reactions Dr.ssa Rossana Galassi 320 4381420 rossana.galassi@unicam.it 20-1 Thermodynamics: Entropy, Free Energy, and the Direction of

More information

General Chemistry I. Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University. Module 4: Chemical Thermodynamics

General Chemistry I. Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University. Module 4: Chemical Thermodynamics General Chemistry I Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University Module 4: Chemical Thermodynamics Zeroth Law of Thermodynamics. First Law of Thermodynamics (state quantities:

More information

Chemical Thermodynamics

Chemical Thermodynamics Chemical Thermodynamics Overview Everything in the world is a balance of energy, in various forms from biological processes to the rusting of a nail. Two of the most important questions chemists ask are:

More information

The Equilibrium State. Chapter 13 - Chemical Equilibrium. The Equilibrium State. Equilibrium is Dynamic! 5/29/2012

The Equilibrium State. Chapter 13 - Chemical Equilibrium. The Equilibrium State. Equilibrium is Dynamic! 5/29/2012 Chapter 13 - Chemical Equilibrium The Equilibrium State Not all chemical reactions go to completion; instead they attain a state of equilibrium. When you hear equilibrium, what do you think of? Example:

More information

Unit 13 Kinetics & Equilibrium Page 1 of 14 Chemistry Kinetics, Entropy, Equilibrium, LeChatelier s Principle, K, Unit 13 Quiz: Unit 13 Test:

Unit 13 Kinetics & Equilibrium Page 1 of 14 Chemistry Kinetics, Entropy, Equilibrium, LeChatelier s Principle, K, Unit 13 Quiz: Unit 13 Test: Unit 13 Kinetics & Equilibrium Page 1 of 14 Chemistry Kinetics, Entropy, Equilibrium, LeChatelier s Principle, K, Unit 13 Quiz: Unit 13 Test: Final Project: VOCABULARY: 1 Chemical equilibrium 2 equilibrium

More information

Ch 18 Free Energy and Thermodynamics:

Ch 18 Free Energy and Thermodynamics: P a g e 1 Ch 18 Free Energy and Thermodynamics: Homework: Read Ch 18, Work out sample/practice exercises in the sections as you read, Ch 18: 27, 31, 33, 41, 43, 47, 51, 55, 61, 63, 67, 71, 77, 87 Check

More information

Chapter 19 Chemical Thermodynamics

Chapter 19 Chemical Thermodynamics Chapter 19 Chemical Thermodynamics Spontaneous Processes Entropy and the Second Law of Thermodynamics The Molecular Interpretation of Entropy Entropy Changes in Chemical Reactions Gibbs Free Energy Free

More information

CHAPTER 11: Spontaneous Change and Equilibrium

CHAPTER 11: Spontaneous Change and Equilibrium CHAPTER 11: Spontaneous Change and Equilibrium Goal of chapter: Be able to predict which direction a reaction will go (cases where there is not necessarily an equilibrium) At high temperatures, ice always

More information

Chapter 16, Thermodynamics: Entropy, Free Energy, and Equilibrium

Chapter 16, Thermodynamics: Entropy, Free Energy, and Equilibrium Chapter 16, Thermodynamics: Entropy, Free Energy, and Equilibrium We have another shift in our study of chemistry in this chapter. Now we want to learn why some reactions proceed almost completely to products

More information

Chapter 18: Entropy, Free Energy, and Equilibrium

Chapter 18: Entropy, Free Energy, and Equilibrium Chapter 18: Entropy, Free Energy, and Equilibrium Spontaneous Physical and Chemical Processes A waterfall runs downhill A lump of sugar dissolves in a cup of coffee At 1 atm., water freezes below 0 0 C

More information

ENTROPY HEAT HEAT FLOW. Enthalpy 3/24/16. Chemical Thermodynamics. Thermodynamics vs. Kinetics

ENTROPY HEAT HEAT FLOW. Enthalpy 3/24/16. Chemical Thermodynamics. Thermodynamics vs. Kinetics Chemical Thermodynamics The chemistry that deals with energy exchange, entropy, and the spontaneity of a chemical process. HEAT The energy that flows into or out of system because of a difference in temperature

More information

Chapter 19 Chemical Thermodynamics

Chapter 19 Chemical Thermodynamics Chapter 19. Chemical Thermodynamics Sample Exercise 19.2 (p. 819) Elemental mercury is a silver liquid at room temperature. Its normal freezing point is -38.9 o C, and its molar enthalpy of fusion is H

More information

Thermodynamics- Chapter 19 Schedule and Notes

Thermodynamics- Chapter 19 Schedule and Notes Thermodynamics- Chapter 19 Schedule and Notes Date Topics Video cast DUE Assignment during class time One Review of thermodynamics ONE and TWO Review of thermo Wksheet Two 19.1-4; state function THREE

More information

2nd- Here's another example of a reversible reaction - dissolving salt in a beaker of water, described by the following reaction: NaCl (s)

2nd- Here's another example of a reversible reaction - dissolving salt in a beaker of water, described by the following reaction: NaCl (s) CHEMICAL EQUILIBRIUM AP Chemistry (Notes) Most chemical processes are reversible. Reactants react to form products, but those products can also react to form reactants. Examples of reversible reactions:

More information

Free-energy change ( G) and entropy change ( S)

Free-energy change ( G) and entropy change ( S) Free-energy change ( G) and entropy change ( S) A SPONTANEOUS PROCESS (e.g. diffusion) will proceed on its own without any external influence. A problem with H A reaction that is exothermic will result

More information

Chapter 19 Chemical Thermodynamics

Chapter 19 Chemical Thermodynamics Chapter 19 Chemical Thermodynamics Kinetics How fast a rxn. proceeds Equilibrium How far a rxn proceeds towards completion Thermodynamics Study of energy relationships & changes which occur during chemical

More information

UNIT 15 - Reaction Energy & Reaction Kinetics. I. Thermochemistry: study of heat in chemical reactions and phase changes

UNIT 15 - Reaction Energy & Reaction Kinetics. I. Thermochemistry: study of heat in chemical reactions and phase changes I. Thermochemistry: study of heat in chemical reactions and phase changes II. A. Heat equation (change in temperature): Q = m. C. p T 1. Q = heat (unit is Joules) 2. m = mass (unit is grams) 3. C p = specific

More information

Thermochemistry. Energy and Chemical Change

Thermochemistry. Energy and Chemical Change Thermochemistry Energy and Chemical Change Energy Energy can change for and flow, but it is always conserved. The Nature of Energy Energy the ability to do work or produce heat Potential energy Kinetic

More information

Thermodynamics is the study of the relationship between heat and other forms of energy that are involved in a chemical reaction.

Thermodynamics is the study of the relationship between heat and other forms of energy that are involved in a chemical reaction. Ch 18 Thermodynamics and Equilibrium Thermodynamics is the study of the relationship between heat and other forms of energy that are involved in a chemical reaction. Internal Energy (U) Internal energy

More information

Equilibrium. What is equilibrium? Hebden Unit 2 (page 37 69) Dynamic Equilibrium

Equilibrium. What is equilibrium? Hebden Unit 2 (page 37 69) Dynamic Equilibrium Equilibrium What is equilibrium? Hebden Unit (page 37 69) Dynamic Equilibrium Hebden Unit (page 37 69) Experiments show that most reactions, when carried out in a closed system, do NOT undergo complete

More information

So far changes in the state of systems that occur within the restrictions of the first law of thermodynamics were considered:

So far changes in the state of systems that occur within the restrictions of the first law of thermodynamics were considered: Entropy So far changes in the state of systems that occur within the restrictions of the first law of thermodynamics were considered: Energy is transferred from one state to another by any possible forms,

More information

Entropy Gibbs Free Energy

Entropy Gibbs Free Energy Entropy Gibbs Free Energy 1 Prof. Zvi C. Koren 2.7.21 Reaction Spontaneity What is the criterion for spontaneity? Observations about Nature: - bottles drop from our hands - rain falls - avalanche - waterfalls

More information

7. a. A spontaneous process is one that occurs without any outside intervention.

7. a. A spontaneous process is one that occurs without any outside intervention. CHAPTER SIXTEEN SPONTANEITY, ENTROPY, AND FREE ENERGY Questions 7. a. A spontaneous process is one that occurs without any outside intervention. b. Entropy is a measure of disorder or randomness. c. The

More information

Entropy and Free Energy. The Basis for Thermodynamics

Entropy and Free Energy. The Basis for Thermodynamics Entropy and Free Energy The Basis for Thermodynamics First law of thermodynamics: The change in the energy of a system U = q+ w is the sum of the heat and the work done by or on the system. the first law

More information

Thermochemistry: Heat and Chemical Change

Thermochemistry: Heat and Chemical Change Thermochemistry: Heat and Chemical Change 1 Heat or Thermal Energy (q) Heat is a form of energy Is heat the same as temperature? Heat flows between two objects at different temperatures. Hot Cold 2 Chemical

More information

Ch 10 Practice Problems

Ch 10 Practice Problems Ch 10 Practice Problems 1. Which of the following result(s) in an increase in the entropy of the system? I. (See diagram.) II. Br 2(g) Br 2(l) III. NaBr(s) Na + (aq) + Br (aq) IV. O 2(298 K) O 2(373 K)

More information

UNIT 9 IB MATERIAL KINETICS & THERMODYNAMICS

UNIT 9 IB MATERIAL KINETICS & THERMODYNAMICS UNIT 9 IB MATERIAL KINETICS & THERMODYNAMICS Name: ESSENTIALS: Know, Understand, and Be Able To State that combustion and neutralization are exothermic processes. Calculate the heat energy change when

More information

Thermodynamics. Or, will it happen?

Thermodynamics. Or, will it happen? Thermodynamics Or, will it happen? Questions to answer 1. What is thermodynamics all about? 2. What are spontaneous reactions? 3. What does enthalpy have to do with predicting spontaneity? 4. What is entropy?

More information

1 of 8 Class notes lectures 6a, b, c

1 of 8 Class notes lectures 6a, b, c 1 of 8 Class notes lectures 6a, b, c Last time: 1) entropy calculations 2) Gibb s Free energy Today: Field Trip READ CHAPT 15.11 before coming to field trip. Be prepared to ask questions and take notes.

More information

Thermochemistry: Part of Thermodynamics

Thermochemistry: Part of Thermodynamics Thermochemistry: Part of Thermodynamics Dr. Vickie M. Williamson @vmwilliamson Student Version 1 Chemical Thermodynamics! Thermodynamics: study of the energy changes associated with physical and chemical

More information

Exam 1A. 4) Calculate the H 0 rxn in kj for this reaction. a) 6339 b) 5106 c) 775 d) 6535 e) 2909

Exam 1A. 4) Calculate the H 0 rxn in kj for this reaction. a) 6339 b) 5106 c) 775 d) 6535 e) 2909 Exam 1A 1) The molar solubility of a salt M 2 X 3 is 1.9 10 3 M. (M is the cation and X is the anion.) What is the value of Ksp for this salt? a) 1.5E-13 b) 2.7E-12 c) 2.5E-14 d) 8.9E-13 e) 3.8E-3 2) What

More information

5.2 Energy. N Goalby chemrevise.org Lattice Enthalpy. Definitions of enthalpy changes

5.2 Energy. N Goalby chemrevise.org Lattice Enthalpy. Definitions of enthalpy changes 5.2 Energy 5.2.1 Lattice Enthalpy Definitions of enthalpy changes Enthalpy change of formation The standard enthalpy change of formation of a compound is the energy transferred when 1 mole of the compound

More information

Thermochemistry. Chapter 6. Dec 19 8:52 AM. Thermochemistry. Energy: The capacity to do work or to produce heat

Thermochemistry. Chapter 6. Dec 19 8:52 AM. Thermochemistry. Energy: The capacity to do work or to produce heat Chapter 6 Dec 19 8:52 AM Intro vocabulary Energy: The capacity to do work or to produce heat Potential Energy: Energy due to position or composition (distance and strength of bonds) Kinetic Energy: Energy

More information

7/19/2011. Models of Solution. State of Equilibrium. State of Equilibrium Chemical Reaction

7/19/2011. Models of Solution. State of Equilibrium. State of Equilibrium Chemical Reaction Models of Solution Chemistry- I State of Equilibrium A covered cup of coffee will not be colder than or warmer than the room temperature Heat is defined as a form of energy that flows from a high temperature

More information