Thermochemistry Lecture

Size: px
Start display at page:

Download "Thermochemistry Lecture"

Transcription

1 Thermochemistry Lecture Jennifer Fang 1. Enthalpy 2. Entropy 3. Gibbs Free Energy 4. q 5. Hess Law 6. Laws of Thermodynamics ENTHALPY total energy in all its forms; made up of the kinetic energy of the motion of the molecules - The symbol for enthalpy is H - We cannot measure H directly, but we can measure changes in enthalpy, represented by the symbol ΔH where delta(δ) = change - If change in enthalpy is positive then the reaction absorbed heat (endothermic) - If change in enthalpy is negative then the reaction released heat (exothermic) - Change in enthalpy is directly dependent on number of moles; for example, the change in enthalpy for the reaction of 2O O2 is twice as large as the change in enthalpy for the reaction O ½ O2 - ΔH f is enthalpy of formation; ie the amount of enthalpy required to form a pure compound or molecule from its elements - Ex: C + 4H = CH4 has a ΔH f of kj/mol 1. Given the equation 3 O2(g) 2 O3(g) H = kj, calculate H for the following reaction. 3/2 O2(g) O3(g) Since 3/2 O2(g) O3(g) is ½ of 3 O2(g) 2 O3(g) the enthalpy of the reaction will be ½ the enthalpy of the reaction 3 O2(g) 2 O3(g)

2 ½ (+285.4kJ) = kJ ENTROPY commonly referred to as disorder or randomness - The symbol for entropy is S, and the symbol for change in entropy is ΔS - Entropy of gases is greater than entropy of liquids and solids - Entropy is higher as temperature increases - Entropy of larger molecules is greater than entropy of smaller molecules - Δ Suniverse = ΔSsys + ΔSsurr where ΔSuniverse is the change in the entropy of the universe and ΔSsys is the change in entropy of the reaction and ΔSsurr is the change in entropy of the surrounding of the reaction - ΔSsurr of a spontaneous process is positive (entropy of the surroundings increases = entropically favored = spontaneous) - ΔSsurr of a nonspontaneous process is negative - Most, but not all, exothermic processes are spontaneous giving them a positive value of S - ΔS f is entropy; ie the amount of free energy required to form a pure compound or molecule from its elements - Ex: C + 4H = CH4 has a ΔS f of 186 J/mol 2. 4 NH3(g) + 5 O2(g) 4 NO(g) + 6 H2O(g) Given: S NH3 = 193 J/K mol S O2 = 205 J/K mol S NO = 211 J/K mol S H2O = 189 J/K mol ANSWER The change in the standard molar entropy of a reaction can be found by the difference between the sum of the molar entropies of the products and the sum of the molar entropies of the reactants. ΔS reaction = Δ S products - Δ S reactants ΔS reaction = (4 S NO + 6 S H2O) - (4 S NH3 + 5 S O2) ΔS reaction = (4(211 J/K K) + 6(189 J/K mol)) - (4(193 J/K mol) + 5(205 J/

3 K mol)) ΔS reaction = (844 J/K K J/K mol) - (772 J/K mol J/K mol) ΔS reaction = 1978 J/K mol J/K mol) ΔS reaction = 181 J/K mol GIBBS FREE ENERGY the amount of work obtainable from a thermodynamic system at a set temperature and pressure - The formula to determine change in Gibbs Free energy is ΔG = ΔH - T ΔS where delta H is change in enthalpy, T is temperature in Kelvins, and delta S is change in entropy - G = H TS is the formula to determine Gibbs Free Energy - ΔG is the value of change in Gibbs Free energy at STP (standard temperature and pressure of 25 Celsius and 1 atm) - A positive ΔG means that a reaction is spontaneous - The following table demonstrates the relation ship between the signs of ΔH and ΔS on ΔG ΔH ΔS ΔG + + There will be a temperature above which entropy will win and make the process spontaneous + - Always positive - + Always negative - - There is a temperature below which enthalpy will win and make the process spontaneous - ΔG f is Gibbs free energy of formation; ie the amount of free energy required to form a pure compound or molecule from its elements - Ex: C + 4H = CH4 has a ΔG f of 50.6 kj/mol 3. Calculate H and S and ΔG for the following reaction at 298 K and determine if it is spontaneous or nonspontaneous.

4 N2(g) + 3 H2(g) 2 NH3(g) Q ANSWER Using a standard-state enthalpy of formation and absolute entropy data table,we find the following information: Compound Hf o (kj/mol) S (J/mol-K) N2(g) H2(g) NH3(g) The reaction is exothermic ( H < 0), which means that the enthalpy of reaction favors the products of the reaction: H o = Δ Hf o (products) - Δ Hf o (reactants) = [2 mol NH3 x kj/mol] - [1 mol N2 x 0 kj/mol + 3 mol H2 x 0 kj/ mol] = kj S o = Δ S o (products) - ΔS o (reactants) = [2 mol NH3 x J/mol-K] - [1 mol N2 x J/mol-K + 3 mol H2 x J/mol-K] = J/K ΔG = ΔH - T ΔS = kj (298K) ( J/K) BE CAREFUL: the units of change in entropy are commonly in joules while the units of change in enthalpy are usually kilojoules, you have to convert one or the other to J/ kj to be able to subtract one from the other ΔG = ΔH - T ΔS = kj (298K) ( kj/k) = kj which means that this reaction is spontaneous 4. Q of a reaction is equal to heat 5. The formula for q is q = mc T where m = mass, c = specific heat, and T is the change in temperature 6. Usually you solve for q as heat when you are determining how many calories or kilocalories it takes to raise a certain substance a certain number of degrees

5 7. C as specific heat is defined as the amount of heat per unit mass required to raise the temperature by one degree Celsius 8. Usually c is express in units of calories/g *degrees Celsius 9. Some textbooks may also call specific heat Cp 4. How much heat, in calories and kilocalories, does it take to raise the temperature of 814g of water from 18.0 C to 100 C? Answer q = mc T = (814g)(1cal/g C)(100C 18C) = 6.67x10^4 cal = 66.7 kcal T in this case = +82 C because you are trying to raise the temperature that many degrees HESS LAW Hess's law states that the enthalpy or heat change accompanying a chemical reaction is independent of the pathway between the initial and final states. In other words, if a chemical change takes place by several different routes, the overall enthalpy change is the same, regardless of the route by which the chemical change occurs (provided the initial and final condition are the same). 10. Basically, reactions can be added up to find the total enthalpy change of a reaction that we cannot measure the independent parts of 11. In a laboratory, it is impossible to find the change in enthalpy for the reaction C2H4(g) + H2(g) C2H6(g), but we can measure the enthalpy changes for the reactions involving intermediates of those reactions and add those reactions up to find the total enthalpy change for C2H4(g) + H2(g) C2H6(g 5. Calculate the enthalpy change for the reaction C2H4(g) + H2(g) C2H6(g) H =? Given: 2 C2H6(g) + 7O2(g) 4CO2(g) + 6 H2O (l) H = kJ 2H2(g) + O2(g) 2 H2O (l) H = kJ ANSWER:

6 To figure this out, we need to rearrange all the equations and play with them a little bit to make the intermediates cross out so that all we have left are C2H4, H2, and C2H6. Our intermediates are O2, CO2, and H2O. Somehow we need to flip some equations or multiply equations by certain coefficients to cross out all those intermediates. Remember, when you flip an equation, delta H is multiplied by -1. When you multiply an equation by a coefficient, delta H is multiplied by that coefficient. (keep as is so we have exactly 1 C2H4 on the reactants side) 2 C2H6(g) + 7O2(g) 4CO2(g) + 6 H2O (l) H = kJ (multiply by -1 and divide by two so we get exactly 1 C2H6 on the products side) 2H2(g) + O2(g) 2 H2O (l) H = kJ (divide by two to get exactly 1 H2 on the reactants side) NEW REACTIONS: 2CO2(g) + 3H2O (l) C2H6(g) + 7/2 O2(g) [ H = kJ TIMES -1 AND DIVIDED BY 2] H2(g) + ½ O2(g) H2O (l) [ H = kJ DIVIDED BY 2] There are 7/2 O2 on each side so we can cross that out, there are 3H2O on either side so we can cross that out, and there are 2CO2 on each side so we can cross that out 2CO2(g) + 3H2O (l) C2H6(g) + 7/2 O2(g) [ H = kJ TIMES -1 AND DIVIDED BY 2] H2(g) + ½ O2(g) H2O (l) [ H = kJ DIVIDED BY 2] Resulting equation = C2H4(g) + H2(g) C2H6(g) H = kJ kj kj = kJ LAWS OF THERMODYNAMICS 1. The first law of thermodynamics states that energy cannot be created or destroyed.

7 2. The second law of thermodynamics states that for any spontaneous process there is an increase of entropy in the universe; and the entropy of the universe is always increasing. 3. The third law of thermodynamics states that the entropy of a perfect crystal at 0K is 0.

CHM 112 Chapter 16 Thermodynamics Study Guide

CHM 112 Chapter 16 Thermodynamics Study Guide CHM 112 Chapter 16 Thermodynamics Study Guide Remember from Chapter 5: Thermodynamics deals with energy relationships in chemical reactions Know the definitions of system, surroundings, exothermic process,

More information

Chemistry Chapter 16. Reaction Energy

Chemistry Chapter 16. Reaction Energy Chemistry Reaction Energy Section 16.1.I Thermochemistry Objectives Define temperature and state the units in which it is measured. Define heat and state its units. Perform specific-heat calculations.

More information

Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy

Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy Unit 7: Energy Outline Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy Energy Energy is the ability to do work or produce heat. The energy

More information

Thermochemistry. Energy and Chemical Change

Thermochemistry. Energy and Chemical Change Thermochemistry Energy and Chemical Change Energy Energy can change for and flow, but it is always conserved. The Nature of Energy Energy the ability to do work or produce heat Potential energy Kinetic

More information

Thermodynamics. Thermodynamics of Chemical Reactions. Enthalpy change

Thermodynamics. Thermodynamics of Chemical Reactions. Enthalpy change Thermodynamics 1 st law (Cons of Energy) Deals with changes in energy Energy in chemical systems Total energy of an isolated system is constant Total energy = Potential energy + kinetic energy E p mgh

More information

Gibbs Free Energy Study Guide Name: Date: Period:

Gibbs Free Energy Study Guide Name: Date: Period: Gibbs Free Energy Study Guide Name: Date: Period: The basic goal of chemistry is to predict whether or not a reaction will occur when reactants are brought together. Ways to predict spontaneous reactions

More information

Saturday Study Session 1 3 rd Class Student Handout Thermochemistry

Saturday Study Session 1 3 rd Class Student Handout Thermochemistry Saturday Study Session 1 3 rd Class Student Handout Thermochemistry Multiple Choice Identify the choice that best completes the statement or answers the question. 1. C 2 H 4 (g) + 3 O 2 (g) 2 CO 2 (g)

More information

The Laws of Thermodynamics

The Laws of Thermodynamics Entropy I. This, like enthalpy, Thus, II. A reaction is ( more on this later) if: (H, enthalpy) (S, entropy) III. IV. Why does entropy happen? Probability It s harder to keep things in order (look at my

More information

ENTROPY HEAT HEAT FLOW. Enthalpy 3/24/16. Chemical Thermodynamics. Thermodynamics vs. Kinetics

ENTROPY HEAT HEAT FLOW. Enthalpy 3/24/16. Chemical Thermodynamics. Thermodynamics vs. Kinetics Chemical Thermodynamics The chemistry that deals with energy exchange, entropy, and the spontaneity of a chemical process. HEAT The energy that flows into or out of system because of a difference in temperature

More information

Chapter 15 Energy and Chemical Change

Chapter 15 Energy and Chemical Change Chapter 15 Energy and Chemical Change Chemical reactions usually absorb or release energy. Section 1: Energy Section 2: Heat Section 3: Thermochemical Equations Section 4: Calculating Enthalpy Change Section

More information

Section 1 - Thermochemistry

Section 1 - Thermochemistry Reaction Energy Section 1 - Thermochemistry Virtually every chemical reaction is accompanied by a change in energy. Chemical reactions usually absorb or release energy as heat. You learned in Chapter 12

More information

Study of energy changes that accompany physical and chemical changes.

Study of energy changes that accompany physical and chemical changes. Thermodynamics: Study of energy changes that accompany physical and chemical changes. First Law of Thermodynamics: Energy is niether created nor destroyed but simply converted from one form to another.

More information

Advanced Chemistry Practice Problems

Advanced Chemistry Practice Problems Thermodynamics: Review of Thermochemistry 1. Question: What is the sign of DH for an exothermic reaction? An endothermic reaction? Answer: ΔH is negative for an exothermic reaction and positive for an

More information

CHEMISTRY. Chapter 5 Thermochemistry

CHEMISTRY. Chapter 5 Thermochemistry CHEMISTRY The Central Science 8 th Edition Chapter 5 Thermochemistry Dr. Kozet YAPSAKLI The Nature of Energy Kinetic and Potential Energy Potential energy can be converted into kinetic energy. E p = mgh

More information

Lecture #13. Chapter 17 Enthalpy and Entropy

Lecture #13. Chapter 17 Enthalpy and Entropy Lecture #13 Chapter 17 Enthalpy and Entropy First Law of Thermodynamics Energy cannot be created or destroyed The total energy of the universe cannot change Energy can be transferred from one place to

More information

Chapter Eighteen. Thermodynamics

Chapter Eighteen. Thermodynamics Chapter Eighteen Thermodynamics 1 Thermodynamics Study of energy changes during observed processes Purpose: To predict spontaneity of a process Spontaneity: Will process go without assistance? Depends

More information

Chemical Thermodynamics

Chemical Thermodynamics Page III-16-1 / Chapter Sixteen Lecture Notes Chemical Thermodynamics Thermodynamics and Kinetics Chapter 16 Chemistry 223 Professor Michael Russell How to predict if a reaction can occur, given enough

More information

Second Law of Thermodynamics

Second Law of Thermodynamics Second Law of Thermodynamics First Law: the total energy of the universe is a constant Second Law: The entropy of the universe increases in a spontaneous process, and remains unchanged in a process at

More information

Reaction Energy. Thermochemistry

Reaction Energy. Thermochemistry Reaction Energy Thermochemistry Thermochemistry The study of the transfers of energy as heat that accompany chemical reactions & physical changes Thermochemistry -In studying heat changes, think of defining

More information

II. The Significance of the Signs Property Positive (+) Negative (-)

II. The Significance of the Signs Property Positive (+) Negative (-) Entropy I. Entropy, S, is the measure of the disorder of a system. A. This, like enthalpy, cannot be measured. B. Thus, only the change in disorder ( S) can be measured. II. A reaction is spontaneous (more

More information

Unit 4: Thermochemistry

Unit 4: Thermochemistry Unit 4: Thermochemistry The making and breaking of bonds only happen as a result of energy being exchanged. Some reactions give off energy and some take in energy. This unit is all about the energy of

More information

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy THERMOCHEMISTRY Thermodynamics Study of energy and its interconversions Energy is TRANSFORMED in a chemical reaction (POTENTIAL to KINETIC) HEAT (energy transfer) is also usually produced or absorbed -SYSTEM:

More information

Chapter 10 Lecture Notes: Thermodynamics

Chapter 10 Lecture Notes: Thermodynamics Chapter 10 Lecture Notes: Thermodynamics During this unit of study, we will cover three main areas. A lot of this information is NOT included in your text book, which is a shame. Therefore, the notes you

More information

Ch. 14 Notes ENERGY AND CHEMICAL CHANGE NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 14 Notes ENERGY AND CHEMICAL CHANGE NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 14 Notes ENERGY AND CHEMICAL CHANGE NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. I. Energy the capacity to do work or produce heat A. two basic types of

More information

Thermochemistry-Part 1

Thermochemistry-Part 1 Brad Collins Thermochemistry-Part 1 Chapter 7 Thermochemistry Thermodynamics: The study of energy Thermochemistry: The study of energy in chemical reactions Energy: The capacity to do work Work = force

More information

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy THERMOCHEMISTRY Thermodynamics Study of energy and its interconversions Energy is TRANSFORMED in a chemical reaction (POTENTIAL to KINETIC) HEAT (energy transfer) is also usually produced or absorbed -SYSTEM:

More information

Chapter 19 Chemical Thermodynamics Entropy and free energy

Chapter 19 Chemical Thermodynamics Entropy and free energy Chapter 19 Chemical Thermodynamics Entropy and free energy Learning goals and key skills: Explain and apply the terms spontaneous process, reversible process, irreversible process, and isothermal process.

More information

First Law of Thermodynamics

First Law of Thermodynamics Energy Energy: ability to do work or produce heat. Types of energy 1) Potential energy - energy possessed by objects due to position or arrangement of particles. Forms of potential energy - electrical,

More information

Energy Changes, Reaction Rates and Equilibrium. Thermodynamics: study of energy, work and heat. Kinetic energy: energy of motion

Energy Changes, Reaction Rates and Equilibrium. Thermodynamics: study of energy, work and heat. Kinetic energy: energy of motion Energy Changes, Reaction Rates and Equilibrium Thermodynamics: study of energy, work and heat Kinetic energy: energy of motion Potential energy: energy of position, stored energy Chemical reactions involve

More information

Thermochemistry. Energy and Chemical Change

Thermochemistry. Energy and Chemical Change Thermochemistry Energy and Chemical Change Energy Energy can change for and flow, but it is always conserved. The Nature of Energy Energy the ability to do work or produce heat Potential energy Kinetic

More information

Energy and Chemical Change

Energy and Chemical Change Energy and Chemical Change Section 16.1 Energy In your textbook, read about the nature of energy. In the space at the left, write true if the statement is true; if the statement is false, change the italicized

More information

AP CHEMISTRY NOTES 4-1 THERMOCHEMISTRY: ENTHALPY AND ENTROPY

AP CHEMISTRY NOTES 4-1 THERMOCHEMISTRY: ENTHALPY AND ENTROPY AP CHEMISTRY NOTES 4-1 THERMOCHEMISTRY: ENTHALPY AND ENTROPY Reaction Rate how fast a chemical reaction occurs Collision Theory In order for a chemical reaction to occur, the following conditions must

More information

First Law of Thermodynamics: energy cannot be created or destroyed.

First Law of Thermodynamics: energy cannot be created or destroyed. 1 CHEMICAL THERMODYNAMICS ANSWERS energy = anything that has the capacity to do work work = force acting over a distance Energy (E) = Work = Force x Distance First Law of Thermodynamics: energy cannot

More information

I PUC CHEMISTRY CHAPTER - 06 Thermodynamics

I PUC CHEMISTRY CHAPTER - 06 Thermodynamics I PUC CHEMISTRY CHAPTER - 06 Thermodynamics One mark questions 1. Define System. 2. Define surroundings. 3. What is an open system? Give one example. 4. What is closed system? Give one example. 5. What

More information

Chapter 8 Thermochemistry: Chemical Energy. Chemical Thermodynamics

Chapter 8 Thermochemistry: Chemical Energy. Chemical Thermodynamics Chapter 8 Thermochemistry: Chemical Energy Chapter 8 1 Chemical Thermodynamics Chemical Thermodynamics is the study of the energetics of a chemical reaction. Thermodynamics deals with the absorption or

More information

Chapter 8 Thermochemistry: Chemical Energy

Chapter 8 Thermochemistry: Chemical Energy Chapter 8 Thermochemistry: Chemical Energy 國防醫學院生化學科王明芳老師 2011-11-8 & 2011-11-15 Chapter 8/1 Energy and Its Conservation Conservation of Energy Law: Energy cannot be created or destroyed; it can only be

More information

Chemistry 123: Physical and Organic Chemistry Topic 2: Thermochemistry

Chemistry 123: Physical and Organic Chemistry Topic 2: Thermochemistry Recall the equation. w = -PΔV = -(1.20 atm)(1.02 L)( = -1.24 10 2 J -101 J 1 L atm Where did the conversion factor come from? Compare two versions of the gas constant and calculate. 8.3145 J/mol K 0.082057

More information

Unit 10 Thermodynamics, Kinetics and Equilibrium Notes

Unit 10 Thermodynamics, Kinetics and Equilibrium Notes Unit 10 Thermodynamics, Kinetics and Equilibrium Notes What is Thermodynamics? Almost all chemical reactions involve a between the and its. Thermo = Dynamics = What is energy? What is heat? Thermochemistry

More information

AP* Chemistry THERMOCHEMISTRY

AP* Chemistry THERMOCHEMISTRY AP* Chemistry THERMOCHEMISTRY Let s begin with terms for you to master: Heat (q) Two systems with different temperatures that are in thermal contact will exchange thermal energy, the quantity of which

More information

Thermodynamics: Entropy

Thermodynamics: Entropy Name: Band: Date: Thermodynamics: Entropy Big Idea: Entropy When we were studying enthalpy, we made a generalization: most spontaneous processes are exothermic. This is a decent assumption to make because

More information

Unit 12. Thermochemistry

Unit 12. Thermochemistry Unit 12 Thermochemistry A reaction is spontaneous if it will occur without a continuous input of energy However, it may require an initial input of energy to get it started (activation energy) For Thermochemistry

More information

Chpt 19: Chemical. Thermodynamics. Thermodynamics

Chpt 19: Chemical. Thermodynamics. Thermodynamics CEM 152 1 Reaction Spontaneity Can we learn anything about the probability of a reaction occurring based on reaction enthaplies? in general, a large, negative reaction enthalpy is indicative of a spontaneous

More information

Thermodynamics: Study of heat and its relationship with other forms of energy

Thermodynamics: Study of heat and its relationship with other forms of energy Unit 6 The 6 th planet in our solar system is Saturn Ch. 5: Thermodynamics: Study of heat and its relationship with other forms of energy Two types of energy: Kinetic: movement, active energy Potential:

More information

General Entropy Trends

General Entropy Trends General Entropy Trends The following generally show an in entropy: 1. Phase changes from solid to liquid, or liquid to gas or a solid to a gas. SOLID LIQUID GAS low entropy high entropy 2. Chemical reactions

More information

Second law of thermodynamics

Second law of thermodynamics Second law of thermodynamics It is known from everyday life that nature does the most probable thing when nothing prevents that For example it rains at cool weather because the liquid phase has less energy

More information

The Nature of Energy. Chapter Six: Kinetic vs. Potential Energy. Energy and Work. Temperature vs. Heat

The Nature of Energy. Chapter Six: Kinetic vs. Potential Energy. Energy and Work. Temperature vs. Heat The Nature of Energy Chapter Six: THERMOCHEMISTRY Thermodynamics is the study of energy and its transformations. Thermochemistry is the study of the relationship between chemical reactions and energy changes

More information

Thermodynamics- Chapter 19 Schedule and Notes

Thermodynamics- Chapter 19 Schedule and Notes Thermodynamics- Chapter 19 Schedule and Notes Date Topics Video cast DUE Assignment during class time One Review of thermodynamics ONE and TWO Review of thermo Wksheet Two 19.1-4; state function THREE

More information

Free-energy change ( G) and entropy change ( S)

Free-energy change ( G) and entropy change ( S) Free-energy change ( G) and entropy change ( S) A SPONTANEOUS PROCESS (e.g. diffusion) will proceed on its own without any external influence. A problem with H A reaction that is exothermic will result

More information

CHEMICAL THERMODYNAMICS. Nature of Energy. ΔE = q + w. w = PΔV

CHEMICAL THERMODYNAMICS. Nature of Energy. ΔE = q + w. w = PΔV CHEMICAL HERMODYNAMICS Nature of Energy hermodynamics hermochemistry Energy (E) Work (w) Heat (q) Some Definitions Study the transformation of energy from one form to another during physical and chemical

More information

Chapter 19 Chemical Thermodynamics

Chapter 19 Chemical Thermodynamics Chapter 19 Chemical Thermodynamics Kinetics How fast a rxn. proceeds Equilibrium How far a rxn proceeds towards completion Thermodynamics Study of energy relationships & changes which occur during chemical

More information

Gibb s Free Energy. This value represents the maximum amount of useful work (non PV-work) that can be obtained by a system.

Gibb s Free Energy. This value represents the maximum amount of useful work (non PV-work) that can be obtained by a system. Gibb s Free Energy 1. What is Gibb s free energy? What is its symbol? This value represents the maximum amount of useful work (non PV-work) that can be obtained by a system. It is symbolized by G. We only

More information

Thermochemistry: the study of energy (in the from of heat) changes that accompany physical & chemical changes

Thermochemistry: the study of energy (in the from of heat) changes that accompany physical & chemical changes Thermochemistry Thermochemistry: the study of energy (in the from of heat) changes that accompany physical & chemical changes heat flows from high to low (hot cool) endothermic reactions: absorb energy

More information

concentrations (molarity) rate constant, (k), depends on size, speed, kind of molecule, temperature, etc.

concentrations (molarity) rate constant, (k), depends on size, speed, kind of molecule, temperature, etc. #80 Notes Ch. 12, 13, 16, 17 Rates, Equilibriums, Energies Ch. 12 I. Reaction Rates NO 2(g) + CO (g) NO (g) + CO 2(g) Rate is defined in terms of the rate of disappearance of one of the reactants, but

More information

Chapter 11. Thermochemistry. 1. Let s begin by previewing the chapter (Page 292). 2. We will partner read Pages

Chapter 11. Thermochemistry. 1. Let s begin by previewing the chapter (Page 292). 2. We will partner read Pages Chapter 11 Thermochemistry 1. Let s begin by previewing the chapter (Page 292). 2. We will partner read Pages 293-94 The Flow of energy - heat Thermochemistry concerned with the heat changes that occur

More information

Unit 5: Spontaneity of Reaction. You need to bring your textbooks everyday of this unit.

Unit 5: Spontaneity of Reaction. You need to bring your textbooks everyday of this unit. Unit 5: Spontaneity of Reaction You need to bring your textbooks everyday of this unit. THE LAWS OF THERMODYNAMICS 1 st Law of Thermodynamics Energy is conserved ΔE = q + w 2 nd Law of Thermodynamics A

More information

Chapter 19 Chemical Thermodynamics Entropy and free energy

Chapter 19 Chemical Thermodynamics Entropy and free energy Chapter 19 Chemical Thermodynamics Entropy and free energy Learning goals and key skills: Understand the meaning of spontaneous process, reversible process, irreversible process, and isothermal process.

More information

Ch. 14 In-Class Exercise

Ch. 14 In-Class Exercise 1 Chemistry 123/125 Ch. 14 In-Class Exercise Many physical and chemical processes proceed naturally in one direction, but not in the other. In other words, these processes are spontaneous in the direction

More information

Chapter 19 Chemical Thermodynamics

Chapter 19 Chemical Thermodynamics Chapter 19 Chemical Thermodynamics Spontaneous Processes Entropy and the Second Law of Thermodynamics The Molecular Interpretation of Entropy Entropy Changes in Chemical Reactions Gibbs Free Energy Free

More information

MCAT General Chemistry Discrete Question Set 19: Thermochemistry & Thermodynamics

MCAT General Chemistry Discrete Question Set 19: Thermochemistry & Thermodynamics MCAT General Chemistry Discrete Question Set 19: Thermochemistry & Thermodynamics Question No. 1 of 10 1: A metal with a high heat capacity is put on a hot plate. What will happen? Question #01 A. The

More information

Chapter 20: Thermodynamics

Chapter 20: Thermodynamics Chapter 20: Thermodynamics Thermodynamics is the study of energy (including heat) and chemical processes. First Law of Thermodynamics: Energy cannot be created nor destroyed. E universe = E system + E

More information

CHM 1046 FINAL REVIEW

CHM 1046 FINAL REVIEW CHM 1046 FINAL REVIEW Prepared & Presented By: Marian Ayoub PART I Chapter Description 6 Thermochemistry 11 States of Matter; Liquids and Solids 12 Solutions 13 Rates of Reactions 18 Thermodynamics and

More information

Unit 7 Kinetics and Thermodynamics

Unit 7 Kinetics and Thermodynamics 17.1 The Flow of Energy Heat and Work Unit 7 Kinetics and Thermodynamics I. Energy Transformations A. Temperature 1. A measure of the average kinetic energy of the particles in a sample of matter B. Heat

More information

Thermodynamics C Test

Thermodynamics C Test Northern Regional: January 19 th, 2019 Thermodynamics C Test Name(s): Team Name: School Name: Team Number: Rank: Score: Science Olympiad North Florida Regional at the University of Florida Thermodynamics

More information

Topic 05 Energetics : Heat Change. IB Chemistry T05D01

Topic 05 Energetics : Heat Change. IB Chemistry T05D01 Topic 05 Energetics 5.1-5.2: Heat Change IB Chemistry T05D01 5.1 Exothermic and endothermic reactions - 1 hour 5.1.1 Define the terms exothermic reaction, endothermic reaction and standard enthalpy change

More information

THERMODYNAMICS. Dr. Sapna Gupta

THERMODYNAMICS. Dr. Sapna Gupta THERMODYNAMICS Dr. Sapna Gupta FIRST LAW OF THERMODYNAMICS Thermodynamics is the study of heat and other forms of energy involved in chemical or physical processes. First Law of Thermodynamics Energy cannot

More information

UNIT 15: THERMODYNAMICS

UNIT 15: THERMODYNAMICS UNIT 15: THERMODYNAMICS ENTHALPY, DH ENTROPY, DS GIBBS FREE ENERGY, DG ENTHALPY, DH Energy Changes in Reactions Heat is the transfer of thermal energy between two bodies that are at different temperatures.

More information

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation THERMOCHEMISTRY Thermochemistry Energy 1st Law of Thermodynamics Enthalpy / Calorimetry Hess' Law Enthalpy of Formation The Nature of Energy Kinetic Energy and Potential Energy Kinetic energy is the energy

More information

Chapter 16. Thermodynamics. Thermochemistry Review. Calculating H o rxn. Predicting sign for H o rxn. Creative Commons License

Chapter 16. Thermodynamics. Thermochemistry Review. Calculating H o rxn. Predicting sign for H o rxn. Creative Commons License Chapter 16 Thermodynamics GCC CHM152 Creative Commons License Images and tables in this file have been used from the following sources: OpenStax: Creative Commons Attribution License 4.0. ChemWiki (CC

More information

Entropy. Spontaneity. Entropy. Entropy mol of N 2 at 1 atm or 1 mol of N 2 at atm. process a process that occurs without intervention

Entropy. Spontaneity. Entropy. Entropy mol of N 2 at 1 atm or 1 mol of N 2 at atm. process a process that occurs without intervention Entropy Spontaneity process a process that occurs without intervention can be fast or slow Entropy (s) the measure of molecular randomness or disorder Think of entropy as the amount of chaos Entropy Predict

More information

OAT General Chemistry Problem Drill 15: Thermochemistry & Thermodynamics

OAT General Chemistry Problem Drill 15: Thermochemistry & Thermodynamics OAT General Chemistry Problem Drill 15: Thermochemistry & Thermodynamics Question No. 1 of 10 1. A metal with a high heat capacity is put on a hot plate. What will happen? Question #01 (A) The temperature

More information

Name Date Class SECTION 16.1 PROPERTIES OF SOLUTIONS

Name Date Class SECTION 16.1 PROPERTIES OF SOLUTIONS SOLUTIONS Practice Problems In your notebook, solve the following problems. SECTION 16.1 PROPERTIES OF SOLUTIONS 1. The solubility of CO 2 in water at 1.22 atm is 0.54 g/l. What is the solubility of carbon

More information

Chapter 19. Chemical Thermodynamics. Chemical Thermodynamics

Chapter 19. Chemical Thermodynamics. Chemical Thermodynamics Chapter 19 Enthalpy A thermodynamic quantity that equal to the internal energy of a system plus the product of its volume and pressure exerted on it by its surroundings; Enthalpy is the amount of energy

More information

CHAPTER 16 REVIEW. Reaction Energy. SHORT ANSWER Answer the following questions in the space provided.

CHAPTER 16 REVIEW. Reaction Energy. SHORT ANSWER Answer the following questions in the space provided. CHAPTER 16 REVIEW Reaction Energy SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. For elements in their standard state, the value of H 0 f is 0. 2. The formation and decomposition

More information

CHAPTER 16: REACTION ENERGY AND CHAPTER 17: REACTION KINETICS. Honors Chemistry Ms. Agostine

CHAPTER 16: REACTION ENERGY AND CHAPTER 17: REACTION KINETICS. Honors Chemistry Ms. Agostine CHAPTER 16: REACTION ENERGY AND CHAPTER 17: REACTION KINETICS Honors Chemistry Ms. Agostine 16.1 Thermochemistry Definition: study of the transfers of energy as heat that accompany chemical reactions and

More information

Chemistry 101 Chapter 10 Energy

Chemistry 101 Chapter 10 Energy Chemistry 101 Chapter 10 Energy Energy: the ability to do work or produce heat. Kinetic energy (KE): is the energy of motion. Any object that is moving has kinetic energy. Several forms of kinetic energy

More information

Unit 15 Energy and Thermochemistry Notes

Unit 15 Energy and Thermochemistry Notes Name KEY Period CRHS Academic Chemistry Unit 15 Energy and Thermochemistry Notes Quiz Date Exam Date Lab Dates Notes, Homework, Exam Reviews and Their KEYS located on CRHS Academic Chemistry Website: https://cincochem.pbworks.com

More information

Energy and Chemical Change

Energy and Chemical Change Energy and Chemical Change Section 15.1 Energy Section 15.2 Heat Section 15.3 Thermochemical Equations Section 15.4 Calculating Enthalpy Change Section 15.5 Reaction Spontaneity Click a hyperlink or folder

More information

Thermodynamics: Free Energy and Entropy. Suggested Reading: Chapter 19

Thermodynamics: Free Energy and Entropy. Suggested Reading: Chapter 19 Thermodynamics: Free Energy and Entropy Suggested Reading: Chapter 19 System and Surroundings System: An object or collection of objects being studied. Surroundings: Everything outside of the system. the

More information

10-1 Heat 10-2 Calorimetry 10-3 Enthalpy 10-4 Standard-State Enthalpies 10-5 Bond Enthalpies 10-6 The First Law of Thermodynamics

10-1 Heat 10-2 Calorimetry 10-3 Enthalpy 10-4 Standard-State Enthalpies 10-5 Bond Enthalpies 10-6 The First Law of Thermodynamics Chapter 10 Thermochemistry 10-1 Heat 10-2 Calorimetry 10-3 Enthalpy 10-4 Standard-State Enthalpies 10-5 Bond Enthalpies 10-6 The First Law of Thermodynamics OFB Chap. 10 1 Chapter 10 Thermochemistry Heat

More information

CP Chapter 17 Thermochemistry

CP Chapter 17 Thermochemistry CP Chapter 17 Thermochemistry Thermochemistry Thermochemistry is the study of energy that occur during chemical reactions and phase changes (changes of state) The Nature of Energy Energy is the ability

More information

10-1 Heat 10-2 Calorimetry 10-3 Enthalpy 10-4 Standard-State Enthalpies 10-5 Bond Enthalpies 10-6 The First Law of Thermodynamics

10-1 Heat 10-2 Calorimetry 10-3 Enthalpy 10-4 Standard-State Enthalpies 10-5 Bond Enthalpies 10-6 The First Law of Thermodynamics Chapter 10 Thermochemistry 10-1 Heat 10-2 Calorimetry 10-3 Enthalpy 10-4 Standard-State Enthalpies 10-5 Bond Enthalpies 10-6 The First Law of Thermodynamics OFB Chap. 10 1 OFB Chap. 10 2 Thermite Reaction

More information

Thermochemistry: Energy Flow and Chemical Reactions

Thermochemistry: Energy Flow and Chemical Reactions Thermochemistry: Energy Flow and Chemical Reactions Outline thermodynamics internal energy definition, first law enthalpy definition, energy diagrams, calorimetry, theoretical calculation (heats of formation

More information

Energy, Heat and Temperature. Introduction

Energy, Heat and Temperature. Introduction Energy, Heat and Temperature Introduction 3 basic types of energy: Potential (possibility of doing work because of composition or position) Kinetic (moving objects doing work) Radiant (energy transferred

More information

The process of iron being oxidized to make iron(iii) oxide (rust) is spontaneous. Which of these statements about this process is/are true?

The process of iron being oxidized to make iron(iii) oxide (rust) is spontaneous. Which of these statements about this process is/are true? Homework Chapter 19 Due: 11:59pm on Wednesday, November 16, 2016 You will receive no credit for items you complete after the assignment is due. Grading Policy Sample Exercise 19.1 Practice Exercise 1 with

More information

Collision Theory. Unit 12: Chapter 18. Reaction Rates. Activation Energy. Reversible Reactions. Reversible Reactions. Reaction Rates and Equilibrium

Collision Theory. Unit 12: Chapter 18. Reaction Rates. Activation Energy. Reversible Reactions. Reversible Reactions. Reaction Rates and Equilibrium Collision Theory For reactions to occur collisions between particles must have Unit 12: Chapter 18 Reaction Rates and Equilibrium the proper orientation enough kinetic energy See Both In Action 1 2 Activation

More information

Gibbs Free Energy. Evaluating spontaneity

Gibbs Free Energy. Evaluating spontaneity Gibbs Free Energy Evaluating spontaneity Predicting Spontaneity An increase in entropy; Changing from a more structured to less structured physical state: Solid to liquid Liquid to gas Increase in temperature

More information

Chapter 5 - Thermochemistry

Chapter 5 - Thermochemistry Chapter 5 - Thermochemistry Study of energy changes that accompany chemical rx s. I) Nature of Energy Energy / Capacity to do work Mechanical Work w = F x d Heat energy - energy used to cause the temperature

More information

Practice Test F.1 (pg 1 of 7) Unit F - General Equilibrium Kp and Kc Name Per

Practice Test F.1 (pg 1 of 7) Unit F - General Equilibrium Kp and Kc Name Per Practice Test F. (pg of 7) Unit F - General Equilibrium Kp and Kc Name Per This is practice - Do NOT cheat yourself of finding out what you are capable of doing. Be sure you follow the testing conditions

More information

Chapter 11 Spontaneous Change and Equilibrium

Chapter 11 Spontaneous Change and Equilibrium Chapter 11 Spontaneous Change and Equilibrium 11-1 Enthalpy and Spontaneous Change 11-2 Entropy 11-3 Absolute Entropies and Chemical Reactions 11-4 The Second Law of Thermodynamics 11-5 The Gibbs Function

More information

Thermochemistry. Energy (and Thermochemistry) World of Chemistry Chapter 10. Energy. Energy

Thermochemistry. Energy (and Thermochemistry) World of Chemistry Chapter 10. Energy. Energy Thermochemistry Thermodynamics is the science of the relationship between heat and other forms of energy. (and Thermochemistry) World of Chemistry Chapter 10 is defined as the ability to do work or produce

More information

CHM 111 Dr. Kevin Moore

CHM 111 Dr. Kevin Moore CHM 111 Dr. Kevin Moore Kinetic Energy Energy of motion E k 1 2 mv 2 Potential Energy Energy of position (stored) Law of Conservation of Energy Energy cannot be created or destroyed; it can only be converted

More information

AP* Chemistry THERMOCHEMISTRY

AP* Chemistry THERMOCHEMISTRY AP* Chemistry THERMOCHEMISTRY Terms for you to learn that will make this unit understandable: Energy (E) the ability to do work or produce heat ; the sum of all potential and kinetic energy in a system

More information

Gilbert Kirss Foster. Chapter 9. Thermochemistry. Energy Changes in Chemical Reactions

Gilbert Kirss Foster. Chapter 9. Thermochemistry. Energy Changes in Chemical Reactions Gilbert Kirss Foster Chapter 9 Thermochemistry Energy Changes in Chemical Reactions Chapter Outline 9.1 Energy as a Reactant or Product 9.2 Transferring Heat and Doing Work 9.3 Enthalpy and Enthalpy Changes

More information

Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase

Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase changes Apply the second law of thermodynamics to chemical

More information

The Nature of Energy Energy is the ability to do work or produce Heat, q or Q, is ; flows due to temperature differences (always to )

The Nature of Energy Energy is the ability to do work or produce Heat, q or Q, is ; flows due to temperature differences (always to ) CP Chapter 17 Thermochemistry 2014-2015 Thermochemistry Thermochemistry is the study of energy that occur during chemical and physical changes (changes of state) The Nature of Energy Energy is the ability

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry Energy -Very much a chemistry topic Every chemical change has an accompanying change of. Combustion of fossil fuels The discharging a battery Metabolism of foods If we are to

More information

Lesmahagow High School AHChemistry Inorganic and Physical Chemistry Lesmahagow High School CfE Advanced Higher Chemistry

Lesmahagow High School AHChemistry Inorganic and Physical Chemistry Lesmahagow High School CfE Advanced Higher Chemistry Lesmahagow High School CfE Advanced Higher Chemistry Unit 1 Inorganic and Physical Chemistry Reaction Feasibility 1 Thermochemistry Thermochemistry is the study of energy changes in reactions. The First

More information

OCR Chemistry A H432

OCR Chemistry A H432 All the energy changes we have considered so far have been in terms of enthalpy, and we have been able to predict whether a reaction is likely to occur on the basis of the enthalpy change associated with

More information

Chemical Thermodynamics. Chapter 18

Chemical Thermodynamics. Chapter 18 Chemical Thermodynamics Chapter 18 Thermodynamics Spontaneous Processes Entropy and Second Law of Thermodynamics Entropy Changes Gibbs Free Energy Free Energy and Temperature Free Energy and Equilibrium

More information

Chapter 19 Chemical Thermodynamics

Chapter 19 Chemical Thermodynamics Chapter 19 Chemical Thermodynamics Kinetics How fast a rxn. proceeds Equilibrium How far a rxn proceeds towards completion Thermodynamics Study of energy relationships & changes which occur during chemical

More information