Thermodynamics- Chapter 19 Schedule and Notes

Size: px
Start display at page:

Download "Thermodynamics- Chapter 19 Schedule and Notes"

Transcription

1 Thermodynamics- Chapter 19 Schedule and Notes Date Topics Video cast DUE Assignment during class time One Review of thermodynamics ONE and TWO Review of thermo Wksheet Two ; state function THREE and FOUR 1, 2, 7, 11, 21, 29a, 30a, demo (Optional Introduction After Video Two to Chapter 19 Thermodynamics) 31 Three FIVE (Optional _after video four_chapter 19 Thermodynamics AND Optional after video four PART 2_Chapter 19 Thermodynamics) 39, 40, 47, 51, 52 Four SIX and SEVEN 53, 55, 57, 60, 64 Five 19.7 EIGHT 71, 74, 75, 79 Six Seven Eight Nine Enthalpy, Entropy and Gibbs Lab Review Practice Test Review and in-class quiz Test Practice Tests

2 Sample Problems and Notes for Video ONE Energy and physical or chemical processes. Measured in 1 st law of Thermodynamics: Endo vs Exo: Heat at constant pressure is called: Diagrams: Ways to find Enthalpy of a Process: 1) Using info from an equation 2) Calorimetry 3) Hess Law 4) Enthalpy of Formation 5) Bond Enthalpies 1) Information from an Equation 2H 2 O 2 (l) 2H 2 O(l) + O 2 (g) ΔH= -196 kj What is the heat (q) [or ΔH, since it is at constant pressure)] when 5.0g of H2O2 decomposes? Think of the reverse of this question too.

3 2) Calorimetry At constant pressure, two equations: How much heat is needed to warm 250g of H 2 O from 22C to 98C. c H2O = J/gK What is the molar heat capacity (Cp) of H 2 O? More calorimetry Examples: When a student mixes 50mL of 1.0M HCl and 50mL of 1.0M NaOH in a coffee-cup calorimeter, the temperature of the resultant solution increases from 21.0 C to 27.5 C. Calculate the enthalpy change for the reaction, assuming that the calorimeter loses only a negligible quantity of heat, that the total volume of the solution is 100.0mL, that its density is 1.0g/mL, and that its specific heat is 4.184J/g C.

4 Constant Volume Calorimetry (Bomb Calorimetry): Methylhydrazine (CH 6 N 2 ) is commonly used as a liquid rocket fuel. The combustion of methylhydrazine with oxygen produces nitrogen, carbon dioxide and water. 2CH 6 N 2 + 5O 2 2N 2 + 2CO 2 + 6H 2 O When 4.00g of methylhydrazine is combusted in a bomb calorimeter, the temperature of the calorimeter increases from C to C. In a separate experiment the heat capacity of the calorimeter is measured to be kj/ C. What is the heat of reaction for the combustion of a mole of CH 6 N 2? 3) Hess Law Calculate ΔH for the reaction: 2C (s) + H 2(g) C 2 H 2(g) Given the following reactions and their respective enthalpy changes: C 2 H 2(g) + 5/2O 2(g) 2CO 2 + H 2 O ΔH = kJ C (s) + O 2(g) CO 2(g) ΔH = kJ H 2(g) + 1/2O 2(g) H 2 O ΔH = kJ 4) Standard Enthalpies of Formation, p. 191ff Use values from appendix C, pg 1123, to determine the enthalpy of reaction for the combustion of pentane gas to form carbon dioxide gas and liquid water. (p193)

5 5) Using Bond Enthalpies, p.332 Bond enthalpy is the enthalpy change, ΔH, for the breaking of a particular bond in one mole of a gaseous substance. Use bond enthalpies from p.330 in your text to estimate the enthalpy of reaction for the combustion of gaseous ethane, producing carbon dioxide gas and water vapor. p. 332.

6 Thermochemistry Review Worksheet for after Video ONE 1) The SI unit for energy is the Joule. Show how the units of meter, second and kilogram can be used to define Joule. 2) What is the first law of thermodynamics? 3) Thermodynamic quantities are always identified by a number and a sign (+ or -). What does each tell us about a system? 4) How much heat is released when 4.50g of methane gas is burned in a constant pressure system? (the ΔH for the combustion of methane is 890kJ/mol) 5) Large beds of rocks are used in some solar-heated homes to store heat. a) calculate the quantity of heat absorbed by 50.0kg of rocks if their temperature increases by 12.0 C. (Assume the specific heat of the rocks is 0.82 J/gK) b) What temperature change would these rocks undergo if they absorbed 450kJ of heat?

7 6) When solutions containing silver ions and chloride ions are mixed, silver chloride precipitates. a) write the thermochemical equation for this process assuming ΔH = 65.5kJ/mol b) the energy for a reaction such as this is sometimes called the energy of precipitation or heat of precipitation or ΔH of formation. Calculate the ΔH of formation of mol of AgCl. c) Calculate the ΔH when mmol (yes, milli-moles!) of AgCl dissolves in water.

8 7) A coffee-cup calorimeter of the type shown in figure 6.5 on page 185 of your text contains g of water at 25.1 C. A 121.0g block of Cu metal is heated to C by putting it in a beaker of boiling water. The specific heat of Cu(s) is J/gK. The Cu is added to the calorimeter and after a time the contents of the cup reach a constant temperature of 30.1 C. a) Determine the amount of heat, in Joules, lost by the copper block. b) Determine the amount of heat gained by the water (the specific heat of water is J/gK). c) The difference between your answers for (a) and (b) is due to the heat loss though the styrofoam cups and the heat necessary to raise the temperature of the inner wall of the apparatus. The heat capacity of the calorimeter is the amount of heat necessary to raise the temperature of the apparatus (the cups and the cover) by 1K. Calculate the heat capacity of the calorimeter in J/K. d) If only one Styrofoam cup were used in the apparatus, rather than two, would you expect the heat capacity of the calorimeter to increase, decrease or stay the same? Explain. e) What would be the final temperature of the system if all the heat lost by the Cu block were absorbed by the water in the calorimeter?

9 8) Calculate ΔH for the reaction NO (g) + O (g) NO 2(g) Given the following: NO (g) + O 3(g) NO 2(g) + O 2(g) ΔH=-198.9kJ O 2(g) 2O (g) ΔH=495.0kJ O 3(g) 3/2O 2(g) ΔH=-142.3kJ 9) What is the standard enthalpy of formation? What does the little mean in the term ΔH? How do you use standard enthalpies of formation to find ΔH rxn? 10) Use values from Appendix 4 (page A22) in your text to calculate a) the enthalpy change for the combustion of 1 mol of ethanol b) the combustion of 4.5g of ethanol. c) Now compare the energy in (b) with the combustion of 4.5g of methane gas (#3 above) which is greater? Why? 11) Use bond enthalpies from p.330 in your text to estimate the bond enthalpy of a nitrogen-nitrogen triple bond, when it is produced in the following reaction: N 2 H 4 (g) N 2 (g) + 2H 2 (g) ΔH = -86kJ

10 Videos TWO, THREE and FOUR thermodynamics video notes on this page and other pages provided by you. Write neat and large and use lots of white space on this.

11 Sample Problems, Chapter 19 These note pages start with video FIVE Predict whether the following processes are spontaneous as described, spontaneous in the reverse direction, or in equilibrium: a) when a piece of metal heated to 150 C is added to water at 40 C, the water gets hotter. b) Water at room temperature decomposes into H 2(g) and O 2(g). c) Benzene vapor, C 6 H 6(g), at a pressure of 1atm condenses to liquid benzene at the normal boiling point of benzene, 80.1 C. If a process is nonspontaneous, does that mean that it cannot occur under any circumstances? The element mercury, Hg, is a silvery liquid at room temperature. The normal freezing point of mercury is 38.9 C, and its molar enthalpy of fusion is ΔH fusion = 2.29kJ/mol. What is the entropy change of the system when 50.0g of Hg (l) freezes at the normal freezing point? Extra The normal boiling point of ethanol is 78.3 C and its molar enthalpy of vaporization is kj/mol. What is the change in entropy in the system when 68.3g of C 2 H 5 OH (g) at 1atm condenses to liquid at the normal boiling point? The second law of thermodynamics says that entropy..

12 19.3 Microstates not super important, but helps in understanding S = k lnw What is W? Predict whether ΔS is positive or negative for each of the following processes, assuming each occurs at a constant temperature: a) H 2 O (l) H 2 O (g) b) Ag + (aq) + Cl - (aq) AgCl (s) c) 4Fe (s) + 3O 2(g) 2Fe 2 O 3(s) d) N 2(g) + O 2(g) 2NO (g) Choose the sample of matter that has greater entropy in each pair and explain your choice: a) 1 mol of NaCl (s) or 1 mol of HCl (g) at 25 C b) 2 mol of HCl (g) or 1 mol of HCl (g) at 25 C c) 1 mol of HCl (g) or 1 mol of Ar (g) at 298K If you are told that the entropy of a certain system is zero, what do you know about the system? 19.4 Calculate the ΔS for the synthesis of ammonia from N 2(g) and H 2(g) at 298K: N 2(g) + 3H 2(g) 2NH 3(g)

13 You try: Using the standard entropies in Appendix C, calculate the standard entropy change, ΔS, for the following reaction at 298K: Al 2 O 3(s) + 3H 2(g) 2Al (s) + 3H 2 O (g) 19.5 What are the criteria for spontaneity in terms of: a) entropy b) free energy Calculate the standard free-energy change for the following reaction at 298K: P 4(g) + 6Cl 2(g) 4PCl 3(g)

14 What is ΔG for the reverse of this reaction? C 3 H 8(g) + 5O 2(g) 3CO 2(g) + 4H 2 O (l) ΔH = kj Without using data from appendix C, predict whether the Gibbs Free Energy for this reaction is more negative or less negative than ΔH. Use data from appendix C to calculate the standard free energy change for the reaction at 298K. Is your prediction correct? 19.6 The Haber Process: N 2(g) + 3H 2(g) 2NH 3(g) Assume that ΔH and ΔS for this reaction do not change with temperature. a) predict the direction in which ΔG for this reaction changes with increasing temperature. b) Calculate the values of ΔG for the reaction at 25 C and 500 C

15 Using standard enthalpies of formation and standard entropies in appendix C, calculate ΔH and ΔS at 298K for the following reaction: 2SO 2(g) + O 2(g) 2SO 3(g) Using the values obtained, estimate ΔG at 400K The Haber Process: N 2(g) + 3H 2(g) 2NH 3(g) Calculate ΔG at 298K for a reaction mixture that consists of 1.0atm N 2, 3.0 atm H 2, and 0.50 atm NH 3.

16 Use standard free energies of formation to calculate the equilibrium constant, K, at 25 C for the reaction involved in the Haber process: The Haber Process: N 2(g) + 3H 2(g) 2NH 3(g) The standard free-energy change for this reaction was calculated in an earlier practice problem it was 33.3kJ/mol = J/mol. Use data from appendix C to calculate the standard free-energy change, ΔG, and the equilibrium constant, K, at 298K for the reaction: H 2(g) + Br 2(l) 2HBr (g)

17 1991 D (Required) BCl 3 (g) + NH 3 (g) Cl 3 BNH 3 (s) The reaction represented above is a reversible reaction. (a) Predict the sign of the entropy change, S, as the reaction proceeds to the right. Explain your prediction. (b) If the reaction spontaneously proceeds to the right, predict the sign of the enthalpy change, H. Explain your prediction. (c) The direction in which the reaction spontaneously proceeds changes as the temperature is increased above a specific temperature. Explain. (d) What is the value of the equilibrium constant at the temperature referred to in (c); that is, the specific temperature at which the direction of the spontaneous reaction changes? Explain. Answer: (a) Because a mixture of 2 gases produces a single pure solid, there is an extremely large decrease in entropy, S < 0, i.e. the sign of S is negative. (b) In order for a spontaneous change to occur in the right direction, the enthalpy change must overcome the entropy change which favors the reactants (left), since nature favors a lower enthalpy, then the reaction must be exothermic to the right, H < 0. (c) G = H T S, the reaction will change direction when the sign of G changes, since H < 0 and S < 0, then at low temperatures the sign of G is negative and spontaneous to the right. At some higher T, H = T S and G = 0, thereafter, any higher temperature will see G as positive and spontaneous in the left direction. (d) At equilibrium, K = e G/RT, where G = 0, K = e o = D 2 C 4 H 10 (g) + 13 O 2 (g) 8 CO 2 (g) + 10 H 2 O(l) The reaction represented above is spontaneous at 25 C. Assume that all reactants and products are in their standard state. (a) Predict the sign of S for the reaction and justify your prediction. (b) What is the sign of G for the reaction? How would the sign and magnitude of G be affected by an increase in temperature to 50 C? Explain your answer. (c) What must be the sign of H for the reaction at 25 C? How does the total bond energy of the reactants compare to that of the products? (d) When the reactants are place together in a container, no change is observed even though the reaction is known to be spontaneous. Explain this observation. Answer: (a) S<0. The number of moles of gaseous products is less than the number of moles of gaseous reactants. OR A liquid is formed from gaseous reactants. (b) G<0. G becomes less negative as the temperature is increased since S < 0 and G = H T S. The term T S adds a positive number to H. (c) H<0. The bond energy of the reactants is less than the bond energy of the products. (d) The reaction has a high activation energy; OR is kinetically slow; OR a specific mention of the need for a catalyst or spark.

18 1994 D 2 H 2 S(g) + SO 2 (g) 3 S(s) + 2 H 2 O(g) At 298 K, the standard enthalpy change, H for the reaction represented above is 145 kilojoules. (a) Predict the sign of the standard entropy change, S, for the reaction. Explain the basis for your prediction. (b) At 298 K, the forward reaction (i.e., toward the right) is spontaneous. What change, if any, would occur in the value of G for this reaction as the temperature is increased? Explain your reasoning using thermodynamic principles. (c) What change, if any, would occur in the value of the equilibrium constant, K eq, for the situation described in (b)? Explain your reasoning. (d) The absolute temperature at which the forward reaction becomes nonspontaneous can be predicted. Write the equation that is used to make the prediction. Why does this equation predict only an approximate value for the temperature? Answer: (a) S is negative ( ). A high entropy mixture of two kinds of gases forms into a low entropy solid and a pure gas; 3 molecules of gas makes 2 molecules of gas, fewer gas molecules is at a lower entropy. (b) G < 0 if spontaneous. G = H T S Since S is neg. ( ), as T gets larger, T S will become larger than +145 kj and the sign of G becomes pos. (+) and the reaction is non spontanseous. (c) When T S < +145 kj, K eq > 1, when T S = +145 kj, K eq = 1, when T S > +145 kj, K eq < 1, but > 0 (d) G = 0 at this point, the equation is T = H S ; this assumes that H and/or S do not change with temperature; not a perfect assumption leading to errors in the calculation B C 2 H 2 (g) + 2 H 2 (g) C 2 H 6 (g) Information about the substances involved in the reaction represented above is summarized in the following tables. (a) Substance S (J/mol K) H f (kj/mol) C 2 H 2 (g) H 2 (g) C 2 H 6 (g) Bond Bond Energy (kj/mol) C C 347 C=C 611 C H 414 H H 436 If the value of the standard entropy change, S, for the reaction is joules per mole Kelvin, calculate the standard molar entropy, S, of C 2 H 6 gas. (b) Calculate the value of the standard free-energy change, G, for the reaction. What does the sign of G indicate about the reaction above? (c) Calculate the value of the equilibrium constant, K, for the reaction at 298 K. (d) Calculate the value of the C C bond energy in C 2 H 2 in kilojoules per mole.

19 Answer: (a) J/K = S (C2 H 6 ) [2(130.7) ] J/K (b) S (C2 H 6 ) = J/K H = H ƒ (products) H ƒ (reactants) = 84.7 kj [ (0)] kj = kj G = H T S = kj (298K)( kj/k) = kj A G < 0 (a negative G ) indicates a spontaneous forward reaction. (c) K eq = e G/RT = e ( /(8.314)(298)) (d) = H = bond energy of products bond energy of reactants kj = [(2)(436) + E c c + (2)(414)] [347 + (6)(414)] kj E c c = 820 kj 1997 D For the gaseous equilibrium represented below, it is observed that greater amounts of PCl 3 and Cl 2 are produced as the temperature is increased. PCl 5 (g) PCl 3 (g) + Cl 2 (g) (a) (b) (c) (d) What is the sign of S for the reaction? Explain. What change, if any, will occur in G for the reaction as the temperature is increased? Explain your reasoning in terms of thermodynamic principles. If He gas is added to the original reaction mixture at constant volume and temperature, what will happen to the partial pressure of Cl 2? Explain. If the volume of the reaction mixture is decreased at constant temperature to half the original volume, what will happen to the number of moles of Cl 2 in the reaction vessel? Explain. Answer: (a) The sign of S is (+). There is an increase in the number of gas molecules as well as a change from a pure gas to a mixture of gases. (b) G = H T S. Both S and H are (+). As temperature increases, at some point the sign of G will change from (+) to ( ), when the system will become spontaneous. (c) There will be no change in the partial pressure of the chlorine. Without a volume or temperature change, the pressure is independent of the other gases that are present. (d) The number of moles of Cl 2 will decrease. The decrease in volume will result in an increase in pressure and, according to LeChatelier s Principle, the equilibrium system will shift to the left (the side with fewer gas molecules) to reduce this increase in pressure. This will cause a decrease in the number of moles of products and an increase in the number of moles of reactant.

20 1. To measure enthalpy. 2. To calculate entropy. 3. To calculate Gibbs free energy. THERMODYNAMICS ENTHALPY, ENTROPY and GIBBS FREE ENERGY OBJECTIVES The Gibbs free energy is (delta G) is a measure of the spontaneity of a process and of the useful energy available from it. Negative delta G indicates a spontaneous process. Positive delta G indicates a nonspontaneous process or a process spontaneous in opposite direction Delta G is calculated from the equation: Delta G= delta H T delta S In today s experiments we will measure experimentally change in enthalpy, delta H, and obtain change in entropy, delta S, from the table data. After completing the calculations answer the following questions separately for each experiment: 1. Is the dissolving exothermic or endothermic? 2. Does the entropy decreases or increases during dissolving? 3. Is the Gibbs free energy positive or negative? Is the process of dissolving spontaneous?

21 Teacher Notes -- EXAMPLES OF CALCULATIONS: 1. Measurement and calculations of delta H g of magnesium sulfate was dissolved in 300. ml of water at 23.3 degree C in a coffee-cup calorimeter. After dissolving, the temperature increased to 36.6 degree C. Write the thermochemical equation for the reaction, that is, calculate the enthalpy for the reaction: MgSO4(s) --> Mg 2+ (aq) + SO4 2! (aq) Assume that the calorimeter loses only a negligible quantity of heat, density of the solutions is 1.00 g/ml, and the specific heat of the solutions is J/g K. Since adding the crystals doesn t change the volume noticeably, assume the mass of solution to be 300. g. Step 1. Calculate the heat produced in the reaction: heat = sp. heat of solution x mass of solution x delta T or qsoln = csoln x masssoln x delta Tsoln qsoln =4.184 J/g K x 300. g x 13.3 K = J = 16.7 kj Step 2. Calculate how many moles are 22.0 g of magnesium sulfate g x 1 mol/120.4 g = mol MgSO4 Step 3. Calculate the heat evolved per one mole of magnesium sulfate. This is the sought delta H value. Enthalpy will be negative, (!), since it is an exothermic reaction (the temperature went up). 1 mol x 16.7 kj/0.183 mol = 91.3 kj Step 4. Rewrite the equation with state symbols and with the delta H value. Enthalpy is expressed per number of moles in the equation, in this case, per one mole. MgSO4(s) >Mg 2+ (aq) + SO4 (aq) delta H = kj 2! 2. Delta S from standard tabulated data. MgSO4(s) 91.6 S (J/K mol) Mg 2+ (aq) SO4 2! (aq) 20.1 Delta S = S products - S reactants Delta S = [Mg 2+ (aq) + SO4 2 (aq)] - MgSO4(s) Delta S = [ J/K mol J/K mol] J/K mol = J/K mol This value indicates that entropy decreases during the dissolving. This is a rare case. It is related to formation of regular structures of water surrounding the ions. 3. Calculation of the Gibbs free energy. In all calculations we will use the standard temperature 298 K which is close to a room temperature. Enthalpy and entropy doesn t change significantly in our range of temperatures. Remember that )H is usually expresses in kj and S in J. Perform appropriate conversions before calculating )G. Delta G= delta H T delta S Delta G = J/mol - [298 K x ( J/K mol)] = J = kj/mol Negative value of delta G indicates that dissolving magnesium sulfate is spontaneous.

Chapter 19 Chemical Thermodynamics

Chapter 19 Chemical Thermodynamics Chapter 19. Chemical Thermodynamics Sample Exercise 19.2 (p. 819) Elemental mercury is a silver liquid at room temperature. Its normal freezing point is -38.9 o C, and its molar enthalpy of fusion is H

More information

Thermochemistry: the study of energy (in the from of heat) changes that accompany physical & chemical changes

Thermochemistry: the study of energy (in the from of heat) changes that accompany physical & chemical changes Thermochemistry Thermochemistry: the study of energy (in the from of heat) changes that accompany physical & chemical changes heat flows from high to low (hot cool) endothermic reactions: absorb energy

More information

AP* Thermodynamics Free Response Questions page 1. Essay Questions

AP* Thermodynamics Free Response Questions page 1. Essay Questions AP* Thermodynamics Free Response Questions page 1 Essay Questions 1991 The reaction represented above is a reversible reaction. BCl 3 (g) + NH 3 (g) Cl 3 BNH 3 (s) (a) Predict the sign of the entropy change,

More information

Thermochemistry: Energy Flow and Chemical Reactions

Thermochemistry: Energy Flow and Chemical Reactions Thermochemistry: Energy Flow and Chemical Reactions Outline thermodynamics internal energy definition, first law enthalpy definition, energy diagrams, calorimetry, theoretical calculation (heats of formation

More information

Chapter 8 Thermochemistry: Chemical Energy

Chapter 8 Thermochemistry: Chemical Energy Chapter 8 Thermochemistry: Chemical Energy 國防醫學院生化學科王明芳老師 2011-11-8 & 2011-11-15 Chapter 8/1 Energy and Its Conservation Conservation of Energy Law: Energy cannot be created or destroyed; it can only be

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry Energy -Very much a chemistry topic Every chemical change has an accompanying change of. Combustion of fossil fuels The discharging a battery Metabolism of foods If we are to

More information

I. The Nature of Energy A. Energy

I. The Nature of Energy A. Energy I. The Nature of Energy A. Energy is the ability to do work or produce heat. It exists in 2 forms: 1. Potential energy is energy due to the composition or position of an object. 2. Kinetic energy is energy

More information

Chemistry Chapter 16. Reaction Energy

Chemistry Chapter 16. Reaction Energy Chemistry Reaction Energy Section 16.1.I Thermochemistry Objectives Define temperature and state the units in which it is measured. Define heat and state its units. Perform specific-heat calculations.

More information

Chapter 17: Energy and Kinetics

Chapter 17: Energy and Kinetics Pages 510-547 S K K Chapter 17: Energy and Kinetics Thermochemistry: Causes of change in systems Kinetics: Rate of reaction progress (speed) Heat, Energy, and Temperature changes S J J Heat vs Temperature

More information

Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16

Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16 Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16 1980 - #7 (a) State the physical significance of entropy. Entropy (S) is a measure of randomness or disorder in a system. (b) From each of

More information

Chapter 19. Chemical Thermodynamics. Chemical Thermodynamics

Chapter 19. Chemical Thermodynamics. Chemical Thermodynamics Chapter 19 Enthalpy A thermodynamic quantity that equal to the internal energy of a system plus the product of its volume and pressure exerted on it by its surroundings; Enthalpy is the amount of energy

More information

3.2 Calorimetry and Enthalpy

3.2 Calorimetry and Enthalpy 3.2 Calorimetry and Enthalpy Heat Capacity Specific heat capacity (c) is the quantity of thermal energy required to raise the temperature of 1 g of a substance by 1 C. The SI units for specific heat capacity

More information

Saturday Study Session 1 3 rd Class Student Handout Thermochemistry

Saturday Study Session 1 3 rd Class Student Handout Thermochemistry Saturday Study Session 1 3 rd Class Student Handout Thermochemistry Multiple Choice Identify the choice that best completes the statement or answers the question. 1. C 2 H 4 (g) + 3 O 2 (g) 2 CO 2 (g)

More information

11B, 11E Temperature and heat are related but not identical.

11B, 11E Temperature and heat are related but not identical. Thermochemistry Key Terms thermochemistry heat thermochemical equation calorimeter specific heat molar enthalpy of formation temperature enthalpy change enthalpy of combustion joule enthalpy of reaction

More information

CHAPTER 16 REVIEW. Reaction Energy. SHORT ANSWER Answer the following questions in the space provided.

CHAPTER 16 REVIEW. Reaction Energy. SHORT ANSWER Answer the following questions in the space provided. CHAPTER 16 REVIEW Reaction Energy SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. For elements in their standard state, the value of H 0 f is 0. 2. The formation and decomposition

More information

Chapter 16. Thermodynamics. Thermochemistry Review. Calculating H o rxn. Predicting sign for H o rxn. Creative Commons License

Chapter 16. Thermodynamics. Thermochemistry Review. Calculating H o rxn. Predicting sign for H o rxn. Creative Commons License Chapter 16 Thermodynamics GCC CHM152 Creative Commons License Images and tables in this file have been used from the following sources: OpenStax: Creative Commons Attribution License 4.0. ChemWiki (CC

More information

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy THERMOCHEMISTRY Thermodynamics Study of energy and its interconversions Energy is TRANSFORMED in a chemical reaction (POTENTIAL to KINETIC) HEAT (energy transfer) is also usually produced or absorbed -SYSTEM:

More information

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation THERMOCHEMISTRY Thermochemistry Energy 1st Law of Thermodynamics Enthalpy / Calorimetry Hess' Law Enthalpy of Formation The Nature of Energy Kinetic Energy and Potential Energy Kinetic energy is the energy

More information

AP Chemistry Chapter 16 Assignment. Part I Multiple Choice

AP Chemistry Chapter 16 Assignment. Part I Multiple Choice Page 1 of 7 AP Chemistry Chapter 16 Assignment Part I Multiple Choice 1984 47. CH 4 (g) + 2 O 2 (g) CO 2 (g) + 2 H 2 O(l) H = 889.1 kj H f H 2 O(l) = 285.8 kj mol 1 H f CO 2 (g) = 393.3 kj mol 1 What is

More information

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy THERMOCHEMISTRY Thermodynamics Study of energy and its interconversions Energy is TRANSFORMED in a chemical reaction (POTENTIAL to KINETIC) HEAT (energy transfer) is also usually produced or absorbed -SYSTEM:

More information

Thermochemistry: Heat and Chemical Change

Thermochemistry: Heat and Chemical Change Thermochemistry: Heat and Chemical Change 1 Heat or Thermal Energy (q) Heat is a form of energy Is heat the same as temperature? Heat flows between two objects at different temperatures. Hot Cold 2 Chemical

More information

Additional Calculations: 10. How many joules are required to change the temperature of 80.0 g of water from 23.3 C to 38.8 C?

Additional Calculations: 10. How many joules are required to change the temperature of 80.0 g of water from 23.3 C to 38.8 C? Additional Calculations: 10. How many joules are required to change the temperature of 80.0 g of water from 23.3 C to 38.8 C? q = m C T 80 g (4.18 J/gC)(38.8-23.3C) = 5183 J 11. A piece of metal weighing

More information

Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy

Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy Unit 7: Energy Outline Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy Energy Energy is the ability to do work or produce heat. The energy

More information

Chapter 15 Energy and Chemical Change

Chapter 15 Energy and Chemical Change Chapter 15 Energy and Chemical Change Chemical reactions usually absorb or release energy. Section 1: Energy Section 2: Heat Section 3: Thermochemical Equations Section 4: Calculating Enthalpy Change Section

More information

Thermochemistry Chapter 4

Thermochemistry Chapter 4 Thermochemistry Chapter 4 Thermochemistry is the study of energy changes that occur during chemical reactions Focus is on heat and matter transfer between the system and the surroundings Energy The ability

More information

Energy, Heat and Chemical Change

Energy, Heat and Chemical Change Energy, Heat and Chemical Change Chemistry 35 Fall 2000 Thermochemistry A part of Thermodynamics dealing with energy changes associated with physical and chemical reactions Why do we care? -will a reaction

More information

Name: Thermochemistry. Practice Test C. General Chemistry Honors Chemistry

Name: Thermochemistry. Practice Test C. General Chemistry Honors Chemistry Name: Thermochemistry C Practice Test C General Chemistry Honors Chemistry 1 Objective 1: Use the relationship between mass, specific heat, and temperature change to calculate the heat flow during a chemical

More information

Chapter 8 Thermochemistry

Chapter 8 Thermochemistry William L Masterton Cecile N. Hurley http://academic.cengage.com/chemistry/masterton Chapter 8 Thermochemistry Edward J. Neth University of Connecticut Outline 1. Principles of heat flow 2. Measurement

More information

Warm up. 1) What is the conjugate acid of NH 3? 2) What is the conjugate base of HNO 2? 3) If the ph is 9.2, what is the [H 3 O + ], poh, and [OH - ]?

Warm up. 1) What is the conjugate acid of NH 3? 2) What is the conjugate base of HNO 2? 3) If the ph is 9.2, what is the [H 3 O + ], poh, and [OH - ]? Warm up 1) What is the conjugate acid of NH 3? 2) What is the conjugate base of HNO 2? 3) If the ph is 9.2, what is the [H 3 O + ], poh, and [OH - ]? 4) What is the concentration of H 2 SO 4 if 30.1 ml

More information

Chapter 5 Practice Multiple Choice & Free

Chapter 5 Practice Multiple Choice & Free Name Response 1. A system has an increase in internal energy, E, of 40 kj. If 20 kj of work, w, is done on the system, what is the heat change, q? a) +60 kj d) -20 kj b) +40 kj e) -60 kj c) +20 kj 2. Which

More information

Entropy, Free Energy, and Equilibrium

Entropy, Free Energy, and Equilibrium Entropy, Free Energy, and Equilibrium Chapter 17 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Spontaneous Physical and Chemical Processes A waterfall runs

More information

Chapter 8 Thermochemistry: Chemical Energy. Chemical Thermodynamics

Chapter 8 Thermochemistry: Chemical Energy. Chemical Thermodynamics Chapter 8 Thermochemistry: Chemical Energy Chapter 8 1 Chemical Thermodynamics Chemical Thermodynamics is the study of the energetics of a chemical reaction. Thermodynamics deals with the absorption or

More information

CHEM 1105 S10 March 11 & 14, 2014

CHEM 1105 S10 March 11 & 14, 2014 CHEM 1105 S10 March 11 & 14, 2014 Today s topics: Thermochemistry (Chapter 6) Basic definitions Calorimetry Enthalpy Thermochemical equations Calculating heats of reaction Hess s Law Energy and Heat Some

More information

Energy. Different types of energy exist (heat, potential, kinetic, chemical, nuclear etc.)

Energy. Different types of energy exist (heat, potential, kinetic, chemical, nuclear etc.) Change in Energy Energy Different types of energy exist (heat, potential, kinetic, chemical, nuclear etc.) Heat - the energy transferred between objects that are at different temperatures. Unit of heat

More information

Heat. Heat Terminology 04/12/2017. System Definitions. System Definitions

Heat. Heat Terminology 04/12/2017. System Definitions. System Definitions System Definitions Heat Physical Science 20 Ms. Hayduk Heat Terminology System: the part of the universe being studied (big Earth, or small one atom) Surroundings: the part of the universe outside the

More information

General Chemistry I. Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University. Module 4: Chemical Thermodynamics

General Chemistry I. Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University. Module 4: Chemical Thermodynamics General Chemistry I Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University Module 4: Chemical Thermodynamics Zeroth Law of Thermodynamics. First Law of Thermodynamics (state quantities:

More information

Chapter 6 Energy and Chemical Change. Brady and Senese 5th Edition

Chapter 6 Energy and Chemical Change. Brady and Senese 5th Edition Chapter 6 Energy and Chemical Change Brady and Senese 5th Edition Index 6.1 An object has energy if it is capable of doing work 6.2 Internal energy is the total energy of an object s molecules 6.3 Heat

More information

In previous chapters we have studied: Why does a change occur in the first place? Methane burns but not the reverse CH 4 + 2O 2 CO 2 + 2H 2 O

In previous chapters we have studied: Why does a change occur in the first place? Methane burns but not the reverse CH 4 + 2O 2 CO 2 + 2H 2 O Chapter 19. Spontaneous Change: Entropy and Free Energy In previous chapters we have studied: How fast does the change occur How is rate affected by concentration and temperature How much product will

More information

Topic 05 Energetics : Heat Change. IB Chemistry T05D01

Topic 05 Energetics : Heat Change. IB Chemistry T05D01 Topic 05 Energetics 5.1-5.2: Heat Change IB Chemistry T05D01 5.1 Exothermic and endothermic reactions - 1 hour 5.1.1 Define the terms exothermic reaction, endothermic reaction and standard enthalpy change

More information

Ch. 17 Thermochemistry

Ch. 17 Thermochemistry Ch. 17 Thermochemistry 17.1 The Flow of Energy Energy Transformations Thermochemistry: study of energy changes in chemical reactions and changes in state Chemical potential energy: energy stored in bonds

More information

1.4 Enthalpy. What is chemical energy?

1.4 Enthalpy. What is chemical energy? 1.4 Enthalpy What is chemical energy? Chemical energy is a form of potential energy which is stored in chemical bonds. Chemical bonds are the attractive forces that bind atoms together. As a reaction takes

More information

CHM 1046 FINAL REVIEW

CHM 1046 FINAL REVIEW CHM 1046 FINAL REVIEW Prepared & Presented By: Marian Ayoub PART I Chapter Description 6 Thermochemistry 11 States of Matter; Liquids and Solids 12 Solutions 13 Rates of Reactions 18 Thermodynamics and

More information

Thermodynamics Spontaneity. 150/151 Thermochemistry Review. Spontaneity. Ch. 16: Thermodynamics 12/14/2017

Thermodynamics Spontaneity. 150/151 Thermochemistry Review. Spontaneity. Ch. 16: Thermodynamics 12/14/2017 Ch. 16: Thermodynamics Geysers are a dramatic display of thermodynamic principles in nature. As water inside the earth heats up, it rises to the surface through small channels. Pressure builds up until

More information

The Nature of Energy. Chapter Six: Kinetic vs. Potential Energy. Energy and Work. Temperature vs. Heat

The Nature of Energy. Chapter Six: Kinetic vs. Potential Energy. Energy and Work. Temperature vs. Heat The Nature of Energy Chapter Six: THERMOCHEMISTRY Thermodynamics is the study of energy and its transformations. Thermochemistry is the study of the relationship between chemical reactions and energy changes

More information

Section 1 - Thermochemistry

Section 1 - Thermochemistry Reaction Energy Section 1 - Thermochemistry Virtually every chemical reaction is accompanied by a change in energy. Chemical reactions usually absorb or release energy as heat. You learned in Chapter 12

More information

Chapter 5 THERMO. THERMO chemistry. 5.4 Enthalpy of Reactions 5.5 Calorimetry 5.6 Hess s Law 5.7 Enthalpies of Formation

Chapter 5 THERMO. THERMO chemistry. 5.4 Enthalpy of Reactions 5.5 Calorimetry 5.6 Hess s Law 5.7 Enthalpies of Formation Chapter 5 THERMO THERMO chemistry 5.4 Enthalpy of Reactions 5.5 Calorimetry 5.6 Hess s Law 5.7 Enthalpies of Formation Chemical Equations 1 st WRITE the Chemical Equation 2 nd BALANCE the Chemical Equation

More information

10-1 Heat 10-2 Calorimetry 10-3 Enthalpy 10-4 Standard-State Enthalpies 10-5 Bond Enthalpies 10-6 The First Law of Thermodynamics

10-1 Heat 10-2 Calorimetry 10-3 Enthalpy 10-4 Standard-State Enthalpies 10-5 Bond Enthalpies 10-6 The First Law of Thermodynamics Chapter 10 Thermochemistry 10-1 Heat 10-2 Calorimetry 10-3 Enthalpy 10-4 Standard-State Enthalpies 10-5 Bond Enthalpies 10-6 The First Law of Thermodynamics OFB Chap. 10 1 OFB Chap. 10 2 Thermite Reaction

More information

AP Questions: Thermodynamics

AP Questions: Thermodynamics AP Questions: Thermodynamics 1970 Consider the first ionization of sulfurous acid: H2SO3(aq) H + (aq) + HSO3 - (aq) Certain related thermodynamic data are provided below: H2SO3(aq) H + (aq) HSO3 - (aq)

More information

Chapter 6: Thermochemistry

Chapter 6: Thermochemistry Chapter 6: Thermochemistry Section 6.1: Introduction to Thermochemistry Thermochemistry refers to the study of heat flow or heat energy in a chemical reaction. In a study of Thermochemistry the chemical

More information

Ch 6. Energy and Chemical Change. Brady & Senese, 5th Ed.

Ch 6. Energy and Chemical Change. Brady & Senese, 5th Ed. Ch 6. Energy and Chemical Change Brady & Senese, 5th Ed. Energy Is The Ability To Do Work Energy is the ability to do work (move mass over a distance) or transfer heat Types: kinetic and potential kinetic:

More information

Unit 7 Kinetics and Thermodynamics

Unit 7 Kinetics and Thermodynamics 17.1 The Flow of Energy Heat and Work Unit 7 Kinetics and Thermodynamics I. Energy Transformations A. Temperature 1. A measure of the average kinetic energy of the particles in a sample of matter B. Heat

More information

Chemical Thermodynamics

Chemical Thermodynamics Page III-16-1 / Chapter Sixteen Lecture Notes Chemical Thermodynamics Thermodynamics and Kinetics Chapter 16 Chemistry 223 Professor Michael Russell How to predict if a reaction can occur, given enough

More information

AP CHEMISTRY NOTES 4-1 THERMOCHEMISTRY: ENTHALPY AND ENTROPY

AP CHEMISTRY NOTES 4-1 THERMOCHEMISTRY: ENTHALPY AND ENTROPY AP CHEMISTRY NOTES 4-1 THERMOCHEMISTRY: ENTHALPY AND ENTROPY Reaction Rate how fast a chemical reaction occurs Collision Theory In order for a chemical reaction to occur, the following conditions must

More information

Thermochemistry. Energy and Chemical Change

Thermochemistry. Energy and Chemical Change Thermochemistry Energy and Chemical Change Energy Energy can change for and flow, but it is always conserved. The Nature of Energy Energy the ability to do work or produce heat Potential energy Kinetic

More information

Brown, LeMay Ch 5 AP Chemistry Monta Vista High School

Brown, LeMay Ch 5 AP Chemistry Monta Vista High School Brown, LeMay Ch 5 AP Chemistry Monta Vista High School 1 From Greek therme (heat); study of energy changes in chemical reactions Energy: capacity do work or transfer heat Joules (J), kilo joules (kj) or

More information

AP Chapter 6: Thermochemistry Name

AP Chapter 6: Thermochemistry Name AP Chapter 6: Thermochemistry Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. AP Chapter 6: Thermochemistry 2 Warm-Ups (Show your work for credit)

More information

B 2 Fe(s) O 2(g) Fe 2 O 3 (s) H f = -824 kj mol 1 Iron reacts with oxygen to produce iron(iii) oxide as represented above. A 75.

B 2 Fe(s) O 2(g) Fe 2 O 3 (s) H f = -824 kj mol 1 Iron reacts with oxygen to produce iron(iii) oxide as represented above. A 75. 1 2004 B 2 Fe(s) + 3 2 O 2(g) Fe 2 O 3 (s) H f = -824 kj mol 1 Iron reacts with oxygen to produce iron(iii) oxide as represented above. A 75.0 g sample of Fe(s) is mixed with 11.5 L of O 2 (g) at 2.66

More information

Chemistry 30: Thermochemistry. Practice Problems

Chemistry 30: Thermochemistry. Practice Problems Name: Period: Chemistry 30: Thermochemistry Practice Problems Date: Heat and Temperature 1. Pretend you are doing a scientific study on the planet Earth. a. Name three things in the system you are studying.

More information

Thermodynamics: Free Energy and Entropy. Suggested Reading: Chapter 19

Thermodynamics: Free Energy and Entropy. Suggested Reading: Chapter 19 Thermodynamics: Free Energy and Entropy Suggested Reading: Chapter 19 System and Surroundings System: An object or collection of objects being studied. Surroundings: Everything outside of the system. the

More information

Thermochemistry is the study of the relationships between chemical reactions and energy changes involving heat.

Thermochemistry is the study of the relationships between chemical reactions and energy changes involving heat. CHEM134- F18 Dr. Al- Qaisi Chapter 06: Thermodynamics Thermochemistry is the study of the relationships between chemical reactions and energy changes involving heat. Energy is anything that has the capacity

More information

Slide 1 / Objects can possess energy as: (a) endothermic energy (b) potential energy (c) kinetic energy. a only b only c only a and c b and c

Slide 1 / Objects can possess energy as: (a) endothermic energy (b) potential energy (c) kinetic energy. a only b only c only a and c b and c Slide 1 / 84 1 Objects can possess energy as: (a) endothermic energy (b) potential energy (c) kinetic energy A B C D E a only b only c only a and c b and c Slide 2 / 84 2 The internal energy of a system

More information

Name Date Class THE FLOW OF ENERGY HEAT AND WORK

Name Date Class THE FLOW OF ENERGY HEAT AND WORK 17.1 THE FLOW OF ENERGY HEAT AND WORK Section Review Objectives Explain the relationship between energy, heat, and work Distinguish between exothermic and endothermic processes Distinguish between heat

More information

THERMOCHEMISTRY & DEFINITIONS

THERMOCHEMISTRY & DEFINITIONS THERMOCHEMISTRY & DEFINITIONS Thermochemistry is the study of the study of relationships between chemistry and energy. All chemical changes and many physical changes involve exchange of energy with the

More information

Chemical Thermodynamics

Chemical Thermodynamics Quiz A 42.8 ml solution of ammonia (NH 3 ) is titrated with a solution of 0.9713 M hydrochloric acid. The initial reading on the buret containing the HCl was 47.13 ml and the final reading when the endpoint

More information

Introduction to Thermochemistry. Thermochemistry Unit. Definition. Terminology. Terminology. Terminology 07/04/2016. Chemistry 30

Introduction to Thermochemistry. Thermochemistry Unit. Definition. Terminology. Terminology. Terminology 07/04/2016. Chemistry 30 Thermochemistry Unit Introduction to Thermochemistry Chemistry 30 Definition Thermochemistry is the branch of chemistry concerned with the heat produced and used in chemical reactions. Most of thermochemistry

More information

Chapter Eighteen. Thermodynamics

Chapter Eighteen. Thermodynamics Chapter Eighteen Thermodynamics 1 Thermodynamics Study of energy changes during observed processes Purpose: To predict spontaneity of a process Spontaneity: Will process go without assistance? Depends

More information

Thermochemistry Ch. 8

Thermochemistry Ch. 8 De#initions I. Energy ( ): II. Heat ( ): A. Heat is not a substance. Objects do not contain heat, they B. Molecules with each other. III. Reaction perspectives: A. System: B. Surroundings: IV: Heat changes:

More information

Homework 11 - Second Law & Free Energy

Homework 11 - Second Law & Free Energy HW11 - Second Law & Free Energy Started: Nov 1 at 9:0am Quiz Instructions Homework 11 - Second Law & Free Energy Question 1 In order for an endothermic reaction to be spontaneous, endothermic reactions

More information

Chapter 20: Thermodynamics

Chapter 20: Thermodynamics Chapter 20: Thermodynamics Thermodynamics is the study of energy (including heat) and chemical processes. First Law of Thermodynamics: Energy cannot be created nor destroyed. E universe = E system + E

More information

Unit 5: Spontaneity of Reaction. You need to bring your textbooks everyday of this unit.

Unit 5: Spontaneity of Reaction. You need to bring your textbooks everyday of this unit. Unit 5: Spontaneity of Reaction You need to bring your textbooks everyday of this unit. THE LAWS OF THERMODYNAMICS 1 st Law of Thermodynamics Energy is conserved ΔE = q + w 2 nd Law of Thermodynamics A

More information

Spontaneity, Entropy, and Free Energy

Spontaneity, Entropy, and Free Energy Spontaneity, Entropy, and Free Energy A ball rolls spontaneously down a hill but not up. Spontaneous Processes A reaction that will occur without outside intervention; product favored Most reactants are

More information

Thermodynamics Test Clio Invitational January 26, 2013

Thermodynamics Test Clio Invitational January 26, 2013 Thermodynamics Test Clio Invitational January 26, 2013 School Name: Team Number: Variables specified: s = specific heat C = heat capacity H f = heat of fusion H v = heat of vaporization Given information:

More information

UNIT ONE BOOKLET 6. Thermodynamic

UNIT ONE BOOKLET 6. Thermodynamic DUNCANRIG SECONDARY ADVANCED HIGHER CHEMISTRY UNIT ONE BOOKLET 6 Thermodynamic Can we predict if a reaction will occur? What determines whether a reaction will be feasible or not? This is a question that

More information

Chemistry Grade : 11 Term-3/Final Exam Revision Sheet

Chemistry Grade : 11 Term-3/Final Exam Revision Sheet Chemistry Grade : 11 Term-3/Final Exam Revision Sheet Exam Date: Tuesday 12/6/2018 CCS:Chem.6a,6b,6c,6d,6e,6f,7a,7b,7d,7c,7e,7f,1g Chapter(12):Solutions Sections:1,2,3 Textbook pages 378 to 408 Chapter(16):Reaction

More information

Thermodynamics. Thermodynamics of Chemical Reactions. Enthalpy change

Thermodynamics. Thermodynamics of Chemical Reactions. Enthalpy change Thermodynamics 1 st law (Cons of Energy) Deals with changes in energy Energy in chemical systems Total energy of an isolated system is constant Total energy = Potential energy + kinetic energy E p mgh

More information

10-1 Heat 10-2 Calorimetry 10-3 Enthalpy 10-4 Standard-State Enthalpies 10-5 Bond Enthalpies 10-6 The First Law of Thermodynamics

10-1 Heat 10-2 Calorimetry 10-3 Enthalpy 10-4 Standard-State Enthalpies 10-5 Bond Enthalpies 10-6 The First Law of Thermodynamics Chapter 10 Thermochemistry 10-1 Heat 10-2 Calorimetry 10-3 Enthalpy 10-4 Standard-State Enthalpies 10-5 Bond Enthalpies 10-6 The First Law of Thermodynamics OFB Chap. 10 1 Chapter 10 Thermochemistry Heat

More information

Name Date Class SECTION 16.1 PROPERTIES OF SOLUTIONS

Name Date Class SECTION 16.1 PROPERTIES OF SOLUTIONS SOLUTIONS Practice Problems In your notebook, solve the following problems. SECTION 16.1 PROPERTIES OF SOLUTIONS 1. The solubility of CO 2 in water at 1.22 atm is 0.54 g/l. What is the solubility of carbon

More information

= (25.0 g)(0.137 J/g C)[61.2 C - (-31.4 C)] = 317 J (= kj)

= (25.0 g)(0.137 J/g C)[61.2 C - (-31.4 C)] = 317 J (= kj) CHEM 101A ARMSTRONG SOLUTIONS TO TOPIC D PROBLEMS 1) For all problems involving energy, you may give your answer in either joules or kilojoules, unless the problem specifies a unit. (In general, though,

More information

CHEMISTRY 109 #25 - REVIEW

CHEMISTRY 109 #25 - REVIEW CHEMISTRY 109 Help Sheet #25 - REVIEW Chapter 4 (Part I); Sections 4.1-4.6; Ch. 9, Section 9.4a-9.4c (pg 387) ** Review the appropriate topics for your lecture section ** Prepared by Dr. Tony Jacob http://www.chem.wisc.edu/areas/clc

More information

Thermochemistry Ch. 8

Thermochemistry Ch. 8 Definitions I. Energy (E): capacity to do work. II. Heat (q): transfer of energy from a body at a high temp. to a body at a low temp. III. Reaction perspectives: A. System: the focus. B. Surroundings:

More information

Thermochemistry (chapter 5)

Thermochemistry (chapter 5) Thermochemistry (chapter 5) Basic Definitions: Thermochemistry = the study of the energy changes that accompany physical and chemical changes of matter. Energy is defined as the ability to do work or the

More information

Energy is the capacity to do work

Energy is the capacity to do work 1 of 10 After completing this chapter, you should, at a minimum, be able to do the following. This information can be found in my lecture notes for this and other chapters and also in your text. Correctly

More information

Ch. 14 Notes ENERGY AND CHEMICAL CHANGE NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 14 Notes ENERGY AND CHEMICAL CHANGE NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 14 Notes ENERGY AND CHEMICAL CHANGE NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. I. Energy the capacity to do work or produce heat A. two basic types of

More information

Chapter 6. Heat Flow

Chapter 6. Heat Flow Chapter 6 Thermochemistry Heat Flow Heat (q): energy transferred from body at high T to body at low T Two definitions: System: part of universe we are interested in Surrounding: the rest of the universe

More information

CP Chapter 17 Thermochemistry

CP Chapter 17 Thermochemistry CP Chapter 17 Thermochemistry Thermochemistry Thermochemistry is the study of energy that occur during chemical reactions and phase changes (changes of state) The Nature of Energy Energy is the ability

More information

Chemical Thermodynamics

Chemical Thermodynamics Chemical Thermodynamics Overview Everything in the world is a balance of energy, in various forms from biological processes to the rusting of a nail. Two of the most important questions chemists ask are:

More information

AP* Chemistry THERMOCHEMISTRY

AP* Chemistry THERMOCHEMISTRY AP* Chemistry THERMOCHEMISTRY Let s begin with terms for you to master: Heat (q) Two systems with different temperatures that are in thermal contact will exchange thermal energy, the quantity of which

More information

The Nature of Energy Energy is the ability to do work or produce Heat, q or Q, is ; flows due to temperature differences (always to )

The Nature of Energy Energy is the ability to do work or produce Heat, q or Q, is ; flows due to temperature differences (always to ) CP Chapter 17 Thermochemistry 2014-2015 Thermochemistry Thermochemistry is the study of energy that occur during chemical and physical changes (changes of state) The Nature of Energy Energy is the ability

More information

Chapter 5 Thermochemistry. 許富銀 ( Hsu Fu-Yin)

Chapter 5 Thermochemistry. 許富銀 ( Hsu Fu-Yin) Chapter 5 Thermochemistry 許富銀 ( Hsu Fu-Yin) 1 Thermodynamics The study of energy and its transformations is known as thermodynamics The relationships between chemical reactions and energy changes that

More information

Thermochemistry HW. PSI Chemistry

Thermochemistry HW. PSI Chemistry Thermochemistry HW PSI Chemistry Name Energy 1) Objects can possess energy as: (a) endothermic energy (b) potential energy A) a only B) b only C) c only D) a and c E) b and c (c) kinetic energy 2) The

More information

Chapter 8. Thermochemistry 강의개요. 8.1 Principles of Heat Flow. 2) Magnitude of Heat Flow. 1) State Properties. Basic concepts : study of heat flow

Chapter 8. Thermochemistry 강의개요. 8.1 Principles of Heat Flow. 2) Magnitude of Heat Flow. 1) State Properties. Basic concepts : study of heat flow 강의개요 Basic concepts : study of heat flow Chapter 8 Thermochemistry Calorimetry : experimental measurement of the magnitude and direction of heat flow Thermochemical Equations Copyright 2005 연세대학교이학계열일반화학및실험

More information

Thermochemistry Lecture

Thermochemistry Lecture Thermochemistry Lecture Jennifer Fang 1. Enthalpy 2. Entropy 3. Gibbs Free Energy 4. q 5. Hess Law 6. Laws of Thermodynamics ENTHALPY total energy in all its forms; made up of the kinetic energy of the

More information

Enthalpies of Reaction

Enthalpies of Reaction Enthalpies of Reaction Enthalpy is an extensive property Magnitude of H is directly related to the amount of reactant used up in a process. CH 4 (g) + 2O 2 (g) CO 2 (g) + 2H 2 O(l) H = 890 kj 2CH 4 (g)

More information

17.2 Thermochemical Equations

17.2 Thermochemical Equations 17.2. Thermochemical Equations www.ck12.org 17.2 Thermochemical Equations Lesson Objectives Define enthalpy, and know the conditions under which the enthalpy change in a reaction is equal to the heat absorbed

More information

0. Graphite is thermodynamically less stable that diamond under standard conditions. 1. True 2. False

0. Graphite is thermodynamically less stable that diamond under standard conditions. 1. True 2. False 0. Graphite is thermodynamically less stable that diamond under standard conditions. 1. True 2. False 1. Which statement would be the best interpretation of the First Law of Thermodynamics? 1. The total

More information

Chapter 5. Thermochemistry

Chapter 5. Thermochemistry Chapter 5 Thermochemistry Dr. A. Al-Saadi 1 Preview Introduction to thermochemistry: Potential energy and kinetic energy. Chemical energy. Internal energy, work and heat. Exothermic vs. endothermic reactions.

More information

UNIT 15 - Reaction Energy & Reaction Kinetics. I. Thermochemistry: study of heat in chemical reactions and phase changes

UNIT 15 - Reaction Energy & Reaction Kinetics. I. Thermochemistry: study of heat in chemical reactions and phase changes I. Thermochemistry: study of heat in chemical reactions and phase changes II. A. Heat equation (change in temperature): Q = m. C. p T 1. Q = heat (unit is Joules) 2. m = mass (unit is grams) 3. C p = specific

More information

AP Chemistry Big Idea Review

AP Chemistry Big Idea Review Name: AP Chemistry Big Idea Review Background The AP Chemistry curriculum is based on 6 Big Ideas and many Learning Objectives associated with each Big Idea. This review will cover all of the Big Ideas

More information

Thermochemistry. Energy and Chemical Change

Thermochemistry. Energy and Chemical Change Thermochemistry Energy and Chemical Change Energy Energy can change for and flow, but it is always conserved. The Nature of Energy Energy the ability to do work or produce heat Potential energy Kinetic

More information

CHEMISTRY - TRO 4E CH.6 - THERMOCHEMISTRY.

CHEMISTRY - TRO 4E CH.6 - THERMOCHEMISTRY. !! www.clutchprep.com CONCEPT: ENERGY CHANGES AND ENERGY CONSERVATION is the branch of physical science concerned with heat and its transformations to and from other forms of energy. is the branch of chemistry

More information