CHAPTER 16: REACTION ENERGY AND CHAPTER 17: REACTION KINETICS. Honors Chemistry Ms. Agostine

Size: px
Start display at page:

Download "CHAPTER 16: REACTION ENERGY AND CHAPTER 17: REACTION KINETICS. Honors Chemistry Ms. Agostine"

Transcription

1 CHAPTER 16: REACTION ENERGY AND CHAPTER 17: REACTION KINETICS Honors Chemistry Ms. Agostine

2 16.1 Thermochemistry Definition: study of the transfers of energy as heat that accompany chemical reactions and physical changes Measured by a calorimeter

3 Measuring Heat (Review) Units that measure heat/energy: CALORIES! Calorie (cal): the quantity of heat that raises the temperature of 1 g of pure water by 1 o C 1 Calorie = 1000 calories = 1 kilocalorie SI Units: joule (J) Conversion: 1 J = cal or 1 cal = J

4 Specific Heat (c) (Review) How the quantity of heat is actually measured Specific Heat (c) amount of energy required to raise the heat 1 gram of a substance by 1 degree Celsius q = m c T (heat quantity) = (mass)(spec. heat)(temp change) or rearranged to be: c = q m T

5 Specific Heat Water has a high specific heat and metals have low specific heat Therefore it takes less energy to heat up a metal then a nonmetal like water! That is why the beach is cooler in the summer then the city!

6 Heat of Reaction Definition: Quantity of heat released or absorbed during a chemical reaction Enthalpy (H): heat content of a system Enthalpy Change ( H): amount of heat absorbed or lost by a system during a process Can have Exothermic and Endothermic reactions

7 Enthalpy of Reaction Thermochemical Equation : equation that includes the quantity of heat released or absorbed during the reaction as written Depends on the amounts of reactants and products: H 2 (g) + ½ O 2 (g) H 2 O (g) kJ

8 Exothermic Reactions Energy is released to surroundings Products have LESS energy then reactants H is negative 2 H 2 (g) + O 2 (g) 2 H 2 O (g) H = kj

9 Endothermic Reactions Energy is absorbed from surroundings Products have MORE energy then reactants H is positive 2 H 2 O (g) 2 H 2 (g) + O 2 (g) H = kj

10 Standard Molar Heat of Formation ( H fo ) Definition: heat released or absorbed when one mole of a compound is formed by combination of its elements at standard room temperature of 25 o C Appendix Table A-14 p. 862 H 2 (g) + ½ O 2 (g) H 2 O (l) H o f = kj Na (s) + ½ Cl 2 (g) NaCl (s) H o f = kj S (s) + O 2 (g) SO 2 (g) H o f = kj Elements in their standard states have H o f = 0 kj A negative H o f indicates a substance is more stable than the free elements

11 Standard Heats of Formation

12 Molar Heat of Combustion ( H comb ) Definition: heat released when one mole of a compound combusts Appendix Table A-5, p. 856 C 3 H 8 (g) + 5 O 2 (g) 3 CO 2 (g) + 4 H 2 O (l) H comb = kj C 8 H 18 (g) O 2 (g) 8 CO 2 (g) + 9 H 2 O (l) H comb = kj

13 Calculating Heats of Reaction Hess s Law: the overall enthalpy change in a reaction is equal to the sum of enthalpy changes for the individual steps in the process In order for a reaction to occur: all reactants must have their bonds broken all products must have their bonds formed

14 Calculating Heats of Reactions Hess s Law of Heat Summation: If you add two or more thermochemical equations to give a final equation, then you can also add the heats of reaction to give the final heat of reaction H o = H f o products - H f o reactants ( = sum) This will also show if the net reaction is exothermic (-) or endothermic (+).

15 Sample Problem What is the H f o for the reaction between gaseous carbon monoxide with oxygen to form gaseous carbon dioxide? Balanced equation: 2 CO (g) + O 2 (g) 2 CO 2 (g) LOOK UP H f o CO (g) = kj/mol H f o O 2 (g) = 0 kj/mol (free element) H f o CO 2 (g) = kj/mol

16 2 CO (g) + O 2 (g) 2 CO 2 (g) H o = H f o products - H f o reactants H o = [2 mol x kj/mol] [2 mol x kj/mol] H o = [-791 kj] [-221 kj] H o = kj Therefore, this reaction is an exothermic process!

17 Calculating H Reaction from the Heats of Formation Reactions PbCl 2 + Cl 2 PbCl 4, H o =? Look up: H f o PbCl 2 = kj/mol Rxn of the formation: Pb + Cl 2 PbCl 2 H f o Cl 2 = 0 kj/mol b/c it s an element H f o PbCl 4 = kj/mol Rxn of the formation: Pb + 2 Cl 2 PbCl 4 In the reaction: PbCl 2 has to be broken, so reverse the reaction PbCl 4 has to be made, keep the reaction as written

18 Calculating H Reaction from the Heats of Formation Reactions H f o PbCl 2 = kj/mol FLIP IT! Rxn: PbCl 2 Pb + Cl 2 H f o Cl 2 = 0 kj/mol b/c it s an element H f o PbCl 4 = kj/mol Rxn: Pb + 2 Cl 2 PbCl 4 Complete: PbCl 2 + Pb + 2 Cl 2 Pb + Cl 2 + PbCl 4 Simplify: PbCl 2 + Pb + 2 Cl 2 Pb + Cl 2 + PbCl 4 Net: PbCl 2 + Cl 2 PbCl 4 Add H f o = kj kj = 30.2 kj

19 Calculating H Reaction from the Heats of Formation Reactions Check Answer with: H o = H f o products - H f o reactants H o = [1 mol x kj/mol] [1 mol x kj/mol] H o = [ kj] [ kj] H o = kj Therefore, this reaction is an endothermic process!

20 Calculating H Reaction from the Heats of Formation Reactions Calculate the heat of the reaction for the decomposition of calcium carbonate when heated CaCO 3 (s) CaO (s) + CO(g) H o =?

21 Solution Look up: H f o CaCO 3 = kj/mol Rxn : Ca + C + 3/2 O 2 CaCO 3 H f o CaO = kj/mol Rxn: Ca + ½ O 2 CaO H f o CO 2 = kj/mol Rxn: C + O 2 CO 2 In the reaction: CaCO 3 has to be broken, so reverse the rxn CaO & CO 2 has to be made, keep the rxns as written

22 Answer: Complete equation: CaCO 3 + Ca + C + 3/2 O 2 Ca + C + CaO + 3/2 O 2 + CO 2 x x x x x x Net Eqn: CaCO 3 (s) CaO (s) + CO(g) Add up heats of formation: CaCO 3 is reversed: kj CaO is the same: CO 2 is the same: TOTAL: kj kj kj, endothermic

23 Answer: Check your answer: H = products - reactants = [ kj kj] [-1207 kj] = kj

24 Section 16.2 Driving Force of Reactions What makes a reaction spontaneous? Ex: Ball rolls down a hill obvious, but why? Driving force: Potential energy is too high, so nature wants to lower it. SPONTANEOUS! Nature has a tendency of reactions to occur that lead to a lower energy state Therefore: ball will NOT roll up a hill!

25 Entropy (S) Definition: property that describes the order of a system Nature tends toward disorder Hint: easier to mess up or to clean up a room? We measure S in J/K mol Temperature can effect S

26 Free Energy Depends on two things: Enthalpy: H Entropy: S and the Temperature of the system Gibb s Free Energy: combined enthalpy-entropy of a system G = H - T S If G = (-) = rxn will be favorable/spontaneous If If G = (+) = rxn will be unfavorable/nonspontaneous Note: G o, H o, & S o = at standard temperature

27 Enthalpy, Entropy & Free Energy H S G - Value (exothermic) - Value (exothermic) + Value (endothermic) + Value (endothermic) + Value (more random) - Value (less random) + Value (more random) - Value (less random) Always negative lower temperatures higher temps Never negative

28 Free Energy Sample Problem For the reaction NH 4 Cl (s) NH 3 (g) + HCl (g), at K, H o = 176 kj/mol and S o = kj/(mol K). Calculate G o, and tell whether this reaction is spontaneous in the forward direction at this temperature.

29 Free Energy Sample Problem G = H - T S G = 176 kj/mol [298 K x kj/(mol K)] G = 176 kj/mol 84.9 kj/mol G = 91 kj/mol Non spontaneous because G = positive!

30 Chapter 17: Reaction Kinetics

31 Collision Theory

32 Section 17.1 The Reaction Process Reaction Mechanism: step-by-step sequence of reactions by which the overall chemical change occurs Why does the rate of chemical reactions vary so widely? Collision Theory: Reactant molecules must collide in the proper orientation and with sufficient energy Only a fraction of collisions meet these requirements

33 Collision Theory Consider: Ozone + smog nitrogen dioxide + oxygen

34 Collisions of NO and O3

35 Energy Diagrams Reactants must overcome an energy barrier before they can change to products Activation Energy (E a ): Minimum amount of energy that reactants must have before they can be converted to products

36 Energy Diagrams

37 Energy Diagrams Activated Complex: An unstable, high-energy chemical species that must be formed as reactants convert to products The in-between stage. Designated with a double superscript dagger ( ) such as {O 3 NO}

38 Energy Diagram for NO and O3

39 Exothermic vs. Endothermic

40 Energy Diagrams with Activated Complexes Example: The following is exothermic: 2 HI (g) H 2 (g) + I 2 (g) Draw an energy diagram that shows the relative energies of the reactants, products and the activated complex. Label the diagram with molecular representations of the reactants, products, and a possible structure for the activated complex.

41 Section Reaction Rates What makes milk and other foods spoil more quickly? What happens if you accidentally add a drop of bleach to a dark wash? A cup? What dissolves faster granulated sugar or a sugar cube?

42 Reaction Rates Factors that influence reaction rates 1. Temperature 2. Reaction concentration 3. Surface area 4. Presence of a catalyst Looking at each in the terms of Collision Theory!

43 Concentration Rxns go faster when the concentration of one or more of the reactants increases Increases in concentration increases the number of reactants per unit volume Because molecules are closer together, the number of collisions per unit time increases

44 Surface Area Similar to increase concentration More surface area means more molecules or atoms exposed to the reaction collisions Ex) granulated sugar vs. sugar cubes

45 Temperature The average kinetic energy of a substance increases when the temperature rises Increases the fraction of collisions that are effective Molecules move faster at higher temperatures, so they collide more frequently More molecules attain the required activation energy

46 Temperature Temperature effects on reaction rates are significant For a typical reaction, the rate approximately doubles for every 10 o C increase in temperature

47 Fraction of Collisions vs. Collision Different Temperatures

48 Catalysts Catalyst: A substance that alters the pathway in which a reaction occurs without itself being consumed in the reaction Lower-energy pathway with lower activation energy This way, increases the rate of a reaction Great fraction of reactants can achieve the new minimum energy requirement

49 Catalyst

50 Rate Laws for Reactions Rate Law: an equation that relates reaction rate and concentrations of reactants Specific Rate Laws for the directions of reactions Forward rate law is different then the reverse reaction rate law

51 Rate Laws for Reactions 2 H 2 (g) + 2 NO (g) N 2 (g) + 2 H 2 O (g) Rate Law of the forward reaction: Depends on concentrations of H 2 and NO Depends on temperature R = k [reactants] coeffient R = reaction rate K = rate constant (takes into account temperature) R = k [H 2 ] 2 [NO] 2

Chemistry Chapter 16. Reaction Energy

Chemistry Chapter 16. Reaction Energy Chemistry Reaction Energy Section 16.1.I Thermochemistry Objectives Define temperature and state the units in which it is measured. Define heat and state its units. Perform specific-heat calculations.

More information

Unit 7 Kinetics and Thermodynamics

Unit 7 Kinetics and Thermodynamics 17.1 The Flow of Energy Heat and Work Unit 7 Kinetics and Thermodynamics I. Energy Transformations A. Temperature 1. A measure of the average kinetic energy of the particles in a sample of matter B. Heat

More information

Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy

Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy Unit 7: Energy Outline Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy Energy Energy is the ability to do work or produce heat. The energy

More information

Thermodynamics. Thermodynamics of Chemical Reactions. Enthalpy change

Thermodynamics. Thermodynamics of Chemical Reactions. Enthalpy change Thermodynamics 1 st law (Cons of Energy) Deals with changes in energy Energy in chemical systems Total energy of an isolated system is constant Total energy = Potential energy + kinetic energy E p mgh

More information

Energy Changes, Reaction Rates and Equilibrium. Thermodynamics: study of energy, work and heat. Kinetic energy: energy of motion

Energy Changes, Reaction Rates and Equilibrium. Thermodynamics: study of energy, work and heat. Kinetic energy: energy of motion Energy Changes, Reaction Rates and Equilibrium Thermodynamics: study of energy, work and heat Kinetic energy: energy of motion Potential energy: energy of position, stored energy Chemical reactions involve

More information

Rates, Temperature and Potential Energy Diagrams Worksheet

Rates, Temperature and Potential Energy Diagrams Worksheet SCH4U1 ER10 Name: Date: Rates, Temperature and Potential Energy Diagrams Worksheet Part 1: 1. Use the potential energy diagram shown to the right to answer the following: a. Label the axis. y axis is potential

More information

First Law of Thermodynamics

First Law of Thermodynamics Energy Energy: ability to do work or produce heat. Types of energy 1) Potential energy - energy possessed by objects due to position or arrangement of particles. Forms of potential energy - electrical,

More information

The Nature of Energy. Chapter Six: Kinetic vs. Potential Energy. Energy and Work. Temperature vs. Heat

The Nature of Energy. Chapter Six: Kinetic vs. Potential Energy. Energy and Work. Temperature vs. Heat The Nature of Energy Chapter Six: THERMOCHEMISTRY Thermodynamics is the study of energy and its transformations. Thermochemistry is the study of the relationship between chemical reactions and energy changes

More information

Gummy Bear Demonstration:

Gummy Bear Demonstration: Name: Unit 8: Chemical Kinetics Date: Regents Chemistry Aim: _ Do Now: a) Using your glossary, define chemical kinetics: b) Sort the phrases on the SmartBoard into the two columns below. Endothermic Rxns

More information

Chapter 15 Energy and Chemical Change

Chapter 15 Energy and Chemical Change Chapter 15 Energy and Chemical Change Chemical reactions usually absorb or release energy. Section 1: Energy Section 2: Heat Section 3: Thermochemical Equations Section 4: Calculating Enthalpy Change Section

More information

Thermochemistry: the study of energy (in the from of heat) changes that accompany physical & chemical changes

Thermochemistry: the study of energy (in the from of heat) changes that accompany physical & chemical changes Thermochemistry Thermochemistry: the study of energy (in the from of heat) changes that accompany physical & chemical changes heat flows from high to low (hot cool) endothermic reactions: absorb energy

More information

Thermochemistry. Energy and Chemical Change

Thermochemistry. Energy and Chemical Change Thermochemistry Energy and Chemical Change Energy Energy can change for and flow, but it is always conserved. The Nature of Energy Energy the ability to do work or produce heat Potential energy Kinetic

More information

Warm up. 1) What is the conjugate acid of NH 3? 2) What is the conjugate base of HNO 2? 3) If the ph is 9.2, what is the [H 3 O + ], poh, and [OH - ]?

Warm up. 1) What is the conjugate acid of NH 3? 2) What is the conjugate base of HNO 2? 3) If the ph is 9.2, what is the [H 3 O + ], poh, and [OH - ]? Warm up 1) What is the conjugate acid of NH 3? 2) What is the conjugate base of HNO 2? 3) If the ph is 9.2, what is the [H 3 O + ], poh, and [OH - ]? 4) What is the concentration of H 2 SO 4 if 30.1 ml

More information

UNIT 15 - Reaction Energy & Reaction Kinetics. I. Thermochemistry: study of heat in chemical reactions and phase changes

UNIT 15 - Reaction Energy & Reaction Kinetics. I. Thermochemistry: study of heat in chemical reactions and phase changes I. Thermochemistry: study of heat in chemical reactions and phase changes II. A. Heat equation (change in temperature): Q = m. C. p T 1. Q = heat (unit is Joules) 2. m = mass (unit is grams) 3. C p = specific

More information

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy THERMOCHEMISTRY Thermodynamics Study of energy and its interconversions Energy is TRANSFORMED in a chemical reaction (POTENTIAL to KINETIC) HEAT (energy transfer) is also usually produced or absorbed -SYSTEM:

More information

Chapter 5 - Thermochemistry

Chapter 5 - Thermochemistry Chapter 5 - Thermochemistry Study of energy changes that accompany chemical rx s. I) Nature of Energy Energy / Capacity to do work Mechanical Work w = F x d Heat energy - energy used to cause the temperature

More information

Energy and Chemical Change

Energy and Chemical Change Energy and Chemical Change Section 16.1 Energy In your textbook, read about the nature of energy. In the space at the left, write true if the statement is true; if the statement is false, change the italicized

More information

Reaction Rates & Equilibrium. What determines how fast a reaction takes place? What determines the extent of a reaction?

Reaction Rates & Equilibrium. What determines how fast a reaction takes place? What determines the extent of a reaction? Reaction Rates & Equilibrium What determines how fast a reaction takes place? What determines the extent of a reaction? Reactants Products 1 Reaction Rates Vary TNT exploding. A car rusting. Dead plants

More information

UNIT 9 IB MATERIAL KINETICS & THERMODYNAMICS

UNIT 9 IB MATERIAL KINETICS & THERMODYNAMICS UNIT 9 IB MATERIAL KINETICS & THERMODYNAMICS Name: ESSENTIALS: Know, Understand, and Be Able To State that combustion and neutralization are exothermic processes. Calculate the heat energy change when

More information

Thermochemistry. Energy and Chemical Change

Thermochemistry. Energy and Chemical Change Thermochemistry Energy and Chemical Change Energy Energy can change for and flow, but it is always conserved. The Nature of Energy Energy the ability to do work or produce heat Potential energy Kinetic

More information

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy THERMOCHEMISTRY Thermodynamics Study of energy and its interconversions Energy is TRANSFORMED in a chemical reaction (POTENTIAL to KINETIC) HEAT (energy transfer) is also usually produced or absorbed -SYSTEM:

More information

Name Date Class THE FLOW OF ENERGY HEAT AND WORK

Name Date Class THE FLOW OF ENERGY HEAT AND WORK 17.1 THE FLOW OF ENERGY HEAT AND WORK Section Review Objectives Explain the relationship between energy, heat, and work Distinguish between exothermic and endothermic processes Distinguish between heat

More information

Energy and Chemical Change

Energy and Chemical Change Energy and Chemical Change Section 15.1 Energy Section 15.2 Heat Section 15.3 Thermochemical Equations Section 15.4 Calculating Enthalpy Change Section 15.5 Reaction Spontaneity Click a hyperlink or folder

More information

Introduction to Thermochemistry. Thermochemistry Unit. Definition. Terminology. Terminology. Terminology 07/04/2016. Chemistry 30

Introduction to Thermochemistry. Thermochemistry Unit. Definition. Terminology. Terminology. Terminology 07/04/2016. Chemistry 30 Thermochemistry Unit Introduction to Thermochemistry Chemistry 30 Definition Thermochemistry is the branch of chemistry concerned with the heat produced and used in chemical reactions. Most of thermochemistry

More information

Section 1 - Thermochemistry

Section 1 - Thermochemistry Reaction Energy Section 1 - Thermochemistry Virtually every chemical reaction is accompanied by a change in energy. Chemical reactions usually absorb or release energy as heat. You learned in Chapter 12

More information

Chapter 6. Thermochemistry

Chapter 6. Thermochemistry Chapter 6. Thermochemistry 1 1. Terms to Know: thermodynamics thermochemistry energy kinetic energy potential energy heat heat vs. temperature work work of expanding gases work of expanding gases under

More information

The following gas laws describes an ideal gas, where

The following gas laws describes an ideal gas, where Alief ISD Chemistry STAAR Review Reporting Category 4: Gases and Thermochemistry C.9.A Describe and calculate the relations between volume, pressure, number of moles, and temperature for an ideal gas as

More information

_ + Units of Energy. Energy in Thermochemistry. Thermochemistry. Energy flow between system and surroundings. 100º C heat 50º C

_ + Units of Energy. Energy in Thermochemistry. Thermochemistry. Energy flow between system and surroundings. 100º C heat 50º C Units of Energy Like we saw with pressure, many different units are used throughout the world for energy. SI unit for energy 1kg m 1J = 2 s 2 Joule (J) calorie (cal) erg (erg) electron volts (ev) British

More information

The Nature of Energy Energy is the ability to do work or produce Heat, q or Q, is ; flows due to temperature differences (always to )

The Nature of Energy Energy is the ability to do work or produce Heat, q or Q, is ; flows due to temperature differences (always to ) CP Chapter 17 Thermochemistry 2014-2015 Thermochemistry Thermochemistry is the study of energy that occur during chemical and physical changes (changes of state) The Nature of Energy Energy is the ability

More information

I. The Nature of Energy A. Energy

I. The Nature of Energy A. Energy I. The Nature of Energy A. Energy is the ability to do work or produce heat. It exists in 2 forms: 1. Potential energy is energy due to the composition or position of an object. 2. Kinetic energy is energy

More information

Calculate the mass of L of oxygen gas at 25.0 C and 1.18 atm pressure.

Calculate the mass of L of oxygen gas at 25.0 C and 1.18 atm pressure. 148 Calculate the mass of 22650 L of oxygen gas at 25.0 C and 1.18 atm pressure. 1 - Convert the volume of oxygen gas to moles using IDEAL GAS EQUATION 2 - Convert moles oxygen gas to mass using formula

More information

Thermochemistry. Energy (and Thermochemistry) World of Chemistry Chapter 10. Energy. Energy

Thermochemistry. Energy (and Thermochemistry) World of Chemistry Chapter 10. Energy. Energy Thermochemistry Thermodynamics is the science of the relationship between heat and other forms of energy. (and Thermochemistry) World of Chemistry Chapter 10 is defined as the ability to do work or produce

More information

Reaction Rates & Equilibrium. What determines how fast a reaction takes place? What determines the extent of a reaction?

Reaction Rates & Equilibrium. What determines how fast a reaction takes place? What determines the extent of a reaction? Reaction Rates & Equilibrium What determines how fast a reaction takes place? What determines the extent of a reaction? Reactants Products 1 Reaction Rates Vary TNT exploding. A car rusting. Dead plants

More information

Selected Questions on Chapter 5 Thermochemistry

Selected Questions on Chapter 5 Thermochemistry Selected Questions on Chapter 5 Thermochemistry Circle the correct answer: 1) At what velocity (m/s) must a 20.0 g object be moving in order to possess a kinetic energy of 1.00 J? A) 1.00 B) 100 10 2 C)

More information

Thermochemistry. Section The flow of energy

Thermochemistry. Section The flow of energy Thermochemistry Section 17.1 - The flow of energy What is Energy? Energy is the capacity for doing work or supplying heat Energy does not have mass or volume, and it can only be detected because of its

More information

Chapter 8 Thermochemistry: Chemical Energy. Chemical Thermodynamics

Chapter 8 Thermochemistry: Chemical Energy. Chemical Thermodynamics Chapter 8 Thermochemistry: Chemical Energy Chapter 8 1 Chemical Thermodynamics Chemical Thermodynamics is the study of the energetics of a chemical reaction. Thermodynamics deals with the absorption or

More information

Spontaneity, Entropy, and Free Energy

Spontaneity, Entropy, and Free Energy Spontaneity, Entropy, and Free Energy A ball rolls spontaneously down a hill but not up. Spontaneous Processes A reaction that will occur without outside intervention; product favored Most reactants are

More information

Collision Theory. Unit 12: Chapter 18. Reaction Rates. Activation Energy. Reversible Reactions. Reversible Reactions. Reaction Rates and Equilibrium

Collision Theory. Unit 12: Chapter 18. Reaction Rates. Activation Energy. Reversible Reactions. Reversible Reactions. Reaction Rates and Equilibrium Collision Theory For reactions to occur collisions between particles must have Unit 12: Chapter 18 Reaction Rates and Equilibrium the proper orientation enough kinetic energy See Both In Action 1 2 Activation

More information

Chapter 11 Thermochemistry Heat and Chemical Change

Chapter 11 Thermochemistry Heat and Chemical Change Chemistry/ PEP Name: Date: Chapter 11 Thermochemistry Heat and Chemical Change Chapter 11:1 35, 57, 60, 61, 71 Section 11.1 The Flow of Energy - Heat 1. When 435 of heat is added to 3.4 g of olive oil

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Name: Class: _ Date: _ ID: A Chpter 17 review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of these phase changes is an endothermic process? a.

More information

CP Chapter 17 Thermochemistry

CP Chapter 17 Thermochemistry CP Chapter 17 Thermochemistry Thermochemistry Thermochemistry is the study of energy that occur during chemical reactions and phase changes (changes of state) The Nature of Energy Energy is the ability

More information

Thermochemistry Chapter 4

Thermochemistry Chapter 4 Thermochemistry Chapter 4 Thermochemistry is the study of energy changes that occur during chemical reactions Focus is on heat and matter transfer between the system and the surroundings Energy The ability

More information

Practice Test: Energy and Rates of Reactions

Practice Test: Energy and Rates of Reactions Practice Test: Energy and Rates of Reactions NAME: /65 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. (20 marks) 1. What is the symbol for

More information

33. a. Heat is absorbed from the water (it gets colder) as KBr dissolves, so this is an endothermic process.

33. a. Heat is absorbed from the water (it gets colder) as KBr dissolves, so this is an endothermic process. 31. This is an endothermic reaction so heat must be absorbed in order to convert reactants into products. The high temperature environment of internal combustion engines provides the heat. 33. a. Heat

More information

HC- Kinetics and Thermodynamics Test Review Stations

HC- Kinetics and Thermodynamics Test Review Stations HC- Kinetics and Thermodynamics Test Review Stations Station 1- Collision Theory and Factors Affecting Reaction Rate 1. Explain the collision theory of reactions. 2. Fill out the following table to review

More information

CHAPTER 16 REVIEW. Reaction Energy. SHORT ANSWER Answer the following questions in the space provided.

CHAPTER 16 REVIEW. Reaction Energy. SHORT ANSWER Answer the following questions in the space provided. CHAPTER 16 REVIEW Reaction Energy SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. For elements in their standard state, the value of H 0 f is 0. 2. The formation and decomposition

More information

Note: 1 calorie = 4.2 Joules

Note: 1 calorie = 4.2 Joules Enthalpy Changes All substances contain chemical energy, called enthalpy. Like any kind of energy it is measured in Joules (previously energy was measured in Calories). When reactions happen, energy is

More information

Reaction Energy. Thermochemistry

Reaction Energy. Thermochemistry Reaction Energy Thermochemistry Thermochemistry The study of the transfers of energy as heat that accompany chemical reactions & physical changes Thermochemistry -In studying heat changes, think of defining

More information

11B, 11E Temperature and heat are related but not identical.

11B, 11E Temperature and heat are related but not identical. Thermochemistry Key Terms thermochemistry heat thermochemical equation calorimeter specific heat molar enthalpy of formation temperature enthalpy change enthalpy of combustion joule enthalpy of reaction

More information

CHAPTER 17 Thermochemistry

CHAPTER 17 Thermochemistry CHAPTER 17 Thermochemistry Thermochemistry The study of the heat changes that occur during chemical reactions and physical changes of state. Chemical Change: new substances created during chemical reaction

More information

Unit 13 Kinetics & Equilibrium Page 1 of 14 Chemistry Kinetics, Entropy, Equilibrium, LeChatelier s Principle, K, Unit 13 Quiz: Unit 13 Test:

Unit 13 Kinetics & Equilibrium Page 1 of 14 Chemistry Kinetics, Entropy, Equilibrium, LeChatelier s Principle, K, Unit 13 Quiz: Unit 13 Test: Unit 13 Kinetics & Equilibrium Page 1 of 14 Chemistry Kinetics, Entropy, Equilibrium, LeChatelier s Principle, K, Unit 13 Quiz: Unit 13 Test: Final Project: VOCABULARY: 1 Chemical equilibrium 2 equilibrium

More information

Mr Chiasson Advanced Chemistry 12 / Chemistry 12 1 Unit B: Thermochemical Changes

Mr Chiasson Advanced Chemistry 12 / Chemistry 12 1 Unit B: Thermochemical Changes Mr Chiasson Advanced Chemistry 12 / Chemistry 12 1 Unit B: Thermochemical Changes Students will be expected to: Compare the molar enthalpies of several combustion reactions involving organic compounds.

More information

Thermochemistry Lecture

Thermochemistry Lecture Thermochemistry Lecture Jennifer Fang 1. Enthalpy 2. Entropy 3. Gibbs Free Energy 4. q 5. Hess Law 6. Laws of Thermodynamics ENTHALPY total energy in all its forms; made up of the kinetic energy of the

More information

This reaction is ENDOTHERMIC. Energy is being transferred from the room/flask/etc. (the SURROUNDINGS) to the reaction itself (the SYSTEM).

This reaction is ENDOTHERMIC. Energy is being transferred from the room/flask/etc. (the SURROUNDINGS) to the reaction itself (the SYSTEM). 151 This reaction is EXOTHERMIC. Energy is transferred from the reactants and products (the SYSTEM) to the water in the flask, the flask, etc. (the SURROUNDINGS) This reaction is ENDOTHERMIC. Energy is

More information

Ch. 17 Thermochemistry

Ch. 17 Thermochemistry Ch. 17 Thermochemistry 17.1 The Flow of Energy Energy Transformations Thermochemistry: study of energy changes in chemical reactions and changes in state Chemical potential energy: energy stored in bonds

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry Learning Outcomes: Interconvert energy units Distinguish between the system and the surroundings in thermodynamics Calculate internal energy from heat and work and state sign

More information

Chemistry 101 Chapter 10 Energy

Chemistry 101 Chapter 10 Energy Chemistry 101 Chapter 10 Energy Energy: the ability to do work or produce heat. Kinetic energy (KE): is the energy of motion. Any object that is moving has kinetic energy. Several forms of kinetic energy

More information

Name: Thermochemistry. Practice Test C. General Chemistry Honors Chemistry

Name: Thermochemistry. Practice Test C. General Chemistry Honors Chemistry Name: Thermochemistry C Practice Test C General Chemistry Honors Chemistry 1 Objective 1: Use the relationship between mass, specific heat, and temperature change to calculate the heat flow during a chemical

More information

Chemistry. Friday, March 30 th Monday, April 9 th, 2018

Chemistry. Friday, March 30 th Monday, April 9 th, 2018 Chemistry Friday, March 30 th Monday, April 9 th, 2018 Do-Now: BrainPOP: Heat 1. Write down today s FLT 2. Distinguish between exothermic and endothermic processes. 3. What is the specific heat of water?

More information

OCR Chemistry A H432

OCR Chemistry A H432 All the energy changes we have considered so far have been in terms of enthalpy, and we have been able to predict whether a reaction is likely to occur on the basis of the enthalpy change associated with

More information

CHEM 1105 S10 March 11 & 14, 2014

CHEM 1105 S10 March 11 & 14, 2014 CHEM 1105 S10 March 11 & 14, 2014 Today s topics: Thermochemistry (Chapter 6) Basic definitions Calorimetry Enthalpy Thermochemical equations Calculating heats of reaction Hess s Law Energy and Heat Some

More information

AP CHEMISTRY NOTES 4-1 THERMOCHEMISTRY: ENTHALPY AND ENTROPY

AP CHEMISTRY NOTES 4-1 THERMOCHEMISTRY: ENTHALPY AND ENTROPY AP CHEMISTRY NOTES 4-1 THERMOCHEMISTRY: ENTHALPY AND ENTROPY Reaction Rate how fast a chemical reaction occurs Collision Theory In order for a chemical reaction to occur, the following conditions must

More information

Chapter 17: Energy and Kinetics

Chapter 17: Energy and Kinetics Pages 510-547 S K K Chapter 17: Energy and Kinetics Thermochemistry: Causes of change in systems Kinetics: Rate of reaction progress (speed) Heat, Energy, and Temperature changes S J J Heat vs Temperature

More information

CHEMISTRY 12 UNIT II EQUILIBRIUM D Learning Goals

CHEMISTRY 12 UNIT II EQUILIBRIUM D Learning Goals CHEMISTRY 12 UNIT II EQUILIBRIUM D Learning Goals 1. Chemical equilibrium is said to by dynamic because a. The reaction proceeds quickly b. The mass of the reactants is decreasing c. The macroscopic properties

More information

UNIT #10: Reaction Rates Heat/Energy in Chemical Reactions Le Chatlier s Principle Potential Energy Diagrams

UNIT #10: Reaction Rates Heat/Energy in Chemical Reactions Le Chatlier s Principle Potential Energy Diagrams UNIT #10: Reaction Rates Heat/Energy in Chemical Reactions Le Chatlier s Principle Potential Energy Diagrams NAME: 1. REACTION RATES a) The speed of a chemical reaction determined by the change in concentration

More information

Unit 6 Kinetics and Equilibrium.docx

Unit 6 Kinetics and Equilibrium.docx 6-1 Unit 6 Kinetics and Equilibrium At the end of this unit, you ll be familiar with the following: Kinetics: Reaction Rate Collision Theory Reaction Mechanism Factors Affecting Rate of Reaction: o Nature

More information

Advanced Chemistry Practice Problems

Advanced Chemistry Practice Problems Thermodynamics: Review of Thermochemistry 1. Question: What is the sign of DH for an exothermic reaction? An endothermic reaction? Answer: ΔH is negative for an exothermic reaction and positive for an

More information

Quantities in Chemical Reactions

Quantities in Chemical Reactions Quantities in Chemical Reactions 6-1 6.1 The Meaning of a Balanced Equation C 3 H 8(g) + 5 O 2(g) 3 CO 2(g) + 4 H 2 O (g) The balanced equation tells us: 1 molecule of propane reacts with 5 molecules of

More information

Bond Enthalpy and Activation Energy

Bond Enthalpy and Activation Energy Bond Enthalpy and Activation Energy Energy of a Chemical Reaction ΔH = ΔH (bonds broken) - ΔH (bonds formed) Add up all the energies of the broken bonds Add up all the energies of the bonds that are reformed

More information

Thermochemistry: Energy Flow and Chemical Reactions

Thermochemistry: Energy Flow and Chemical Reactions Thermochemistry: Energy Flow and Chemical Reactions Outline thermodynamics internal energy definition, first law enthalpy definition, energy diagrams, calorimetry, theoretical calculation (heats of formation

More information

CRHS Academic Chemistry Unit 15 Thermochemistry HOMEWORK. Due Date Assignment On-Time (100) Late (70)

CRHS Academic Chemistry Unit 15 Thermochemistry HOMEWORK. Due Date Assignment On-Time (100) Late (70) Name KEY Period CRHS Academic Chemistry Unit 15 Thermochemistry HOMEWORK Due Date Assignment On-Time (100) Late (70) 15.1 15.2 15.3 15.4 Warm Ups Extra Credit Notes, Homework, Exam Reviews and Their KEYS

More information

Chapter 7 Chemical Reactions: Energy, Rates, and Equilibrium

Chapter 7 Chemical Reactions: Energy, Rates, and Equilibrium Chapter 7 Chemical Reactions: Energy, Rates, and Equilibrium Introduction This chapter considers three factors: a) Thermodynamics (Energies of Reactions) a reaction will occur b) Kinetics (Rates of Reactions)

More information

Chapter 5: Thermochemistry. Molecular Kinetic Energy -Translational energy E k, translational = 1/2mv 2 -Rotational energy 5.

Chapter 5: Thermochemistry. Molecular Kinetic Energy -Translational energy E k, translational = 1/2mv 2 -Rotational energy 5. Chapter 5: Thermochemistry 1. Thermodynamics 2. Energy 3. Specific Heat 4. Enthalpy 5. Enthalpies of Reactions 6. Hess s Law 7. State Functions 8. Standard Enthalpies of Formation 9. Determining Enthalpies

More information

Chemistry 30 Review Sessions THERMOCHEMISTRY

Chemistry 30 Review Sessions THERMOCHEMISTRY Chemistry 30 Review Sessions THERMOCHEMISTRY Curriculum bullets Use Q = mcδt to analyze heat transfer. Use calorimetry data to determine the enthalpy changes in chemical reactions. Calorimeters rely on

More information

Accelerated Chemistry Study Guide Chapter 12, sections 1 and 2: Heat in Chemical Reactions

Accelerated Chemistry Study Guide Chapter 12, sections 1 and 2: Heat in Chemical Reactions Accelerated Chemistry Study Guide Chapter 12, sections 1 and 2: Heat in Chemical Reactions Terms, definitions, topics Joule, calorie (Re-read p 57-58) Thermochemistry Exothermic reaction Endothermic reaction

More information

Chapter 7 Chemical Reactions

Chapter 7 Chemical Reactions Chapter 7 Chemical Reactions Chemical Equation --> is a representation of a chemical reaction in which the reactants and products are expressed as formulas Reactants --> substances that undergo change

More information

Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16

Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16 Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16 1980 - #7 (a) State the physical significance of entropy. Entropy (S) is a measure of randomness or disorder in a system. (b) From each of

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Explain how energy, heat, and work are related. 2 Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Classify

More information

Thermochemistry Notes

Thermochemistry Notes Name: Thermochemistry Notes I. Thermochemistry deals with the changes in energy that accompany a chemical reaction. Energy is measured in a quantity called enthalpy, represented as H. The change in energy

More information

Energy in Chemical Reaction Reaction Rates Chemical Equilibrium. Chapter Outline. Energy 6/29/2013

Energy in Chemical Reaction Reaction Rates Chemical Equilibrium. Chapter Outline. Energy 6/29/2013 Energy in Chemical Reaction Reaction Rates Chemical Equilibrium Chapter Outline Energy change in chemical reactions Bond dissociation energy Reaction rate Chemical equilibrium, Le Châtelier s principle

More information

Chapter 6 Problems: 9, 19, 24, 25, 26, 27, 31-33, 37, 39, 43, 45, 47, 48, 53, 55, 57, 59, 65, 67, 73, 78-82, 85, 89, 93

Chapter 6 Problems: 9, 19, 24, 25, 26, 27, 31-33, 37, 39, 43, 45, 47, 48, 53, 55, 57, 59, 65, 67, 73, 78-82, 85, 89, 93 Chapter 6 Problems: 9, 19, 24, 25, 26, 27, 31-33, 37, 39, 43, 45, 47, 48, 53, 55, 57, 59, 65, 67, 73, 78-82, 85, 89, 93 Chapter 6 Thermochemistry The study of chemical reactions and the energy changes

More information

AP CHEMISTRY SCORING GUIDELINES

AP CHEMISTRY SCORING GUIDELINES Mean 5.64 out of 9 pts AP CHEMISTRY Question 1 CO(g) + 1 2 O 2 (g) CO 2 (g) 1. The combustion of carbon monoxide is represented by the equation above. (a) Determine the value of the standard enthalpy change,

More information

Unit 15 Energy and Thermochemistry Notes

Unit 15 Energy and Thermochemistry Notes Name KEY Period CRHS Academic Chemistry Unit 15 Energy and Thermochemistry Notes Quiz Date Exam Date Lab Dates Notes, Homework, Exam Reviews and Their KEYS located on CRHS Academic Chemistry Website: https://cincochem.pbworks.com

More information

Energy and Chemical Change

Energy and Chemical Change Energy and Chemical Change Section 15.1 Energy In your textbook, read about the nature of energy. In the space at the left, write true if the statement is true; if the statement is false, change the italicized

More information

Chapter 3. Thermochemistry: Energy Flow and Chemical Change. 5.1 Forms of Energy and Their Interconversion

Chapter 3. Thermochemistry: Energy Flow and Chemical Change. 5.1 Forms of Energy and Their Interconversion Chapter 3 Thermochemistry: Energy Flow and Chemical Change 5.1 Forms of Energy and Their Interconversion 5.2 Enthalpy: Chemical Change at Constant Pressure 5.3 Calorimetry: Measuring the Heat of a Chemical

More information

1.4 Enthalpy. What is chemical energy?

1.4 Enthalpy. What is chemical energy? 1.4 Enthalpy What is chemical energy? Chemical energy is a form of potential energy which is stored in chemical bonds. Chemical bonds are the attractive forces that bind atoms together. As a reaction takes

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry Energy -Very much a chemistry topic Every chemical change has an accompanying change of. Combustion of fossil fuels The discharging a battery Metabolism of foods If we are to

More information

Thermochemistry. Chapter 6. Dec 19 8:52 AM. Thermochemistry. Energy: The capacity to do work or to produce heat

Thermochemistry. Chapter 6. Dec 19 8:52 AM. Thermochemistry. Energy: The capacity to do work or to produce heat Chapter 6 Dec 19 8:52 AM Intro vocabulary Energy: The capacity to do work or to produce heat Potential Energy: Energy due to position or composition (distance and strength of bonds) Kinetic Energy: Energy

More information

Thermochemistry Ch. 8

Thermochemistry Ch. 8 Definitions I. Energy (E): capacity to do work. II. Heat (q): transfer of energy from a body at a high temp. to a body at a low temp. III. Reaction perspectives: A. System: the focus. B. Surroundings:

More information

Name Date Class THERMOCHEMISTRY

Name Date Class THERMOCHEMISTRY Name Date Class 17 THERMOCHEMISTRY SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510) This section explains the relationship between energy and heat, and distinguishes between heat capacity

More information

Slide 1 / Objects can possess energy as: (a) endothermic energy (b) potential energy (c) kinetic energy. a only b only c only a and c b and c

Slide 1 / Objects can possess energy as: (a) endothermic energy (b) potential energy (c) kinetic energy. a only b only c only a and c b and c Slide 1 / 84 1 Objects can possess energy as: (a) endothermic energy (b) potential energy (c) kinetic energy A B C D E a only b only c only a and c b and c Slide 2 / 84 2 The internal energy of a system

More information

Thermochemistry. Mr.V

Thermochemistry. Mr.V Thermochemistry Mr.V Introduction to Energy changes System Surroundings Exothermic Endothermic Internal energy Enthalpy Definitions System A specified part of the universe which is under investigation

More information

Thermochemistry is the study of the relationships between chemical reactions and energy changes involving heat.

Thermochemistry is the study of the relationships between chemical reactions and energy changes involving heat. CHEM134- F18 Dr. Al- Qaisi Chapter 06: Thermodynamics Thermochemistry is the study of the relationships between chemical reactions and energy changes involving heat. Energy is anything that has the capacity

More information

Quantities in Chemical Reactions

Quantities in Chemical Reactions Quantities in Chemical Reactions 6-1 6.1 The Meaning of a Balanced Equation C 3 H 8(g) + 5 O 2(g) 3 CO 2(g) + 4 H 2 O (g) The balanced equation tells us: 1 molecule of propane reacts with 5 molecules of

More information

Chapter 8. Thermochemistry 강의개요. 8.1 Principles of Heat Flow. 2) Magnitude of Heat Flow. 1) State Properties. Basic concepts : study of heat flow

Chapter 8. Thermochemistry 강의개요. 8.1 Principles of Heat Flow. 2) Magnitude of Heat Flow. 1) State Properties. Basic concepts : study of heat flow 강의개요 Basic concepts : study of heat flow Chapter 8 Thermochemistry Calorimetry : experimental measurement of the magnitude and direction of heat flow Thermochemical Equations Copyright 2005 연세대학교이학계열일반화학및실험

More information

Energy & Chemistry. Internal Energy (E) Energy and Chemistry. Potential Energy. Kinetic Energy. Energy and Chemical Reactions: Thermochemistry or

Energy & Chemistry. Internal Energy (E) Energy and Chemistry. Potential Energy. Kinetic Energy. Energy and Chemical Reactions: Thermochemistry or Page III-5-1 / Chapter Five Lecture Notes Energy & Chemistry Energy and Chemical Reactions: Thermochemistry or Thermodynamics Chapter Five Burning peanuts supplies sufficient energy to boil a cup of water

More information

Section 9: Thermodynamics and Energy

Section 9: Thermodynamics and Energy Section 9: Thermodynamics and Energy The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC 112.35(c). 9.01 Law of Conservation of Energy Chemistry (11)(A)

More information

Date: SCH 4U Name: ENTHALPY CHANGES

Date: SCH 4U Name: ENTHALPY CHANGES Date: SCH 4U Name: ENTHALPY CHANGES Enthalpy (H) = heat content of system (heat, latent heat) Enthalpy = total energy of system + pressure volume H = E + PV H = E + (PV) = final conditions initial conditions

More information

How many ml of 0.250M potassium permangenate are needed to react with 3.36 g of iron(ii) sulfate?

How many ml of 0.250M potassium permangenate are needed to react with 3.36 g of iron(ii) sulfate? 115 How many ml of 0.250M potassium permangenate are needed to react with 3.36 g of iron(ii) sulfate? 1) Convert 3.36 grams iron(ii) sulfate to moles. Use FORMULA WEIGHT. 2) Convert moles iron(ii) sulfate

More information

CHEMISTRY. Chapter 5 Thermochemistry

CHEMISTRY. Chapter 5 Thermochemistry CHEMISTRY The Central Science 8 th Edition Chapter 5 Thermochemistry Dr. Kozet YAPSAKLI The Nature of Energy Kinetic and Potential Energy Potential energy can be converted into kinetic energy. E p = mgh

More information