Date: SCH 4U Name: ENTHALPY CHANGES

Size: px
Start display at page:

Download "Date: SCH 4U Name: ENTHALPY CHANGES"

Transcription

1 Date: SCH 4U Name: ENTHALPY CHANGES Enthalpy (H) = heat content of system (heat, latent heat) Enthalpy = total energy of system + pressure volume H = E + PV H = E + (PV) = final conditions initial conditions In open system, P & V don t change so H = E = Q If heat gained by system +Q + H endothermic If heat lost by system -Q - H exothermic Enthalpy Changes Physical Changes = substance is merely changed from one form to another, chemical composition has not changed (ie/ cutting, pressing, dissolving in solution, evaporating, melting etc.) o Enthalpy of Solution (C) To make a solution: Step 1: solute-solute and solvent-solvent intermolecular forces are broken ( H solute & H solvent, both are +ve) Step 2: solute-solvent intermolecular forces are formed ( H mix is ve) H solution = H solute + H solvent + H mix H solution = H final H initial + H solution = endothermic - H solution = exothermic o Enthalpy of Phase Changes (D) H o melt = enthalpy of melting, solid liquid H o vap = enthalpy of vaporization, liquid gas H o cond = enthalpy of condensation, gas liquid H o fre = enthalpy of freezing, liquid solid H o melt = - H o fre H o vap = - H o cond Heating Curve of Water (E) 1) A to B solid water (ice) is absorbing heat to heat from -25 o C to 0 o C 2) B to C temperature stays at 0 o C, absorbing heat to break intermolecular forces, solid (ice) liquid (water) 3) C to D liquid water is absorbing heat to heat from 0 o C to 100 o C 4) D to E temperature stays at 100 o C, absorbing heat to break intermolecular forces, liquid (water) gas (water vapour) 5) C to D gas (water vapour) continues to heat up, absorbs heat, 100 o C to 125 o C Chemical Changes = chemical reaction occurs between atoms or between compounds when chemical bonds are broken and re-formed (see thermochemical equations & calorimetry) Nuclear Changes = nuclear reaction occurs when the nucleus of an atom changes its composition o Nuclear Fusion = nuclei join together, releases a lot of energy in the process (F) Sun s core constantly fuses hydrogen atoms together to make helium atoms Hydrogen bombs fuse lithium atoms and neutrons High temperatures are needed to overcome the repulsion between atoms and bring them together Nuclear fusion power plants would solve our energy problems: More energy per unit mass is released in fusion than fission

2 2 Does not produce radioactive products But need a lot of energy to fuse nuclei together, IRL scientists use more energy to make fusion happen than what is produced Scientists also can t make fusion safe on a large scale like a power plant o Nuclear Fission = unstable nuclei splits spontaneously or when hit by neutrons (G1) There are 3 types of fission or decay: o Alpha α Decay Alpha particle is released from atom 2 protons, 2 neutrons = He nucleus Low penetrating power, a few centimetres in air Can be stopped by a sheet of paper o Beta β Decay Beta particle is released from atom No mass, negative charge = electron Moderate penetrating power, can go through skin, a few metres in air Stopped by 1mm thick Al o Gamma γ Radiation Gamma rays are released No mass, no charge = energy High penetrating power, moves at the speed of light Stopped by 1m thick Pb or concrete In general, (G2) H solution < H phase change < H chemical reaction < H nuclear reaction 100s kj 10 8 kj

3 3 THERMOCHEMICAL EQUATIONS H r = enthalpy change of reaction H comb = enthalpy change of combustion reaction H o = enthalpy change at SATP ( o = nought) In a chemical reaction: (H) Energy is needed to break bonds (endothermic) Energy is released when new bonds form (exothermic) Overall reaction can be endothermic: o Products have more enthalpy than reactants o N 2(g) + 2 O 2(g) kj 2 NO 2(g) o H r = kj Or overall reaction can be exothermic: o Reactants have more enthalpy than products o CH 4(g) + 2 O 2(g) CO 2(g) + 2 H 2 O (l) kj o H r = kj Standard Molar Enthalpy of Combustion Scientists have done experiments and calculated the molar enthalpy (kj/mol) for many standard reactions C 5 H 12(l) + 8 O 2(g) 5 CO 2(g) + 6 H 2 O (l) o Look up C 5 H 12(l) H comb = kj/mol, so: o C 5 H 12(l) + 8 O 2(g) 5 CO 2(g) + 6 H 2 O (l) kj/mol 2 CH 3 OH (l) + 5 O 2(g) 2 CO 2(g) + 8 H 2 O (l) o Look up CH 3 OH (l), H comb = kj/mol, so: o 2 CH 3 OH (l) + 5 O 2(g) 2 CO 2(g) + 8 H 2 O (l) + (2)(726.1 kj/mol) or o CH 3 OH (l) O 2(g) CO 2(g) + 4 H 2 O (l) kj/mol

4 4 CALORIMETRY Calorie = amount of heat needed to increase temperature of 1g of water by 1 o C, not an SI unit (1 Calorie = 1000 calorie, 1 calorie = J, 1 Calorie = kj) Calorimetry = study of energy changes in physical and chemical changes with the use of a calorimeter Calorimeter = an isolated system used to measure how much heat is absorbed or released during a physical or chemical change Simple Calorimeter (I) Used for reactions occurring in solution 2 polystyrene cups stacked in each other o Polystyrene is good insulator o Air trapped between cups also insulates Inner cup = where reaction occurs, usually with a known mass of water o Make sure water is at room temp before reaction 2 holes: one for stirrer, one for thermometer o Air can flow freely, system is at constant pressure o Stir reactants frequently to ensure even temp. o Record T with thermometer Assumptions: o System is isolated o Thermal energy exchanged between all components is negligible o If part of the water turns into a solution, the density and specific heat capacity remains that of water o System is at constant pressure Heat lost by system = heat gained by surroundings Heat gained by system = heat lost by surroundings Flame Calorimetry (J) Use metal cans for the inner and outer vessel Directly heated by fire, with reactants inside inner can Bomb Calorimeter = measure enthalpy change in combustion reactions, at constant volume Inner chamber contains pure oxygen for combustion o Electric coil ignites reactants Outer chamber contains known amount of water to absorb heat released from combustion reaction Calorimeter made of too much material to assume components won t absorb any heat o Must find heat capacity (C) of entire bomb calorimeter o C bomb calorimeter = C water + C thermometer + C stirrer + C container o C = mc Q =C T for bomb calorimeter

5 5 HESS LAW Hess Law = enthalpy change of a physical or chemical process depends only on the initial and final conditions If the process involves multiple steps, enthalpy change of overall process is sum of enthalpy changes of all the individual steps Germain Henri Hess ( ) How to Combine Multiple Reaction Steps Into an Overall Equation 1. Reverse an equation if necessary. Be sure to reverse the sign of H o. 2. To compare the reactions, make sure each equation has the same number of moles of the product by multiplying by the same integer or fraction. Be sure to multiply H o by same number. 3. Cancel any compounds that appear on both sides 4. Add up any compounds that appear multiple times on same side 5. Add up H o at the end.

6 6 Standard Molar Enthalpy of Formation ( H o f) = enthalpy change whilst producing 1 mol compound (1.0 mol/l solution) at SATP H o f of an element in its most stable state is arbitrarily set at zero o Graphite is standard state of carbon H o f of graphite is 0 kj/mol H o f of diamond is +1.9 kj/mol o Oxygen, H o f of O 2 is zero o F 2, Cl 2, Br 2, I 2 etc. Fe, Al, K etc. Thermal Stability = how stable a substance is, ability to resist decomposition when heated H o r = enthalpy of decomposition at SATP o If value is high, takes a lot of energy to decompose it, likely won t decompose thermally stable Which has more thermal stability: methane or calcium carbonate? ENTHALPY OF FORMATION & HESS LAW standard enthalpy change of reaction = sum of product enthalpies of formation sum of reactant enthalpies of formation H o r = Σ(n H o f products) Σ(n H o f reactants) o Calculated value is the same as combining multiple reaction steps into an overall equation and their respective H o f, therefore, this equation is consistent with Hess Law

7 7 RATES OF REACTION Rate = change in quantity over a period of time (K) rate = quantity time reaction rate = [X] final [X] initial t final - t initial If reaction rate is +ve (slope of graph is +ve) o reaction rate is increasing over time If reaction rate is ve (slope of graph is -ve) o reaction rate is decreasing over time Average Rate of Reaction = the average rate of a reaction across many data points during a period of time (slope between any 2 points in time) Instantaneous Rate of Reaction = the specific rate of reaction at one single point in time (tangent to the slope)

8 8 COLLISION THEORY Collision Theory = for a reaction to occur, reactant particles must collide with each other Only a small fraction of collisions result in a reaction Effective Collisions = reactant particle collisions that result in the formation of products 1. Reactants must collide in the correct orientation o Reactants that collide in the wrong orientation will just bounce off of each other (M) 2. Collision must occur with sufficient energy o Activation Energy (E a ) = minimum energy needed for a reaction to occur (N) E a must be overcome for reactants to proceed forward from transition state and form products Activated complex = reactants in temporary transition state, highly unstable, can proceed to form products or reverse and re-form reactants Reactions requiring low E a may even proceed at room temperature Gasoline needs high E a, which is why it does not burst into flames without ignition Reversible Reactions Exothermic reactions, H r, E a(forward) < E a(reverse), so forward reaction proceeds more easily Endothermic reactions, + H r, E a(reverse) < E a(forward), so reverse reaction proceeds more easily H r = E a(forward) E a(reverse) Consider the example: Forward CO (g) + NO 2(g) CO 2(g) + NO (g) H r = kJ Reverse CO 2(g) + NO (g) CO (g) + NO 2(g) H r = kJ

9 9 Potential Energy Diagram = shows energy transfer and how reaction occurs Reactants with sufficient kinetic energy collide in correct orientation Kinetic energy of collision converts to potential energy Potential energy stored in partial bonds of activated complex (in transition state) Partial bonds of activated complex form chemical bonds Potential energy stored in partial bonds converts to kinetic energy and particles of product separate

10 10 FACTORS AFFECTING REACTION RATE In general, any condition that increases the chance of effective collisions will increase reaction rate, vice versa. Nature of Reactants Compounds in solution react faster because: o Ions are already in solution, don t need to break bonds before forming new bonds o Opposite charges attract each other Acids and bases react faster because they are oppositely charged and attract each other Covalent compounds react slower because bonds need to be broken before new ones can be formed Exothermic reactions occur faster because less E a is needed, energy released also give reactants more kinetic energy to increase effective collisions Concentration Increase concentration, increase amount of reactants in a given volume, increase number of effective collisions o As product concentration increases, rate of reaction slows down because reactant concentration decreased Temperature Increase temperature, increase number of effective collisions Pressure Increasing pressure in gases by adding more gas particles or decrease the volume they occupy, gas particles are closer together, increase number of effective collisions Surface Area Smaller pieces of reactants have more surface area, more surfaces for other reactants to collide (ie/ powdered materials have highest surface area, compared to grains or larger pieces) Catalyst = chemical compound that increases reaction rate but is not consumed in the process, is neither reactant nor product Can lower E a, more reactants have kinetic energy equal to or greater than E a, increase number of effective collisions

11 11 ORDER OF REACTION & RATE LAW Quantifying Reaction Rate in terms of Concentration Consider an experiment (O) where you test how different concentrations of Reactant A affects the reaction rate o No matter what the reactant concentration is, reaction rate decreases as time passes by, because as products are formed: There are fewer reactants to continually create products Reverse reaction can occur, some products may react to re-form reactants o The higher the reactant concentration, the faster the rate is If you graph all the different reaction rates at different reactant concentrations: o It may form a straight line, therefore reaction rate vs. reactant concentration is a linear relationship, y = mx+b (P) o It may form a curve, therefore reaction rate vs. reactant concentration is more like a quadratic relationship (half a parabola) rather than linear, y = mx 2 (Q) First-Order Reactions Reaction rate and reactant concentration are directly proportional to each other: o A linear relationship o If double concentration, reaction rate doubles o If triple concentration, reaction rate triples etc. rate = k [A] How do you know if a reaction is a first-order reaction? o You need to do an experiment and test how the concentration of EACH reactant affects the rate o If for each reactant, the reaction rate and concentration are directly proportional to each other, and give a linear relationship the entire reaction is deemed first-order o ex/ A (aq) + 2B (aq) 3C (aq) + 4D (aq) To test effect of different [A], make sure B is in excess, vice versa Second-Order Reactions Reaction rate and reactant concentration are not directly proportional to each other, reaction rate is proportional to the square of reactant concentration o If double reactant concentration, reaction rate increases by 2 2, 4 times as fast o If triple reactant concentration, reaction rate increases by 3 2, 9 times as fast rate = k[a] 2

12 12 Rate Law k = rate constant (proportionality constant) [A] = concentration of reactant A [B] = concentration of reactant B m = the order of the reaction with respect to reactant A n = the order of the reaction with respect to reactant B reaction rate = k [A] m [B] n order of overall reaction = m + n if more than one reactant, rate = k [A] m [B] n [C] p o order of overall reaction = m + n + p all constants, k, m, n are calculated from experimental data and then graphed order of overall reaction can also be: o a fraction o zero if there is a catalyst and it is saturated reaction rate wouldn t change if you increase [reactant] because catalyst only has so many sites to facilitate reaction, and if all sites are saturated, reaction is occurring at it s fastest REACTION MECHANISMS Reaction Mechanisms = series of individual (elementary) steps that occur a multi-step reaction More than one activated complex can be formed during a multi-step reaction Intermediate = a compound formed (product) and then used up (reactant) in elementary steps but does not occur in the overall final balanced chemical reaction

13 13 Rate-Determining Step = aka rate-limiting step, overall reaction rate can only be as fast or as slow as the slowest step

Mr Chiasson Advanced Chemistry 12 / Chemistry 12 1 Unit B: Thermochemical Changes

Mr Chiasson Advanced Chemistry 12 / Chemistry 12 1 Unit B: Thermochemical Changes Mr Chiasson Advanced Chemistry 12 / Chemistry 12 1 Unit B: Thermochemical Changes Students will be expected to: Compare the molar enthalpies of several combustion reactions involving organic compounds.

More information

HEAT, TEMPERATURE, & THERMAL ENERGY. Work - is done when an object is moved through a distance by a force acting on the object.

HEAT, TEMPERATURE, & THERMAL ENERGY. Work - is done when an object is moved through a distance by a force acting on the object. HEAT, TEMPERATURE, & THERMAL ENERGY Energy A property of matter describing the ability to do work. Work - is done when an object is moved through a distance by a force acting on the object. Kinetic Energy

More information

Thermochemistry. Section The flow of energy

Thermochemistry. Section The flow of energy Thermochemistry Section 17.1 - The flow of energy What is Energy? Energy is the capacity for doing work or supplying heat Energy does not have mass or volume, and it can only be detected because of its

More information

Practice Test: Energy and Rates of Reactions

Practice Test: Energy and Rates of Reactions Practice Test: Energy and Rates of Reactions NAME: /65 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. (20 marks) 1. What is the symbol for

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Explain how energy, heat, and work are related. 2 Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Classify

More information

Introduction to Thermochemistry. Thermochemistry Unit. Definition. Terminology. Terminology. Terminology 07/04/2016. Chemistry 30

Introduction to Thermochemistry. Thermochemistry Unit. Definition. Terminology. Terminology. Terminology 07/04/2016. Chemistry 30 Thermochemistry Unit Introduction to Thermochemistry Chemistry 30 Definition Thermochemistry is the branch of chemistry concerned with the heat produced and used in chemical reactions. Most of thermochemistry

More information

Name Date Class THE FLOW OF ENERGY HEAT AND WORK

Name Date Class THE FLOW OF ENERGY HEAT AND WORK 17.1 THE FLOW OF ENERGY HEAT AND WORK Section Review Objectives Explain the relationship between energy, heat, and work Distinguish between exothermic and endothermic processes Distinguish between heat

More information

The Nature of Energy Energy is the ability to do work or produce Heat, q or Q, is ; flows due to temperature differences (always to )

The Nature of Energy Energy is the ability to do work or produce Heat, q or Q, is ; flows due to temperature differences (always to ) CP Chapter 17 Thermochemistry 2014-2015 Thermochemistry Thermochemistry is the study of energy that occur during chemical and physical changes (changes of state) The Nature of Energy Energy is the ability

More information

ENTHALPY CHANGE CHAPTER 4

ENTHALPY CHANGE CHAPTER 4 ENTHALPY CHANGE CHAPTER 4 ENTHALPY Is the total energy of a system. E k = Kinetic energy. Vibrational Rotational Translational E due to motion H = E k + E p E P = Potential energy Attractive force b/w

More information

Unit 7 Kinetics and Thermodynamics

Unit 7 Kinetics and Thermodynamics 17.1 The Flow of Energy Heat and Work Unit 7 Kinetics and Thermodynamics I. Energy Transformations A. Temperature 1. A measure of the average kinetic energy of the particles in a sample of matter B. Heat

More information

Thermochemistry (chapter 5)

Thermochemistry (chapter 5) Thermochemistry (chapter 5) Basic Definitions: Thermochemistry = the study of the energy changes that accompany physical and chemical changes of matter. Energy is defined as the ability to do work or the

More information

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation THERMOCHEMISTRY Thermochemistry Energy 1st Law of Thermodynamics Enthalpy / Calorimetry Hess' Law Enthalpy of Formation The Nature of Energy Kinetic Energy and Potential Energy Kinetic energy is the energy

More information

Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy

Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy Unit 7: Energy Outline Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy Energy Energy is the ability to do work or produce heat. The energy

More information

Thermochemistry (chapter 5)

Thermochemistry (chapter 5) Thermochemistry (chapter 5) Is the study of the energy changes that accompany physical and chemical changes. Energy is defined as the ability to do work or the capacity to produce change. The forms of

More information

Thermochemistry. Energy (and Thermochemistry) World of Chemistry Chapter 10. Energy. Energy

Thermochemistry. Energy (and Thermochemistry) World of Chemistry Chapter 10. Energy. Energy Thermochemistry Thermodynamics is the science of the relationship between heat and other forms of energy. (and Thermochemistry) World of Chemistry Chapter 10 is defined as the ability to do work or produce

More information

THERMOCHEMISTRY & DEFINITIONS

THERMOCHEMISTRY & DEFINITIONS THERMOCHEMISTRY & DEFINITIONS Thermochemistry is the study of the study of relationships between chemistry and energy. All chemical changes and many physical changes involve exchange of energy with the

More information

1.4 Enthalpy. What is chemical energy?

1.4 Enthalpy. What is chemical energy? 1.4 Enthalpy What is chemical energy? Chemical energy is a form of potential energy which is stored in chemical bonds. Chemical bonds are the attractive forces that bind atoms together. As a reaction takes

More information

Brown, LeMay Ch 5 AP Chemistry Monta Vista High School

Brown, LeMay Ch 5 AP Chemistry Monta Vista High School Brown, LeMay Ch 5 AP Chemistry Monta Vista High School 1 From Greek therme (heat); study of energy changes in chemical reactions Energy: capacity do work or transfer heat Joules (J), kilo joules (kj) or

More information

CP Chapter 17 Thermochemistry

CP Chapter 17 Thermochemistry CP Chapter 17 Thermochemistry Thermochemistry Thermochemistry is the study of energy that occur during chemical reactions and phase changes (changes of state) The Nature of Energy Energy is the ability

More information

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy THERMOCHEMISTRY Thermodynamics Study of energy and its interconversions Energy is TRANSFORMED in a chemical reaction (POTENTIAL to KINETIC) HEAT (energy transfer) is also usually produced or absorbed -SYSTEM:

More information

Name Class Date. As you read Lesson 17.1, use the cause and effect chart below. Complete the chart with the terms system and surroundings.

Name Class Date. As you read Lesson 17.1, use the cause and effect chart below. Complete the chart with the terms system and surroundings. Name Class Date Thermochemistry 17.1 The Flow of Energy As you read Lesson 17.1, use the cause and effect chart below. Complete the chart with the terms system and surroundings. Process Cause Effect endothermic

More information

Thermochemistry Chapter 4

Thermochemistry Chapter 4 Thermochemistry Chapter 4 Thermochemistry is the study of energy changes that occur during chemical reactions Focus is on heat and matter transfer between the system and the surroundings Energy The ability

More information

Heat. Heat Terminology 04/12/2017. System Definitions. System Definitions

Heat. Heat Terminology 04/12/2017. System Definitions. System Definitions System Definitions Heat Physical Science 20 Ms. Hayduk Heat Terminology System: the part of the universe being studied (big Earth, or small one atom) Surroundings: the part of the universe outside the

More information

Chapter 8 Thermochemistry

Chapter 8 Thermochemistry William L Masterton Cecile N. Hurley http://academic.cengage.com/chemistry/masterton Chapter 8 Thermochemistry Edward J. Neth University of Connecticut Outline 1. Principles of heat flow 2. Measurement

More information

Energy Changes in Reactions p

Energy Changes in Reactions p Energy Changes in Reactions p.126 210 Heat vs. temperature: Heat is a form of energy, it is transferred from one system to another Temperature is an indication of the intensity of heat, it measures the

More information

Chapter 17 Thermochemistry

Chapter 17 Thermochemistry Chapter 17 Thermochemistry Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Explain how energy, heat, and work are related. 2 Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Classify

More information

Energy, Heat and Chemical Change

Energy, Heat and Chemical Change Energy, Heat and Chemical Change Chemistry 35 Fall 2000 Thermochemistry A part of Thermodynamics dealing with energy changes associated with physical and chemical reactions Why do we care? -will a reaction

More information

Unit 14. States of Matter & Thermochemistry

Unit 14. States of Matter & Thermochemistry Unit 14 Flashback: States of Matter & Thermochemistry Characteristic Solids Liquids Gases Shape Volume Density Fluidity Compressibility Picture Phase Diagram Shows the relationship between solid, liquid,

More information

I. The Nature of Energy A. Energy

I. The Nature of Energy A. Energy I. The Nature of Energy A. Energy is the ability to do work or produce heat. It exists in 2 forms: 1. Potential energy is energy due to the composition or position of an object. 2. Kinetic energy is energy

More information

8. atomic mass: the mass of the element and represents the. 9. Atomic number: on top of the atomic symbol; represents the.

8. atomic mass: the mass of the element and represents the. 9. Atomic number: on top of the atomic symbol; represents the. Intro To Chemistry Study online at quizlet.com/_2xw51k 1....:... 2. alkali metals: 8. atomic mass: the mass of the element and represents the number of protons plus the number of neutrons. 9. Atomic number:

More information

Ch. 17 Thermochemistry

Ch. 17 Thermochemistry Ch. 17 Thermochemistry 17.1 The Flow of Energy Energy Transformations Thermochemistry: study of energy changes in chemical reactions and changes in state Chemical potential energy: energy stored in bonds

More information

Unit 7 Thermochemistry Chemistry 020, R. R. Martin

Unit 7 Thermochemistry Chemistry 020, R. R. Martin Unit 7 Thermochemistry Chemistry 020, R. R. Martin 1. Thermochemistry Heat is a form of energy - which may take many forms: - Kinetic energy due to motion, ½ mv 2 - Potential energy due to position - Electrical

More information

Topic 05 Energetics : Heat Change. IB Chemistry T05D01

Topic 05 Energetics : Heat Change. IB Chemistry T05D01 Topic 05 Energetics 5.1-5.2: Heat Change IB Chemistry T05D01 5.1 Exothermic and endothermic reactions - 1 hour 5.1.1 Define the terms exothermic reaction, endothermic reaction and standard enthalpy change

More information

Chapter 8. Thermochemistry 강의개요. 8.1 Principles of Heat Flow. 2) Magnitude of Heat Flow. 1) State Properties. Basic concepts : study of heat flow

Chapter 8. Thermochemistry 강의개요. 8.1 Principles of Heat Flow. 2) Magnitude of Heat Flow. 1) State Properties. Basic concepts : study of heat flow 강의개요 Basic concepts : study of heat flow Chapter 8 Thermochemistry Calorimetry : experimental measurement of the magnitude and direction of heat flow Thermochemical Equations Copyright 2005 연세대학교이학계열일반화학및실험

More information

Energy Transformations

Energy Transformations Thermochemistry Energy Transformations Thermochemistry - concerned with heat changes that occur during chemical reactions Energy - capacity for doing work or supplying heat weightless, odorless, tasteless

More information

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy THERMOCHEMISTRY Thermodynamics Study of energy and its interconversions Energy is TRANSFORMED in a chemical reaction (POTENTIAL to KINETIC) HEAT (energy transfer) is also usually produced or absorbed -SYSTEM:

More information

11B, 11E Temperature and heat are related but not identical.

11B, 11E Temperature and heat are related but not identical. Thermochemistry Key Terms thermochemistry heat thermochemical equation calorimeter specific heat molar enthalpy of formation temperature enthalpy change enthalpy of combustion joule enthalpy of reaction

More information

Chapter 5. Thermochemistry

Chapter 5. Thermochemistry Chapter 5 Thermochemistry Dr. A. Al-Saadi 1 Preview Introduction to thermochemistry: Potential energy and kinetic energy. Chemical energy. Internal energy, work and heat. Exothermic vs. endothermic reactions.

More information

Warm up. 1) What is the conjugate acid of NH 3? 2) What is the conjugate base of HNO 2? 3) If the ph is 9.2, what is the [H 3 O + ], poh, and [OH - ]?

Warm up. 1) What is the conjugate acid of NH 3? 2) What is the conjugate base of HNO 2? 3) If the ph is 9.2, what is the [H 3 O + ], poh, and [OH - ]? Warm up 1) What is the conjugate acid of NH 3? 2) What is the conjugate base of HNO 2? 3) If the ph is 9.2, what is the [H 3 O + ], poh, and [OH - ]? 4) What is the concentration of H 2 SO 4 if 30.1 ml

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Name: Class: _ Date: _ ID: A Chpter 17 review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of these phase changes is an endothermic process? a.

More information

Energy. Different types of energy exist (heat, potential, kinetic, chemical, nuclear etc.)

Energy. Different types of energy exist (heat, potential, kinetic, chemical, nuclear etc.) Change in Energy Energy Different types of energy exist (heat, potential, kinetic, chemical, nuclear etc.) Heat - the energy transferred between objects that are at different temperatures. Unit of heat

More information

Chemistry Physical, Chemical, and Nuclear Changes

Chemistry Physical, Chemical, and Nuclear Changes Chemistry 1010 Physical, Chemical, and Nuclear Changes Review Which state of matter matches the following pictures? gas solid liquid What could the circles in these pictures represent? usually molecules,

More information

Section 9: Thermodynamics and Energy

Section 9: Thermodynamics and Energy Section 9: Thermodynamics and Energy The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC 112.35(c). 9.01 Law of Conservation of Energy Chemistry (11)(A)

More information

Unit 2: Thermodynamics & Kinetics. Thermochemistry: study of the energy changes that accompany physical or chemical changes in matter

Unit 2: Thermodynamics & Kinetics. Thermochemistry: study of the energy changes that accompany physical or chemical changes in matter Change in Matter and Energy (pg 298) Unit 2: Thermodynamics & Kinetics Thermochemistry: study of the energy changes that accompany physical or chemical changes in matter When you are studying transfers

More information

CHAPTER 17 Thermochemistry

CHAPTER 17 Thermochemistry CHAPTER 17 Thermochemistry Thermochemistry The study of the heat changes that occur during chemical reactions and physical changes of state. Chemical Change: new substances created during chemical reaction

More information

Unit 7 Practice Test. Matching

Unit 7 Practice Test. Matching Unit 7 Practice Test Matching Match each item with the correct statement below. a. positron d. transuranium element b. alpha particle e. gamma radiation c. beta particle f. transmutation 1. particle of

More information

CHAPTER 17: THERMOCHEMISTRY. Mrs. Brayfield

CHAPTER 17: THERMOCHEMISTRY. Mrs. Brayfield CHAPTER 17: THERMOCHEMISTRY Mrs. Brayfield REVIEW What is the law of conservation of energy? It states that energy cannot be created or destroyed So the energy of any process is the same THERMOCHEMISTRY

More information

Thermochemistry, Reaction Rates, & Equillibrium

Thermochemistry, Reaction Rates, & Equillibrium Thermochemistry, Reaction Rates, & Equillibrium Reaction Rates The rate at which chemical reactions occur Reaction Rates RXN rate = rate at which reactants change into products over time. This tells you

More information

Chapter 5 Principles of Chemical Reactivity: Energy and Chemical Reactions

Chapter 5 Principles of Chemical Reactivity: Energy and Chemical Reactions Chapter 5 Principles of Chemical Reactivity: Energy and Chemical Reactions Jeffrey Mack California State University, Sacramento Energy & Chemistry Questions that need to be addressed: How do we measure

More information

Thermochemistry: Heat and Chemical Change

Thermochemistry: Heat and Chemical Change Thermochemistry: Heat and Chemical Change 1 Heat or Thermal Energy (q) Heat is a form of energy Is heat the same as temperature? Heat flows between two objects at different temperatures. Hot Cold 2 Chemical

More information

Name Chemistry / / SOL Questions Chapter 9 For each of the following, fill in the correct answer on the BLUE side of the scantron.

Name Chemistry / / SOL Questions Chapter 9 For each of the following, fill in the correct answer on the BLUE side of the scantron. Name Chemistry / / SOL Questions Chapter 9 For each of the following, fill in the correct answer on the BLUE side of the scantron. 1. Which number on the graph to the right represents the effect of the

More information

Chapter 6: Thermochemistry

Chapter 6: Thermochemistry Chapter 6: Thermochemistry Section 6.1: Introduction to Thermochemistry Thermochemistry refers to the study of heat flow or heat energy in a chemical reaction. In a study of Thermochemistry the chemical

More information

UNIT 9: KINETICS & EQUILIBRIUM. Essential Question: What mechanisms affect the rates of reactions and equilibrium?

UNIT 9: KINETICS & EQUILIBRIUM. Essential Question: What mechanisms affect the rates of reactions and equilibrium? UNIT 9: KINETICS & EQUILIBRIUM Essential Question: What mechanisms affect the rates of reactions and equilibrium? What is Kinetics? Kinetics is the branch of chemistry that explains the rates of chemical

More information

Chapter Objectives. Chapter 9 Energy and Chemistry. Chapter Objectives. Energy Use and the World Economy. Energy Use and the World Economy

Chapter Objectives. Chapter 9 Energy and Chemistry. Chapter Objectives. Energy Use and the World Economy. Energy Use and the World Economy Chapter Objectives Larry Brown Tom Holme www.cengage.com/chemistry/brown Chapter 9 Energy and Chemistry Explain the economic importance of conversions between different forms of energy and the inevitability

More information

Name Date Class THERMOCHEMISTRY

Name Date Class THERMOCHEMISTRY Name Date Class 17 THERMOCHEMISTRY SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510) This section explains the relationship between energy and heat, and distinguishes between heat capacity

More information

AP CHEMISTRY NOTES 4-1 THERMOCHEMISTRY: ENTHALPY AND ENTROPY

AP CHEMISTRY NOTES 4-1 THERMOCHEMISTRY: ENTHALPY AND ENTROPY AP CHEMISTRY NOTES 4-1 THERMOCHEMISTRY: ENTHALPY AND ENTROPY Reaction Rate how fast a chemical reaction occurs Collision Theory In order for a chemical reaction to occur, the following conditions must

More information

Chemical Thermodynamics

Chemical Thermodynamics Chemical Thermodynamics 1 Thermodynamics Thermodynamics is a Greek term which means, heat power. Thermodynamics is the study of energy and its transformations. 2 Thermodynamics Thermochemistry how we observe,

More information

Kinetics - Chapter 14. reactions are reactions that will happen - but we can t tell how fast. - the steps by which a reaction takes place.

Kinetics - Chapter 14. reactions are reactions that will happen - but we can t tell how fast. - the steps by which a reaction takes place. The study of. Kinetics - Chapter 14 reactions are reactions that will happen - but we can t tell how fast. - the steps by which a reaction takes place. Factors that Affect Rx Rates 1. The more readily

More information

The following gas laws describes an ideal gas, where

The following gas laws describes an ideal gas, where Alief ISD Chemistry STAAR Review Reporting Category 4: Gases and Thermochemistry C.9.A Describe and calculate the relations between volume, pressure, number of moles, and temperature for an ideal gas as

More information

Answers to Unit 4 Review: Reaction Rates

Answers to Unit 4 Review: Reaction Rates Answers to Unit 4 Review: Reaction Rates Answers to Multiple Choice 1. c 13. a 25. a 37. c 49. d 2. d 14. a 26. c 38. c 50. d 3. c 15. d 27. c 39. c 51. b 4. d 16. a 28. b 40. c 52. c 5. c 17. b 29. c

More information

3.2 Calorimetry and Enthalpy

3.2 Calorimetry and Enthalpy 3.2 Calorimetry and Enthalpy Heat Capacity Specific heat capacity (c) is the quantity of thermal energy required to raise the temperature of 1 g of a substance by 1 C. The SI units for specific heat capacity

More information

How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics

How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics Reaction rated are fractions of a second for fireworks to explode. Reaction Rates takes years for a metal

More information

Chemistry 40S Chemical Kinetics (This unit has been adapted from

Chemistry 40S Chemical Kinetics (This unit has been adapted from Chemistry 40S Chemical Kinetics (This unit has been adapted from https://bblearn.merlin.mb.ca) Name: 1 2 Lesson 1: Introduction to Kinetics Goals: Identify variables used to monitor reaction rate. Formulate

More information

Ch. 6 Enthalpy Changes

Ch. 6 Enthalpy Changes Ch. 6 Enthalpy Changes Energy: The capacity to do work. In Physics, there are 2 main types of energy Kinetic (energy of motion) = ½ mv 2 Potential (energy of position due to gravity)= mgh In Chemistry,

More information

CHAPTER 3 THE FIRST LAW OF THERMODYNAM- ICS

CHAPTER 3 THE FIRST LAW OF THERMODYNAM- ICS CHAPTER 3 THE FIRST LAW OF THERMODYNAM- ICS Introduction In this chapter, we discuss the First Law of Thermodynamics (energy cannot be created or destroyed). In our discussion, we will define some important

More information

Thermochemistry: Energy Flow and Chemical Reactions

Thermochemistry: Energy Flow and Chemical Reactions Thermochemistry: Energy Flow and Chemical Reactions Outline thermodynamics internal energy definition, first law enthalpy definition, energy diagrams, calorimetry, theoretical calculation (heats of formation

More information

Gummy Bear Demonstration:

Gummy Bear Demonstration: Name: Unit 8: Chemical Kinetics Date: Regents Chemistry Aim: _ Do Now: a) Using your glossary, define chemical kinetics: b) Sort the phrases on the SmartBoard into the two columns below. Endothermic Rxns

More information

CHAPTER 16: REACTION ENERGY AND CHAPTER 17: REACTION KINETICS. Honors Chemistry Ms. Agostine

CHAPTER 16: REACTION ENERGY AND CHAPTER 17: REACTION KINETICS. Honors Chemistry Ms. Agostine CHAPTER 16: REACTION ENERGY AND CHAPTER 17: REACTION KINETICS Honors Chemistry Ms. Agostine 16.1 Thermochemistry Definition: study of the transfers of energy as heat that accompany chemical reactions and

More information

Chemistry Final Exam Sample Items

Chemistry Final Exam Sample Items Chemistry Final Exam Sample Items 1. Which best describes the current atomic theory? a. Atoms consist of electrons circling in definite orbits around a positive nucleus. b. Atoms are composed of electrons

More information

Thermochemistry: the study of energy (in the from of heat) changes that accompany physical & chemical changes

Thermochemistry: the study of energy (in the from of heat) changes that accompany physical & chemical changes Thermochemistry Thermochemistry: the study of energy (in the from of heat) changes that accompany physical & chemical changes heat flows from high to low (hot cool) endothermic reactions: absorb energy

More information

The Nature of Energy. Chapter Six: Kinetic vs. Potential Energy. Energy and Work. Temperature vs. Heat

The Nature of Energy. Chapter Six: Kinetic vs. Potential Energy. Energy and Work. Temperature vs. Heat The Nature of Energy Chapter Six: THERMOCHEMISTRY Thermodynamics is the study of energy and its transformations. Thermochemistry is the study of the relationship between chemical reactions and energy changes

More information

8.6 The Thermodynamic Standard State

8.6 The Thermodynamic Standard State 8.6 The Thermodynamic Standard State The value of H reported for a reaction depends on the number of moles of reactants...or how much matter is contained in the system C 3 H 8 (g) + 5O 2 (g) > 3CO 2 (g)

More information

CHEMISTRY CURRICULUM. Unit 1: Using Mathematics in Chemistry

CHEMISTRY CURRICULUM. Unit 1: Using Mathematics in Chemistry Chariho Regional School District - Science Curriculum September, 2016 CHEMISTRY CURRICULUM Unit 1: Using Mathematics in Chemistry OVERVIEW Summary Measurements are fundamental to the experimental sciences.

More information

Measuring and Expressing Enthalpy Changes. Copyright Pearson Prentice Hall. Measuring and Expressing Enthalpy Changes. Calorimetry

Measuring and Expressing Enthalpy Changes. Copyright Pearson Prentice Hall. Measuring and Expressing Enthalpy Changes. Calorimetry Measuring and Expressing Enthalpy Changes A burning match releases heat to its surroundings in all directions. How much heat does this exothermic reaction release? You will learn to measure heat flow in

More information

Thermodynamics Cont. Subtitle

Thermodynamics Cont. Subtitle Thermodynamics Cont. Subtitle System vs. Surroundings The system- the reactants and products of a reaction The surroundings- everything that surrounds a reaction Thermochemistry is concerned with the flow

More information

Chemistry Chapter 16. Reaction Energy

Chemistry Chapter 16. Reaction Energy Chemistry Reaction Energy Section 16.1.I Thermochemistry Objectives Define temperature and state the units in which it is measured. Define heat and state its units. Perform specific-heat calculations.

More information

Gravity is a force which keeps us stuck to the earth. The Electrostatic force attracts electrons to protons in an atom.

Gravity is a force which keeps us stuck to the earth. The Electrostatic force attracts electrons to protons in an atom. Energy Relations in Chemistry: Thermochemistry The Nature of Energy Sugar you eat is "combusted" by your body to produce CO 2 and H 2 O. During this process energy is also released. This energy is used

More information

Chemistry 101 Chapter 10 Energy

Chemistry 101 Chapter 10 Energy Chemistry 101 Chapter 10 Energy Energy: the ability to do work or produce heat. Kinetic energy (KE): is the energy of motion. Any object that is moving has kinetic energy. Several forms of kinetic energy

More information

Chapter 15 Energy and Chemical Change

Chapter 15 Energy and Chemical Change Chapter 15 Energy and Chemical Change Chemical reactions usually absorb or release energy. Section 1: Energy Section 2: Heat Section 3: Thermochemical Equations Section 4: Calculating Enthalpy Change Section

More information

Chapter 11. Liquids and Intermolecular Forces

Chapter 11. Liquids and Intermolecular Forces Chapter 11 Liquids and Intermolecular Forces States of Matter The three states of matter are 1) Solid Definite shape Definite volume 2) Liquid Indefinite shape Definite volume 3) Gas Indefinite shape Indefinite

More information

June Which is a closed system? (A) burning candle (B) halogen lightbulb (C) hot water in a sink (D) ripening banana

June Which is a closed system? (A) burning candle (B) halogen lightbulb (C) hot water in a sink (D) ripening banana June 2005 28. Which is a closed system? burning candle halogen lightbulb hot water in a sink ripening banana 29. Which involves the greatest energy change? chemical reaction nuclear reaction phase change

More information

CHAPTER 16 REVIEW. Reaction Energy. SHORT ANSWER Answer the following questions in the space provided.

CHAPTER 16 REVIEW. Reaction Energy. SHORT ANSWER Answer the following questions in the space provided. CHAPTER 16 REVIEW Reaction Energy SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. For elements in their standard state, the value of H 0 f is 0. 2. The formation and decomposition

More information

Chapter 17. Free Energy and Thermodynamics. Chapter 17 Lecture Lecture Presentation. Sherril Soman Grand Valley State University

Chapter 17. Free Energy and Thermodynamics. Chapter 17 Lecture Lecture Presentation. Sherril Soman Grand Valley State University Chapter 17 Lecture Lecture Presentation Chapter 17 Free Energy and Thermodynamics Sherril Soman Grand Valley State University First Law of Thermodynamics You can t win! The first law of thermodynamics

More information

Test Booklet. Subject: SC, Grade: HS MCAS 2010 High School Chemistry. Student name:

Test Booklet. Subject: SC, Grade: HS MCAS 2010 High School Chemistry. Student name: Test Booklet Subject: SC, Grade: HS MCAS 2010 High School Chemistry Student name: Author: Massachusetts District: Massachusetts Released Tests Printed: Thursday July 19, 2012 1 Which of the following statements

More information

CHAPTER 10: THERMOCHEMISTRY

CHAPTER 10: THERMOCHEMISTRY CHAPTER 10: THERMOCHEMISTRY Definition of heat Calorimetry and relationship between heat and temperature changes Enthalpy Hess s Law Bond enthalpies First Law of Thermodynamics The Zeroth Law Zeroth Law

More information

Chemistry I Practice Exam

Chemistry I Practice Exam Chemistry I Practice Exam Name Multiple Choice: Choose the best answer that completes each statement. Put all answers on your answer sheet. 1. The mass of one mole of NaCl is a..53 g b. 22.99 g c. 5.44

More information

Chapter 6 Thermochemistry 許富銀

Chapter 6 Thermochemistry 許富銀 Chapter 6 Thermochemistry 許富銀 6.1 Chemical Hand Warmers Thermochemistry: the study of the relationships between chemistry and energy Hand warmers use the oxidation of iron as the exothermic reaction: Nature

More information

Chemistry 2 nd Semester Final Exam Review

Chemistry 2 nd Semester Final Exam Review Chemistry 2 nd Semester Final Exam Review Chemical Bonds 1. Give a physical description of how the atoms and molecules are arranged in solids, liquids, and gases. A: In a liquid, the forces between the

More information

exothermic reaction and that ΔH c will therefore be a negative value. Heat change, q = mcδt q = m(h 2

exothermic reaction and that ΔH c will therefore be a negative value. Heat change, q = mcδt q = m(h 2 Worked solutions hapter 5 Exercises 1 B If the temperature drops, the process must be endothermic. Δ for endothermic reactions is always positive. 2 B All exothermic reactions give out heat. While there

More information

U N I T T E S T P R A C T I C E

U N I T T E S T P R A C T I C E South Pasadena AP Chemistry Name 6 Thermodynamics Period Date U N I T T E S T P R A C T I C E Part 1 Multiple Choice You should allocate 25 minutes to finish this portion of the test. No calculator should

More information

THERMOCHEMISTRY. This section explains the relationship between energy and heat, and distinguishes between heat capacity and specific heat.

THERMOCHEMISTRY. This section explains the relationship between energy and heat, and distinguishes between heat capacity and specific heat. I Name _ Date _ Class _ THERMOCHEMISTRY SECTION 17.1 THE FLOW OF ENERGY-HEAT AND WORK (pages 505-510) This section explains the relationship between energy and heat, and distinguishes between heat capacity

More information

AP Chapter 6: Thermochemistry Name

AP Chapter 6: Thermochemistry Name AP Chapter 6: Thermochemistry Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. AP Chapter 6: Thermochemistry 2 Warm-Ups (Show your work for credit)

More information

Chapter 11. Thermochemistry: Heat & Chemical Change

Chapter 11. Thermochemistry: Heat & Chemical Change Chapter 11 Thermochemistry: Heat & Chemical Change The Flow of Energy Thermochemistry: Study of heat changes that occur during physical processes and chemical reactions Energy Energy is the capacity to

More information

Worksheet 5.2. Chapter 5: Energetics fast facts

Worksheet 5.2. Chapter 5: Energetics fast facts Worksheet 52 Chapter 5: Energetics fast facts 51 Exothermic and endothermic reactions Energetics deals with heat changes in chemical reactions Enthalpy is the amount of heat energy contained in a substance

More information

Chapter 11. Thermochemistry. 1. Let s begin by previewing the chapter (Page 292). 2. We will partner read Pages

Chapter 11. Thermochemistry. 1. Let s begin by previewing the chapter (Page 292). 2. We will partner read Pages Chapter 11 Thermochemistry 1. Let s begin by previewing the chapter (Page 292). 2. We will partner read Pages 293-94 The Flow of energy - heat Thermochemistry concerned with the heat changes that occur

More information

Chapter 5 - Thermochemistry

Chapter 5 - Thermochemistry Chapter 5 - Thermochemistry Study of energy changes that accompany chemical rx s. I) Nature of Energy Energy / Capacity to do work Mechanical Work w = F x d Heat energy - energy used to cause the temperature

More information

Chapter 6. Energy Thermodynamics

Chapter 6. Energy Thermodynamics Chapter 6 Energy Thermodynamics 1 Energy is... The ability to do work. Conserved. made of heat and work. a state function. independent of the path, or how you get from point A to B. Work is a force acting

More information

Unit 3, Lesson 02: Enthalpy Changes in Chemical Reactions

Unit 3, Lesson 02: Enthalpy Changes in Chemical Reactions Unit 3, Lesson 02: Enthalpy Changes in Chemical Reactions Chemical Potential Energy refers to the energy that is stored within an atom or molecule because of electrostatic attraction and repulsion between

More information

Thermochemistry. Energy and Chemical Change

Thermochemistry. Energy and Chemical Change Thermochemistry Energy and Chemical Change Energy Energy can change for and flow, but it is always conserved. The Nature of Energy Energy the ability to do work or produce heat Potential energy Kinetic

More information

Chapter 6 Thermochemistry

Chapter 6 Thermochemistry Chapter 6 Thermochemistry Thermochemistry Thermochemistry is a part of Thermodynamics dealing with energy changes associated with physical and chemical reactions Why do we care? - Will a reaction proceed

More information