Confocal Microscope Imaging of Single-Emitter Fluorescence and Photon Antibunching

Size: px
Start display at page:

Download "Confocal Microscope Imaging of Single-Emitter Fluorescence and Photon Antibunching"

Transcription

1 Confocal Microscope Imaging of Single-Emitter Fluorescence and Photon Antibunching By Dilyana Mihaylova Abstract The purpose of this lab is to study different types of single emitters including quantum dots, single walled carbon nanotubes and gold nanoparticles and nanodiamonds. We used a set up with a confocal microscope, two avalanche photo diodes, EMCCD camera and a spectrometer. We took confocal scans and sometimes antibunching measurements. Background Single photon sources can be prepared from single emitters which due to their molecular structure when excited emit photons which exhibit antibunching characteristics. When photons are antibunched they are separated in time and space. Single emitters are used instead of an attenuated laser beam because a laser would sometimes emit photons that are bunched together. In order to look for antibunching we used two avalanche photo diodes (APDs) in a Hanbury Brown and Twiss set up. We know that photon antibunching occurs when the second order correlation function g (2) (0)<1, where g (2) (τ) is defined as: g (2) (τ) = n1 ( t) n2 ( t + τ ) n ( t) n ( t + τ ) 1 2 For this lab we used CdSeTe quantum dots, single walled carbon nanotubes, gold nanoparticles and NV-color centers in nano diamonds. Quantum dots are nanoparticles made out of thousands of molecules of semi conducting material. Single walled carbon nanotubes are constructed by wrapping one atom thick layer of graphene into a cylinder. Nitrogen vacancy (NV) color center in a nanodiamond is formed by a missing carbon atom adjacent to a substitutional nitrogen impurity in the diamond lattice. When excited, NV color centers in nano diamonds behave as single-photon emitters. The applications of single photon sources include secure quantum communication, quantum metrology and quantum computing.

2 Experimental Set up Fig 1.a Fig 1.b Photographic image (Fig 1.a) and a diagram of the experimental setup (Fig 1.b). The photographic image shows the 532nm laser, confocal microscope, spectrometer and EMCCD camera. We observed the different emitters using a confocal microscope. The advantage of a confocal microscope is that it allows the user to focus on a precise spot and thus on a single emitter. The samples are placed on thin glass slides, either by spin coating or by simply putting a few drops of the solution on the slide. The slide is placed on a stage with a nano drive which allows for a specific emitter to be selected to be observed. The confocal microscope has several output ports. One port is connected to an EMCCD camera which is used for taking images of the sample and for alignment. A second port goes to a spectrometer for fluorescence measurements which are also recorded with the EMCCD camera. A third port goes to a Hanbury Brown and Twiss set up with two APDs and a 50/50 beam splitter. We are using two APDs instead of one because of a dead time each APD goes through once it detects a signal. The signal from the APDs goes through a delay system and Time Harp The emitters are excited with 532nm solid state pulsed laser. The light of the laser goes through filters and diaphragms before entering the confocal microscope.

3 Experimental Procedures Due to the high sensitivity of the equipment all measurements were taken in darkness. We used a 532nm solid state pulsed laser as our excitation source. When taking confocal scans it is important to make sure that there are enough neutral density filters in front of the confocal microscope which can be removed as needed. We used an oil immersed objective in order to increase the numerical aperture of the objective. We looked at several different examples of single emitters. We prepared the single walled carbon nano tube sample by putting a drop of CNT sample #1 dated (5/17/12) which was prepared by Prof. Krauss s group. The nanodiamonds and gold nanoparticles samples were similiarly prepared by putting a drop of the solution on a glass slide. The quantum dots sample was prepared by putting a 1μl drop of 800nm 10nM quantum dots solution and spin coating it for about 60seconds. This method of preparations allows for an even distribution of the solution on the slide. Results: Fig 2 A confocal scan of a carbon nanotube fluorescence

4 Fig 3. Confocal scan of nano diamonds fluoresence. The bright spot is probably a cluster of emitters. Fig 4 Spectum of single walled carbon nano tubes.

5 Fig 5 Spectrum of nanodiamonds with 5s exposure Fig 6 Spectrum of gold nanoparticles (right) with corresponding image from EMCCD camera (left).

6 Fig 7.a Fig 7.b Fig 7.c Fig 7 Confocal fluorescence microscope scan of quantum dots (Fig 7.a) with corresponding time series for a selected emitter (Fig 7.b) and antibunching measurements (Fig 7.b). No antibunching was observed.

7 Conclusion As a part of this lab we carried out confocal microscope fluorescence imaging and spectral measurements of quantum dots, single walled carbon nanotubes, nanodiamonds and gold nano-particles. We also took anti bunching measurements of a sample of quantum dots. No antibunching was observed.

Laboratory 3&4: Confocal Microscopy Imaging of Single-Emitter Fluorescence and Hanbury Brown and Twiss setup for Photon Antibunching

Laboratory 3&4: Confocal Microscopy Imaging of Single-Emitter Fluorescence and Hanbury Brown and Twiss setup for Photon Antibunching Laboratory 3&4: Confocal Microscopy Imaging of Single-Emitter Fluorescence and Hanbury Brown and Twiss setup for Photon Antibunching Jose Alejandro Graniel Institute of Optics University of Rochester,

More information

Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching

Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching Jonathan Papa 1, * 1 Institute of Optics University of Rochester, Rochester,

More information

Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup

Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup 1 Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup Abstract Jacob Begis The purpose of this lab was to prove that a source of light can be

More information

LAB 3: Confocal Microscope Imaging of single-emitter fluorescence. LAB 4: Hanbury Brown and Twiss setup. Photon antibunching. Roshita Ramkhalawon

LAB 3: Confocal Microscope Imaging of single-emitter fluorescence. LAB 4: Hanbury Brown and Twiss setup. Photon antibunching. Roshita Ramkhalawon LAB 3: Confocal Microscope Imaging of single-emitter fluorescence LAB 4: Hanbury Brown and Twiss setup. Photon antibunching Roshita Ramkhalawon PHY 434 Department of Physics & Astronomy University of Rochester

More information

Lab 3 and 4: Single Photon Source

Lab 3 and 4: Single Photon Source Lab 3 and 4: Single Photon Source By: Justin Deuro, December 10 th, 2009 Abstract We study methods of single photon emission by exciting single colloidal quantum dot (QD) samples. We prepare the single

More information

Detection of Single Photon Emission by Hanbury-Brown Twiss Interferometry

Detection of Single Photon Emission by Hanbury-Brown Twiss Interferometry Detection of Single Photon Emission by Hanbury-Brown Twiss Interferometry Greg Howland and Steven Bloch May 11, 009 Abstract We prepare a solution of nano-diamond particles on a glass microscope slide

More information

Optical Properties of CdSe Colloidal Quantum Dots and NV-Nanodiamonds

Optical Properties of CdSe Colloidal Quantum Dots and NV-Nanodiamonds Optical Properties of CdSe Colloidal Quantum Dots and NV-Nanodiamonds James MacNeil and Madhu Ashok University of Rochester The Institute of Optics Submitted to Dr. Svetlana Lukishova on 11/20/2013 Abstract:

More information

Quantum and Nano Optics Laboratory. Jacob Begis Lab partners: Josh Rose, Edward Pei

Quantum and Nano Optics Laboratory. Jacob Begis Lab partners: Josh Rose, Edward Pei Quantum and Nano Optics Laboratory Jacob Begis Lab partners: Josh Rose, Edward Pei Experiments to be Discussed Lab 1: Entanglement and Bell s Inequalities Lab 2: Single Photon Interference Labs 3 and 4:

More information

Quantum Optics and Quantum Information Laboratory

Quantum Optics and Quantum Information Laboratory Quantum Optics and Quantum Information Laboratory OPT 253, Fall 2011 Institute of Optics University of Rochester Instructor: Dr. Lukishova Jonathan Papa Contents Lab 1: Entanglement and Bell s Inequalities

More information

Confocal Microscope Imaging of Single emitter fluorescence and Observing Photon Antibunching Using Hanbury Brown and Twiss setup. Lab.

Confocal Microscope Imaging of Single emitter fluorescence and Observing Photon Antibunching Using Hanbury Brown and Twiss setup. Lab. Submitted for the partial fulfilment of the course PHY 434 Confocal Microscope Imaging of Single emitter fluorescence and Observing Photon Antibunching Using Hanbury Brown and Twiss setup Lab. 3 and 4

More information

Lab 1 Entanglement and Bell s Inequalities

Lab 1 Entanglement and Bell s Inequalities Quantum Optics Lab Review Justin Winkler Lab 1 Entanglement and Bell s Inequalities Entanglement Wave-functions are non-separable Measurement of state of one particle alters the state of the other particle

More information

Joshua S. Geller. Department of Physics and Astronomy, University of Rochester, Rochester NY, 14627

Joshua S. Geller. Department of Physics and Astronomy, University of Rochester, Rochester NY, 14627 LAB 3-4, PHY434. Single Photon Source: Confocal Microscope Imaging of Single-Emitter Fluorescence and Hanbury Brown and Twiss setup for Photon Antibunching Measurements Joshua S. Geller Department of Physics

More information

Lab Experimental observation of singleemitter fluorescence and photon anti-bunching

Lab Experimental observation of singleemitter fluorescence and photon anti-bunching Lab. 3-4. Experimental observation of singleemitter fluorescence and photon anti-bunching Laboratory Report Group, Fall 6 Abstract: Fluorescence from single emitters, such as DiDye molecules and CdSe quantum

More information

Labs 3-4: Single-photon Source

Labs 3-4: Single-photon Source Labs 3-4: Single-photon Source Lab. 3. Confocal fluorescence microscopy of single-emitter Lab. 4. Hanbury Brown and Twiss setup. Fluorescence antibunching 1 Labs 3-4: Single-photon Source Efficiently produces

More information

Lab3-4: Single Photon Source

Lab3-4: Single Photon Source Lab3-4: Single Photon Source Xiaoshu Chen* Department of Mechanical Engineering, University of ochester, NY, 1463 ABSAC n this lab, we studied the quantum dot excitation method of single photon source.

More information

Single Photon Sources

Single Photon Sources Single Photon Sources Graham Jensen and Samantha To University of Rochester, Rochester, New York Abstract Graham Jensen: We present the results of an investigation to verify the feasibility of quantum

More information

Lab 3-4 : Confocal Microscope Imaging of Single-Emitter Fluorescence and Hanbury-Brown and Twiss Set Up, Photon Antibunching

Lab 3-4 : Confocal Microscope Imaging of Single-Emitter Fluorescence and Hanbury-Brown and Twiss Set Up, Photon Antibunching Lab 3-4 : Confocal Microscope Imaging of Single-Emitter Fluorescence and Hanbury-Brown and Twiss Set Up, Photon Antibunching Mongkol Moongweluwan 1 1 Department of Physics and Astronomy, University of

More information

Ultrafast Dynamics and Single Particle Spectroscopy of Au-CdSe Nanorods

Ultrafast Dynamics and Single Particle Spectroscopy of Au-CdSe Nanorods Supporting Information Ultrafast Dynamics and Single Particle Spectroscopy of Au-CdSe Nanorods G. Sagarzazu a, K. Inoue b, M. Saruyama b, M. Sakamoto b, T. Teranishi b, S. Masuo a and N. Tamai a a Department

More information

Anti-Bunching from a Quantum Dot

Anti-Bunching from a Quantum Dot Anti-Bunching from a Quantum Dot Gerardo I. Viza 1, 1 Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 We study the nature of non-classical single emitter light experimentally

More information

Supplementary Information: Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures

Supplementary Information: Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures Supplementary Information: Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures Andreas W. Schell, 1, a) Johannes Kaschke, 2 Joachim Fischer,

More information

Single-photon NV sources. Pauli Kehayias March 16, 2011

Single-photon NV sources. Pauli Kehayias March 16, 2011 Single-photon NV sources 1 Outline Quantum nature of light Photon correlation functions Single-photon sources NV diamond single-photon sources 2 Wave/particle duality Light exhibits wave and particle properties

More information

Single Photon Generation & Application

Single Photon Generation & Application Single Photon Generation & Application Photon Pair Generation: Parametric down conversion is a non-linear process, where a wave impinging on a nonlinear crystal creates two new light beams obeying energy

More information

Quantum Optics and Quantum Information Laboratory Review

Quantum Optics and Quantum Information Laboratory Review Quantum Optics and Quantum Information Laboratory Review Fall 2010 University of Rochester Instructor: Dr. Lukishova Joshua S. Geller Outline Lab 1: Entanglement and Bell s Inequalities Lab 2: Single Photon

More information

- Presentation - Quantum and Nano-Optics Laboratory. Fall 2012 University of Rochester Instructor: Dr. Lukishova. Joshua A. Rose

- Presentation - Quantum and Nano-Optics Laboratory. Fall 2012 University of Rochester Instructor: Dr. Lukishova. Joshua A. Rose - Presentation - Quantum and Nano-Optics Laboratory Fall 2012 University of Rochester Instructor: Dr. Lukishova Joshua A. Rose Contents Laboratory 1: Entanglement and Bell s Inequalities Laboratory 2:

More information

Study and Manipulation of Photoluminescent NV Color Center in Diamond

Study and Manipulation of Photoluminescent NV Color Center in Diamond Study and Manipulation of Photoluminescent NV Color Center in Diamond Étude et Manipulation des Propriétés de Spin du Centre Coloré photoluminescent NV dans des nanocristaux de diamant to obtain the title

More information

Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates:

Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates: Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates: a, Photoluminescence (PL) spectrum of localized excitons in a WSe 2 monolayer, exfoliated onto a SiO 2 /Si substrate

More information

Quantum control of proximal spins using nanoscale magnetic resonance imaging

Quantum control of proximal spins using nanoscale magnetic resonance imaging Quantum control of proximal spins using nanoscale magnetic resonance imaging M. S. Grinolds, P. Maletinsky, S. Hong, M. D. Lukin, R. L. Walsworth and A. Yacoby Nature Physics vol 7 (5) pp.1-6, 2011 DOI:

More information

Single Emitter Detection with Fluorescence and Extinction Spectroscopy

Single Emitter Detection with Fluorescence and Extinction Spectroscopy Single Emitter Detection with Fluorescence and Extinction Spectroscopy Michael Krall Elements of Nanophotonics Associated Seminar Recent Progress in Nanooptics & Photonics May 07, 2009 Outline Single molecule

More information

Aluminum for nonlinear plasmonics: Methods Section

Aluminum for nonlinear plasmonics: Methods Section Aluminum for nonlinear plasmonics: Methods Section Marta Castro-Lopez, Daan Brinks, Riccardo Sapienza, and Niek F. van Hulst, ICFO - Institut de Ciencies Fotoniques, and ICREA - Institució Catalana de

More information

Nitrogen-Vacancy Centers in Diamond A solid-state defect with applications from nanoscale-mri to quantum computing

Nitrogen-Vacancy Centers in Diamond A solid-state defect with applications from nanoscale-mri to quantum computing Nitrogen-Vacancy Centers in Diamond A solid-state defect with applications from nanoscale-mri to quantum computing Research into nitrogen-vacancy centers in diamond has exploded in the last decade (see

More information

3. Excitation and Detection of Fluorescence

3. Excitation and Detection of Fluorescence 3. Excitation and Detection of Fluorescence In this chapter, we examine key experimental components and methods to observe weakly fluorescing objects. We consider in turn the excitation source, the detectors,

More information

Room-Temperature Quantum Sensing in CMOS: On-Chip Detection of Electronic Spin States in Diamond Color Centers for Magnetometry

Room-Temperature Quantum Sensing in CMOS: On-Chip Detection of Electronic Spin States in Diamond Color Centers for Magnetometry Room-Temperature Quantum Sensing in CMOS: On-Chip Detection of Electronic Spin States in Diamond Color Centers for Magnetometry Mohamed I. Ibrahim*, Christopher Foy*, Donggyu Kim*, Dirk R. Englund, and

More information

Scalable Quantum Photonics with Single Color

Scalable Quantum Photonics with Single Color Scalable Quantum Photonics with Single Color Centers in Silicon Carbide Marina Radulaski,* Matthias Widmann,* Matthias Niethammer, Jingyuan Linda Zhang, Sang-Yun Lee, Torsten Rendler, Konstantinos G. Lagoudakis,

More information

QUANTUM OPTICS AND QUANTUM INFORMATION TEACHING LABORATORY at the Institute of Optics, University of Rochester

QUANTUM OPTICS AND QUANTUM INFORMATION TEACHING LABORATORY at the Institute of Optics, University of Rochester QUANTUM OPTICS AND QUANTUM INFORMATION TEACHING LABORATORY at the Institute of Optics, University of Rochester Svetlana Lukishova, Luke Bissell, Carlos Stroud, Jr, Anand Kumar Jha, Laura Elgin, Nickolaos

More information

Enhancement of Exciton Transport in Porphyrin. Aggregate Nanostructures by Controlling. Hierarchical Self-Assembly

Enhancement of Exciton Transport in Porphyrin. Aggregate Nanostructures by Controlling. Hierarchical Self-Assembly Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 Supporting Information for Enhancement of Exciton Transport in Porphyrin Aggregate Nanostructures

More information

arxiv:quant-ph/ v1 12 Jul 2000

arxiv:quant-ph/ v1 12 Jul 2000 Photon antibunching in the fluorescence of individual colored centers in diamond Rosa Brouri, Alexios Beveratos, Jean-Philippe Poizat, and Philippe Grangier Laboratoire Charles Fabry de l Institut d Optique,

More information

Combining High Resolution Optical and Scanning Probe Microscopy

Combining High Resolution Optical and Scanning Probe Microscopy Combining High Resolution Optical and Scanning Probe Microscopy Fernando Vargas WITec, Ulm, Germany www.witec.de Company Background Foundation 1997 by O. Hollricher, J. Koenen, K. Weishaupt WITec = Wissenschaftliche

More information

Supplementary Figures

Supplementary Figures 1 Supplementary Figures a cw diode laser 78 nm cw Ti:sa laser 78 nm Gain-switched diode laser TRIG TRIG 78 nm Tunable pulsed fiber laser 82-95 nm optical attenuator SMF flip mirror zoom barrel LPF white

More information

Fluorescence Enhancement on Silver Nanoplate at the. Single- and Sub-Nanoparticle Level

Fluorescence Enhancement on Silver Nanoplate at the. Single- and Sub-Nanoparticle Level Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry Supporting 2015 Information Fluorescence Enhancement on Silver Nanoplate at the Single- and Sub-Nanoparticle

More information

Single photons. how to create them, how to see them. Alessandro Cerè

Single photons. how to create them, how to see them. Alessandro Cerè Single photons how to create them, how to see them Alessandro Cerè Intro light is quantum light is cheap let s use the quantum properties of light Little interaction with the environment We can send them

More information

ECE280: Nano-Plasmonics and Its Applications. Week8

ECE280: Nano-Plasmonics and Its Applications. Week8 ECE280: Nano-Plasmonics and Its Applications Week8 Surface Enhanced Raman Scattering (SERS) and Surface Plasmon Amplification by Stimulated Emission of Radiation (SPASER) Raman Scattering Chandrasekhara

More information

Quantum Nature of Light Measured With a Single Detector

Quantum Nature of Light Measured With a Single Detector Quantum Nature of Light Measured With a Single Detector Gesine A. Steudle 1 *, Stefan Schietinger 1, David Höckel 1, Sander N. Dorenbos 2, Valery Zwiller 2, and Oliver Benson 1 The introduction of light

More information

Lab 10: Spectroscopy & the Hydrogen Atom Phy208 Fall 2008

Lab 10: Spectroscopy & the Hydrogen Atom Phy208 Fall 2008 Lab 10: Spectroscopy & the Hydrogen Atom Phy208 Fall 2008 Name Section This sheet is the lab document your TA will use to score your lab. It is to be turned in at the end of lab. To receive full credit

More information

Experiment 9. Emission Spectra. measure the emission spectrum of a source of light using the digital spectrometer.

Experiment 9. Emission Spectra. measure the emission spectrum of a source of light using the digital spectrometer. Experiment 9 Emission Spectra 9.1 Objectives By the end of this experiment, you will be able to: measure the emission spectrum of a source of light using the digital spectrometer. find the wavelength of

More information

Measurement Based Quantum Computing, Graph States, and Near-term Realizations

Measurement Based Quantum Computing, Graph States, and Near-term Realizations Measurement Based Quantum Computing, Graph States, and Near-term Realizations Miami 2018 Antonio Russo Edwin Barnes S. E. Economou 17 December 2018 Virginia Polytechnic Institute and State University A.

More information

Lab 5: Spectroscopy & the Hydrogen Atom Phy248 Spring 2009

Lab 5: Spectroscopy & the Hydrogen Atom Phy248 Spring 2009 Lab 5: Spectroscopy & the Hydrogen Atom Phy248 Spring 2009 Name Section Return this spreadsheet to your TA that will use it to score your lab. To receive full credit you must use complete sentences and

More information

AS 101: Day Lab #2 Summer Spectroscopy

AS 101: Day Lab #2 Summer Spectroscopy Spectroscopy Goals To see light dispersed into its constituent colors To study how temperature, light intensity, and light color are related To see spectral lines from different elements in emission and

More information

Journal Club Presentation Quantum Information Science: Indistinguishable Photons from Separated Silicon-Vacancy Centers in Diamond [1]

Journal Club Presentation Quantum Information Science: Indistinguishable Photons from Separated Silicon-Vacancy Centers in Diamond [1] . Journal Club Presentation Quantum Information Science: Indistinguishable Photons from Separated Silicon-Vacancy Centers in Diamond [1] Silvia Song Soorya Suresh Stella Sun University of Illinois Urbana-Champaign

More information

DAY LABORATORY EXERCISE: SPECTROSCOPY

DAY LABORATORY EXERCISE: SPECTROSCOPY AS101 - Day Laboratory: Spectroscopy Page 1 DAY LABORATORY EXERCISE: SPECTROSCOPY Goals: To see light dispersed into its constituent colors To study how temperature, light intensity, and light color are

More information

Optical determination and magnetic manipulation of single nitrogen-vacancy color center in diamond nanocrystal

Optical determination and magnetic manipulation of single nitrogen-vacancy color center in diamond nanocrystal Optical determination and magnetic manipulation of single nitrogen-vacancy color center in diamond nanocrystal Ngoc Diep Lai, Dingwei Zheng, François Treussart, Jean-François Roch To cite this version:

More information

Magnetic measurements (Pt. IV) advanced probes

Magnetic measurements (Pt. IV) advanced probes Magnetic measurements (Pt. IV) advanced probes Ruslan Prozorov 26 February 2014 Physics 590B types of local probes microscopic (site-specific) NMR neutrons Mossbauer stationary Bitter decoration magneto-optics

More information

Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond

Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond R. J. Epstein, F. M. Mendoa, Y. K. Kato & D. D. Awschalom * Center for Spintronics and Quantum Computation, University of

More information

Preview from Notesale.co.uk Page 1 of 38

Preview from Notesale.co.uk Page 1 of 38 F UNDAMENTALS OF PHOTONICS Module 1.1 Nature and Properties of Light Linda J. Vandergriff Director of Photonics System Engineering Science Applications International Corporation McLean, Virginia Light

More information

Increasing your confidence Proving that data is single molecule. Chem 184 Lecture David Altman 5/27/08

Increasing your confidence Proving that data is single molecule. Chem 184 Lecture David Altman 5/27/08 Increasing your confidence Proving that data is single molecule Chem 184 Lecture David Altman 5/27/08 Brief discussion/review of single molecule fluorescence Statistical analysis of your fluorescence data

More information

What can laser light do for (or to) me?

What can laser light do for (or to) me? What can laser light do for (or to) me? Phys 1020, Day 15: Questions? Refection, refraction LASERS: 14.3 Next Up: Finish lasers Cameras and optics 1 Eyes to web: Final Project Info Light travels more slowly

More information

Nanosphere Lithography

Nanosphere Lithography Nanosphere Lithography Derec Ciafre 1, Lingyun Miao 2, and Keita Oka 1 1 Institute of Optics / 2 ECE Dept. University of Rochester Abstract Nanosphere Lithography is quickly emerging as an efficient, low

More information

Single photon emission from silicon-vacancy colour centres in CVD-nano-diamonds on iridium arxiv: v2 [quant-ph] 26 Nov 2010

Single photon emission from silicon-vacancy colour centres in CVD-nano-diamonds on iridium arxiv: v2 [quant-ph] 26 Nov 2010 Single photon emission from silicon-vacancy colour centres in CVD-nano-diamonds on iridium arxiv:1008.4736v2 [quant-ph] 26 Nov 2010 Submitted to: New J. Phys. 1. Introduction Elke Neu 1, David Steinmetz

More information

Laboratory Exercise. Atomic Spectra A Kirchoff Potpourri

Laboratory Exercise. Atomic Spectra A Kirchoff Potpourri 1 Name: Laboratory Exercise Atomic Spectra A Kirchoff Potpourri Purpose: To examine the atomic spectra from several gas filled tubes and understand the importance of spectroscopy to astronomy. Introduction

More information

Contents. qued-hbt. Hanbury-Brown-Twiss Add-On. qued-hbt Manual V qued-hbt: Hanbury-Brown-Twiss Manual Quickstart Manual...

Contents. qued-hbt. Hanbury-Brown-Twiss Add-On. qued-hbt Manual V qued-hbt: Hanbury-Brown-Twiss Manual Quickstart Manual... . qued-hbt Hanbury-Brown-Twiss Add-On qued-hbt Manual V1.0 qued-hbt Manual V1.0 (January 16, 2019) Contents 1 qued-hbt: Hanbury-Brown-Twiss Manual 2 1.1 Quickstart Manual...............................

More information

Tunable room-temperature single-photon emission at telecom wavelengths from sp 3 defects in carbon nanotubes

Tunable room-temperature single-photon emission at telecom wavelengths from sp 3 defects in carbon nanotubes In the format provided by the authors and unedited. Tunable room-temperature single-photon emission at telecom wavelengths from sp 3 defects in carbon nanotubes Xiaowei He 1, Nicolai F. Hartmann 1, Xuedan

More information

Decomposing white light into its components:

Decomposing white light into its components: Decomposing white light into its components: a. Look through a spectroscope at a white light from within the lab (if possible a fluorescent bulb output as well as a regular incandescent bulb) and the natural

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2015.242 1 Quantum emission from hexagonal boron nitride monolayers Toan Trong Tran, Kerem Bray, Michael J. Ford, Milos Toth, and Igor Aharonovich 1. Materials

More information

Ruby crystals and the first laser A spectroscopy experiment

Ruby crystals and the first laser A spectroscopy experiment Introduction: In this experiment you will be studying a ruby crystal using spectroscopy. Ruby is made from sapphire (Al 2 O 3 ) which has been doped with chromium ions, Cr(3+). There are three sets of

More information

= 6 (1/ nm) So what is probability of finding electron tunneled into a barrier 3 ev high?

= 6 (1/ nm) So what is probability of finding electron tunneled into a barrier 3 ev high? STM STM With a scanning tunneling microscope, images of surfaces with atomic resolution can be readily obtained. An STM uses quantum tunneling of electrons to map the density of electrons on the surface

More information

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules.

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules. Today From Last Time Important new Quantum Mechanical Concepts Indistinguishability: Symmetries of the wavefunction: Symmetric and Antisymmetric Pauli exclusion principle: only one fermion per state Spin

More information

Magnetic measurements (Pt. IV) advanced probes

Magnetic measurements (Pt. IV) advanced probes Magnetic measurements (Pt. IV) advanced probes Ruslan Prozorov October 2018 Physics 590B types of local probes microscopic (site-specific) NMR neutrons Mossbauer stationary Bitter decoration magneto-optics

More information

Lab 2: Mach Zender Interferometer Overview

Lab 2: Mach Zender Interferometer Overview Lab : Mach Zender Interferometer Overview Goals:. Study factors that govern the interference between two light waves with identical amplitudes and frequencies. Relative phase. Relative polarization. Learn

More information

Administrative details:

Administrative details: Administrative details: Anything from your side? www.photonics.ethz.ch 1 Where do we stand? Optical imaging: Focusing by a lens Angular spectrum Paraxial approximation Gaussian beams Method of stationary

More information

Experiment 4 Radiation in the Visible Spectrum

Experiment 4 Radiation in the Visible Spectrum Experiment 4 Radiation in the Visible Spectrum Emission spectra can be a unique fingerprint of an atom or molecule. The photon energies and wavelengths are directly related to the allowed quantum energy

More information

Third-harmonic generation

Third-harmonic generation 2 Third-harmonic generation 2.1 Introduction Optical signals from single nano-objects open new windows for studies at nanometer scales in fields as diverse as material science and cell biology. Cleared

More information

Use of Multi-Walled Carbon Nanotubes for UV radiation detection

Use of Multi-Walled Carbon Nanotubes for UV radiation detection Use of Multi-Walled Carbon Nanotubes for UV radiation detection Viviana Carillo 11th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD08) 1-4 October 2008 Siena, Italy A new nanostructured

More information

Supplemental Material. Electron spin contrast of Purcell-enhanced nitrogen-vacancy ensembles in nanodiamonds

Supplemental Material. Electron spin contrast of Purcell-enhanced nitrogen-vacancy ensembles in nanodiamonds Supplemental Material for Electron spin contrast of Purcell-enhanced nitrogen-vacancy ensembles in nanodiamonds 1. Sample preparation The 200-nm thick TiN films used in this work were grown on c-sapphire

More information

EN2912C: Future Directions in Computing Lecture 08: Overview of Near-Term Emerging Computing Technologies

EN2912C: Future Directions in Computing Lecture 08: Overview of Near-Term Emerging Computing Technologies EN2912C: Future Directions in Computing Lecture 08: Overview of Near-Term Emerging Computing Technologies Prof. Sherief Reda Division of Engineering Brown University Fall 2008 1 Near-term emerging computing

More information

In the name of Allah

In the name of Allah In the name of Allah Nano chemistry- 4 th stage Lecture No. 1 History of nanotechnology 16-10-2016 Assistance prof. Dr. Luma Majeed Ahmed lumamajeed2013@gmail.com, luma.ahmed@uokerbala.edu.iq Nano chemistry-4

More information

Ultra-High-Sensitivity emiccd Cameras Enable Diamond Quantum Dynamics Research

Ultra-High-Sensitivity emiccd Cameras Enable Diamond Quantum Dynamics Research 2015 Princeton Instruments, Inc. All rights reserved. Ultra-High-Sensitivity emiccd Cameras Enable Diamond Quantum Dynamics Research The PI-MAX4:512EM emiccd camera deliver[s] quantitative, ultra-high-sensitivity

More information

Lecture 18 Luminescence Centers

Lecture 18 Luminescence Centers Lecture 18 Luminescence Centers Read: FS9 (Al2O3 sapphire with different colors) Purdue University Spring 2016 Prof. Yong P. Chen (yongchen@purdue.edu) Lecture 18 (3/24/2016) Slide 1 Basic physics: Vibronic

More information

Summary lecture IX. The electron-light Hamilton operator reads in second quantization

Summary lecture IX. The electron-light Hamilton operator reads in second quantization Summary lecture IX The electron-light Hamilton operator reads in second quantization Absorption coefficient α(ω) is given by the optical susceptibility Χ(ω) that is determined by microscopic polarization

More information

Advanced Spectroscopy Laboratory

Advanced Spectroscopy Laboratory Advanced Spectroscopy Laboratory - Raman Spectroscopy - Emission Spectroscopy - Absorption Spectroscopy - Raman Microscopy - Hyperspectral Imaging Spectroscopy FERGIELAB TM Raman Spectroscopy Absorption

More information

Atomic Spectra. d sin θ = mλ (1)

Atomic Spectra. d sin θ = mλ (1) Atomic Spectra Objectives: To measure the wavelengths of visible light emitted by atomic hydrogen and verify that the measured wavelengths obey the empirical Rydberg formula. To observe emission spectra

More information

Chromium single photon emitters in diamond fabricated by ion implantation. School of Physics, University of Melbourne, Victoria, 3010, Australia

Chromium single photon emitters in diamond fabricated by ion implantation. School of Physics, University of Melbourne, Victoria, 3010, Australia Chromium single photon emitters in diamond fabricated by ion implantation Igor Aharonovich a, Stefania Castelletto, Brett C. Johnson, Jeffrey C. McCallum, David A. Simpson, Andrew D. Greentree and Steven

More information

Single Photon Generation & Application in Quantum Cryptography

Single Photon Generation & Application in Quantum Cryptography Single Photon Generation & Application in Quantum Cryptography Single Photon Sources Photon Cascades Quantum Cryptography Single Photon Sources Methods to Generate Single Photons on Demand Spontaneous

More information

Introduction to Synchrotron Radiation

Introduction to Synchrotron Radiation Introduction to Synchrotron Radiation Frederico Alves Lima Centro Nacional de Pesquisa em Energia e Materiais - CNPEM Laboratório Nacional de Luz Síncrotron - LNLS International School on Laser-Beam Interactions

More information

Fluorescence photon measurements from single quantum dots on an optical nanofiber

Fluorescence photon measurements from single quantum dots on an optical nanofiber Fluorescence photon measurements from single quantum dots on an optical nanofiber Ramachandrarao Yalla, K. P. Nayak *, and K. Hakuta Center for Photonic Innovations, University of Electro-Communications,

More information

custom reticle solutions

custom reticle solutions custom reticle solutions 01 special micro structures Pyser Optics has over 60 years experience in producing high quality micro structure products. These products are supplied worldwide to industries including

More information

Towards magnetometry with nitrogen-vacancy center in diamond

Towards magnetometry with nitrogen-vacancy center in diamond Towards magnetometry with nitrogen-vacancy center in diamond Wilson Chin Yue Sum an academic exercise presented in partial fulfillment for the degree of Bachelor of Science with Honours in Physics Supervisor:

More information

An Introduction to: Light

An Introduction to: Light An Introduction to: Light Created by Anna Opitz July 2007 Why is light important? Light allows us to see. Light carries information from our surroundings to our eyes and brain. Light enables us to communicate

More information

Determining Carbon Nanotube Properties from Raman. Scattering Measurements

Determining Carbon Nanotube Properties from Raman. Scattering Measurements Determining Carbon Nanotube Properties from Raman Scattering Measurements Ying Geng 1, David Fang 2, and Lei Sun 3 1 2 3 The Institute of Optics, Electrical and Computer Engineering, Laboratory for Laser

More information

Supplemental material for Bound electron nonlinearity beyond the ionization threshold

Supplemental material for Bound electron nonlinearity beyond the ionization threshold Supplemental material for Bound electron nonlinearity beyond the ionization threshold 1. Experimental setup The laser used in the experiments is a λ=800 nm Ti:Sapphire amplifier producing 42 fs, 10 mj

More information

Near-field imaging and spectroscopy of electronic states in single-walled carbon nanotubes

Near-field imaging and spectroscopy of electronic states in single-walled carbon nanotubes Early View publication on www.interscience.wiley.com (issue and page numbers not yet assigned; citable using Digital Object Identifier DOI) Original phys. stat. sol. (b), 1 5 (2006) / DOI 10.1002/pssb.200669179

More information

DIAGNOSTIC TEST-BEAM-LINE FOR THE MESA INJECTOR

DIAGNOSTIC TEST-BEAM-LINE FOR THE MESA INJECTOR DIAGNOSTIC TEST-BEAM-LINE FOR THE MESA INJECTOR I.Alexander,K.Aulenbacher,V.Bechthold,B.Ledroit,C.Matejcek InstitutfürKernphysik,JohannesGutenberg-Universität,D-55099Mainz,Germany Abstract With the test-beam-line

More information

LIDAR. Natali Kuzkova Ph.D. seminar February 24, 2015

LIDAR. Natali Kuzkova Ph.D. seminar February 24, 2015 LIDAR Natali Kuzkova Ph.D. seminar February 24, 2015 What is LIDAR? Lidar (Light Detection And Ranging) is an optical remote sensing technology that measures distance by illuminating a target with a laser

More information

Design and Development of a Smartphone Based Visible Spectrophotometer for Analytical Applications

Design and Development of a Smartphone Based Visible Spectrophotometer for Analytical Applications Design and Development of a Smartphone Based Visible Spectrophotometer for Analytical Applications Bedanta Kr. Deka, D. Thakuria, H. Bora and S. Banerjee # Department of Physicis, B. Borooah College, Ulubari,

More information

New Developments in Raman Spectroscopic Analysis

New Developments in Raman Spectroscopic Analysis New Developments in Raman Spectroscopic Analysis Mike Kayat B&W Tek, Inc 19 Shea Way Newark, DE 19713 United States of America +1 302 368 7824 mikek@bwtek.com 1 Overview Raman spectroscopy is now an established

More information

NANONICS IMAGING FOUNTAIN PEN

NANONICS IMAGING FOUNTAIN PEN NANONICS IMAGING FOUNTAIN PEN NanoLithography Systems Methods of Nanochemical Lithography Fountain Pen NanoLithography A. Lewis et al. Appl. Phys. Lett. 75, 2689 (1999) FPN controlled etching of chrome.

More information

Assessment of Threshold for Nonlinear Effects in Ibsen Transmission Gratings

Assessment of Threshold for Nonlinear Effects in Ibsen Transmission Gratings Assessment of Threshold for Nonlinear Effects in Ibsen Transmission Gratings Temple University 13th & Norris Street Philadelphia, PA 19122 T: 1-215-204-1052 contact: johanan@temple.edu http://www.temple.edu/capr/

More information

Doctor of Philosophy

Doctor of Philosophy FEMTOSECOND TIME-DOMAIN SPECTROSCOPY AND NONLINEAR OPTICAL PROPERTIES OF IRON-PNICTIDE SUPERCONDUCTORS AND NANOSYSTEMS A Thesis Submitted for the degree of Doctor of Philosophy IN THE FACULTY OF SCIENCE

More information

Supplementary Information for. Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings

Supplementary Information for. Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings Supplementary Information for Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings Supplementary Figure 1. Simulated from pristine graphene gratings at different Fermi energy

More information

Quantum manipulation of NV centers in diamond

Quantum manipulation of NV centers in diamond Quantum manipulation of NV centers in diamond 12.09.2014 The University of Virginia Physics Colloquium Alex Retzker Jianming Cai, Andreas Albrect, M. B. Plenio,Fedor Jelezko, P. London, R. Fisher,B. Nayedonov,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPEMENTARY INFORMATION DOI:.38/NNANO.23.9 Bright, long-lived and coherent excitons in carbon nanotube quantum dots Matthias S. Hofmann, Jan T. Glückert, Jonathan Noé, Christian Bourjau, Raphael Dehmel,

More information

Diagnostics of Filamentation in Laser Materials with Fluorescent Methods

Diagnostics of Filamentation in Laser Materials with Fluorescent Methods Diagnostics of Filamentation in Laser Materials with Fluorescent Methods A.V. Kuznetsov, E.F. Martynovich Irkutsk Branch of Institute of Laser Physics SB RAS Lermontov st. 130a, Irkutsk, 664033, Russia

More information