An Introduction to: Light

Size: px
Start display at page:

Download "An Introduction to: Light"

Transcription

1 An Introduction to: Light Created by Anna Opitz July 2007

2 Why is light important? Light allows us to see. Light carries information from our surroundings to our eyes and brain. Light enables us to communicate and have contact with the world around us. Image: Eye Chart Image: Times Square, NY

3 How do we use light in our everyday lives? Photo: Sunglasses Photo: Camera Photo: iphone and ipod Photo: Microscope DVD s Telecommunications Television Lighting LCD (Liquid Crystal Display) Astronomy Microscopy Sunglasses Cameras Photosynthesis

4 What is light? In the early 1900 s, scientists had two different models for the behavior of light: 1. A model where light acts as a particle 2. A model where light acts as a wave Particle Wave So, which model is correct? BOTH Light can behave as a particle and a wave at the SAME TIME!

5 Image: Water Waves Waves A wave is something as simple as the ripples from tossing a rock into water or doing the wave at a football game. Image: Water Wave Energy is transferred in a wave, but the medium through which the wave travels does not move.

6 Light as a Wave Image: Light Wave Image: Light Wave Light is considered an electromagnetic wave Electromagnetic waves are the result of the meeting of electric and Image: Electromagnetic wave magnetic fields Light travels at a speed of 299,792,458 m / s IMPORTANT DIFFERENCE: Unlike other types of waves, electromagnetic waves DO NOT require a medium to travel through!

7 Properties of Waves: Amplitude: half the height of the wave Frequency: measure of number of waves that pass a given point in a given amount of time Wavelength: distance between two identical points on the wave Speed: how fast the wave travels, given by the wavelength times the frequency, or v=λf

8 Focus On: Wavelength When studying waves, the wavelength tells us a lot of information about the wave. Remember! The wavelength is the distance between two identical points on the wave The wavelength (λ) of a wave is given by the formula: λ= v f Where: v= velocity of wave f= frequency of wave It is important to study the wavelength of light, because it tells us about the color of light

9 The Color of Light Light waves have different wavelengths and these wavelengths correspond to colors in the visible light spectrum The colors we see are actually light waves at different wavelengths Each color has a specific wavelength at which it is visible to the human eye

10 Red light has the longest wavelength at about 700 nanometers, while violet light has the shortest wavelength at about 400 nanometers White light is all of the different color waves seen together

11 Light as a Particle Image: Photons Light is made up of particles called photons Photons are tiny packets of energy The energy of a photon is dependent upon it s frequency and is given by: E=hf E- Energy h- Planck s constant f- frequency Higher frequencies correspond to higher energy photons and lower frequencies to lower energy photons Image: Photon

12 How do we create and control light? Light bulbs are a source of artificial light resulting from incandescence (thermal radiation due to temperature) Light Emitting Diodes, or LEDs, are tiny light bulbs that are illuminated by the movement of electrons in a semi-conductor material Lasers produce light beams at one specific wavelength (one color), that are very strong and concentrated

13 How do we measure and study light? Light enters the eyes, where impulses are transmitted to the brain, and the brain identifies light Cameras record the light pattern of real images on light sensitive material Spectrometers obtain a spectrum of the colors that make up a particular light Light detectors convert light power into electrical power

14 Why is it important to study light? Image: Fiber Optics Image: DVD Image: CD The study of light is called Optics Leads to the development of products applied in modern technologies, such as; DVDs, CDs, fiber optics

15 What are some applications of light? Medical: X-rays, laser eye surgery Media: television, movies, paintings, CDs Industrial: laser cutting, photolithography, communications Scientific: spectroscopy, forensics, identification of elements Image: X-Ray Image: Laser cutting Image: Television Image: Forensic laser use

16 What is Spectroscopy? Spectroscopy studies the way an object s light divides into it s component colors The image shown to the left are the spectra patterns for H, He, N, Ne, Ar, and Hg gases Through analysis of an object s light, physical properties such as; luminosity, mass, temperature, and composition can be determined Data is obtained using a spectrometer, which works like a prism

17 Nano-sized Light Sources What is the future of light? Nano-sized light sources would make it possible to look inside individual cells, bio-image on the nano scale, advance cyber cryptography, and study light on the nano scale. Image: Nano-wire Light Quantum Computers Quantum Computers would be able to store more information and also perform much faster than the computers we use today. Image: Quantum Chip

The Structure of the Atom

The Structure of the Atom CHAPTER 5 The Structure of the Atom 5.4 Light and Spectroscopy 460 370 BC 1808 1870 1897 1910 1925 Today Democritus Atomism Dalton Modern atomic theory Crookes Cathode rays Thomson Discovery of the electron

More information

Light! Lecture 3, Oct. 8! Astronomy 102, Autumn 2009! Oct. 8, 2009 #1. Astronomy 102, Autumn 2009, E. Agol & J. Dalcanton U.W.

Light! Lecture 3, Oct. 8! Astronomy 102, Autumn 2009! Oct. 8, 2009 #1. Astronomy 102, Autumn 2009, E. Agol & J. Dalcanton U.W. Light! Lecture 3, Oct. 8! Astronomy 102, Autumn 2009! Oct. 8, 2009 #1 Questions of the Day! I. What is light?! II. What are the wave/particle properties of light?! III. How do energy and wavelength vary

More information

EXPERIMENT 17: Atomic Emission

EXPERIMENT 17: Atomic Emission EXPERIMENT 17: Atomic Emission PURPOSE: To construct an energy level diagram of the hydrogen atom To identify an element from its line spectrum. PRINCIPLES: White light, such as emitted by the sun or an

More information

Preview from Notesale.co.uk Page 1 of 38

Preview from Notesale.co.uk Page 1 of 38 F UNDAMENTALS OF PHOTONICS Module 1.1 Nature and Properties of Light Linda J. Vandergriff Director of Photonics System Engineering Science Applications International Corporation McLean, Virginia Light

More information

Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 2. Figure 3 UNIT 4 - ELECTRONS & ELECTRON ARRANGEMENT

Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 2. Figure 3 UNIT 4 - ELECTRONS & ELECTRON ARRANGEMENT Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 1 UNIT 4 - ELECTRONS & ELECTRON ARRANGEMENT Figure 2 Figure 3 The energy is released as electromagnetic radiation.

More information

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION Instructor: Kazumi Tolich Lecture 11 2 25.5 Electromagnetic waves Induced fields Properties of electromagnetic waves Polarization Energy of electromagnetic

More information

Name Date Class _. Please turn to the section titled The Nature of Light.

Name Date Class _. Please turn to the section titled The Nature of Light. Please turn to the section titled The Nature of Light. In this section, you will learn that light has both wave and particle characteristics. You will also see that visible light is just part of a wide

More information

Chapter 5 Light and Matter: Reading Messages from the Cosmos

Chapter 5 Light and Matter: Reading Messages from the Cosmos Chapter 5 Light and Matter: Reading Messages from the Cosmos 5.1 Light in Everyday Life Our goals for learning How do we experience light? How do light and matter interact? How do we experience light?

More information

Nature of Light. What is light? Sources of light. an electromagnetic radiation capable of stimulating the retina of the eye.

Nature of Light. What is light? Sources of light. an electromagnetic radiation capable of stimulating the retina of the eye. Nature of Light What is light? an electromagnetic radiation capable of stimulating the retina of the eye. electrons Nucleus Electron gains energy When it moves to a higher level Photon bundle (quantum)

More information

Name Class Date. What two models do scientists use to describe light? What is the electromagnetic spectrum? How can electromagnetic waves be used?

Name Class Date. What two models do scientists use to describe light? What is the electromagnetic spectrum? How can electromagnetic waves be used? CHAPTER 16 12 SECTION Sound and Light The Nature of Light KEY IDEAS As you read this section, keep these questions in mind: What two models do scientists use to describe light? What is the electromagnetic

More information

Chapter 5 Light and Matter

Chapter 5 Light and Matter Chapter 5 Light and Matter Stars and galaxies are too far for us to send a spacecraft or to visit (in our lifetimes). All we can receive from them is light But there is much we can learn (composition,

More information

The Sine Wave. You commonly see waves in the environment. Light Sound Electricity Ocean waves

The Sine Wave. You commonly see waves in the environment. Light Sound Electricity Ocean waves The Sine Wave Mathematically, a function that represents a smooth oscillation For example, if we drew the motion of how the weight bobs on the spring to the weight we would draw out a sine wave. The Sine

More information

The Photon Concept. Modern Physics [2] How are x-rays produced? Gamma rays. X-ray and gamma ray photons. X-rays & gamma rays How lasers work

The Photon Concept. Modern Physics [2] How are x-rays produced? Gamma rays. X-ray and gamma ray photons. X-rays & gamma rays How lasers work Modern Physics [2] X-rays & gamma rays How lasers work Medical applications of lasers Applications of high power lasers Medical imaging techniques CAT scans MRI s The Photon Concept a beam of light waves

More information

Wavelength (λ)- Frequency (ν)- Which of the following has a higher frequency?

Wavelength (λ)- Frequency (ν)- Which of the following has a higher frequency? Name: Unit 5- Light and Energy Electromagnetic Spectrum Notes Electromagnetic radiation is a form of energy that emits wave-like behavior as it travels through space. Amplitude (a)- Wavelength (λ)- Which

More information

Chapter 5: Light and Matter: Reading Messages from the Cosmos

Chapter 5: Light and Matter: Reading Messages from the Cosmos Chapter 5 Lecture Chapter 5: Light and Matter: Reading Messages from the Cosmos Light and Matter: Reading Messages from the Cosmos 5.1 Light in Everyday Life Our goals for learning: How do we experience

More information

The ELECTRON: Wave Particle Duality. chapter 4

The ELECTRON: Wave Particle Duality. chapter 4 The ELECTRON: Wave Particle Duality chapter 4 What do we know about light? Before 1900 s scientists thought light behaved as a wave. This belief changed when it was discovered that light also has particle

More information

The Electromagnetic Spectrum

The Electromagnetic Spectrum The Electromagnetic Spectrum Learning Objectives! What is Electromagnetic Radiation?! What are spectra? How could we measure a spectrum?! How do wavelengths correspond to colors for optical light? Does

More information

Modern physics ideas are strange! L 36 Modern Physics [2] The Photon Concept. How are x-rays produced? The uncertainty principle

Modern physics ideas are strange! L 36 Modern Physics [2] The Photon Concept. How are x-rays produced? The uncertainty principle L 36 Modern Physics [2] X-rays & gamma rays How lasers work Medical applications of lasers Applications of high power lasers Medical imaging techniques CAT scans MRI s Modern physics ideas are strange!

More information

Light and Matter: Reading Messages from the Cosmos. White light is made up of many different colors. Interactions of Light with Matter

Light and Matter: Reading Messages from the Cosmos. White light is made up of many different colors. Interactions of Light with Matter Chapter 5 Lecture The Cosmic Perspective Light and Matter: Reading Messages from the Cosmos 5.1 Light in Everyday Life Our goals for learning: How do we experience light? How do light and matter interact?

More information

Chapter 5 Light and Matter: Reading Messages from the Cosmos. 5.1 Light in Everyday Life. How do we experience light?

Chapter 5 Light and Matter: Reading Messages from the Cosmos. 5.1 Light in Everyday Life. How do we experience light? Chapter 5 Light and Matter: Reading Messages from the Cosmos 5.1 Light in Everyday Life Our goals for learning: How do we experience light? How do light and matter interact? How do we experience light?

More information

The Spectroscopy of Stars

The Spectroscopy of Stars The Spectroscopy of Stars In this activity you will use a hand held spectroscope to investigate a number of known and unknown light sources. A spectroscope is an instrument that helps to observe the spectrum

More information

NOTES: 5.3 Light and Atomic Spectra (more Quantum Mechanics!)

NOTES: 5.3 Light and Atomic Spectra (more Quantum Mechanics!) NOTES: 5.3 Light and Atomic Spectra (more Quantum Mechanics!) Light WAVE or PARTICLE? Electromagnetic Radiation Electromagnetic radiation includes: -radio waves -microwaves -infrared waves -visible light

More information

c = λν 10/23/13 What gives gas-filled lights their colors? Chapter 5 Electrons In Atoms

c = λν 10/23/13 What gives gas-filled lights their colors? Chapter 5 Electrons In Atoms CHEMISTRY & YOU What gives gas-filled lights their colors? Chapter 5 Electrons In Atoms 5.1 Revising the Atomic Model 5. Electron Arrangement in Atoms 5.3 Atomic and the Quantum Mechanical Model An electric

More information

1) Introduction 2) Photo electric effect 3) Dual nature of matter 4) Bohr s atom model 5) LASERS

1) Introduction 2) Photo electric effect 3) Dual nature of matter 4) Bohr s atom model 5) LASERS 1) Introduction 2) Photo electric effect 3) Dual nature of matter 4) Bohr s atom model 5) LASERS 1. Introduction Types of electron emission, Dunnington s method, different types of spectra, Fraunhoffer

More information

Chapter 5 Electrons In Atoms

Chapter 5 Electrons In Atoms Chapter 5 Electrons In Atoms 5.1 Revising the Atomic Model 5.2 Electron Arrangement in Atoms 5.3 Atomic Emission Spectra and the Quantum Mechanical Model 1 Copyright Pearson Education, Inc., or its affiliates.

More information

Chapter 5 Electrons In Atoms

Chapter 5 Electrons In Atoms Chapter 5 Electrons In Atoms 5.1 Revising the Atomic Model 5.2 Electron Arrangement in Atoms 5.3 Atomic Emission Spectra and the Quantum Mechanical Model 1 Copyright Pearson Education, Inc., or its affiliates.

More information

Focusing on Light What is light? Is it a particle or a wave? An age-old debate that has persisted among scientists is related to the question, "Is

Focusing on Light What is light? Is it a particle or a wave? An age-old debate that has persisted among scientists is related to the question, Is Focusing on Light What is light? Is it a particle or a wave? An age-old debate that has persisted among scientists is related to the question, "Is light a wave or a stream of particles?" Very noteworthy

More information

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc.

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc. Chapter 37 Early Quantum Theory and Models of the Atom Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum of a Photon Compton

More information

Spectroscopy of Various Light Sources: The Interactions between Light and Matter ASTR 170B1, Spring 2017, Lab #2. 1 Introduction.

Spectroscopy of Various Light Sources: The Interactions between Light and Matter ASTR 170B1, Spring 2017, Lab #2. 1 Introduction. Spectroscopy of Various Light Sources: The Interactions between Light and Matter ASTR 170B1, Spring 2017, Lab #2 DUE IN CLASS ON Thursday Sept 28! You CAN work in a group of 2, but you need only turn in

More information

aka Light Properties of Light are simultaneously

aka Light Properties of Light are simultaneously Today Interaction of Light with Matter Thermal Radiation Kirchhoff s Laws aka Light Properties of Light are simultaneously wave-like AND particle-like Sometimes it behaves like ripples on a pond (waves).

More information

Laboratory Exercise. Atomic Spectra A Kirchoff Potpourri

Laboratory Exercise. Atomic Spectra A Kirchoff Potpourri 1 Name: Laboratory Exercise Atomic Spectra A Kirchoff Potpourri Purpose: To examine the atomic spectra from several gas filled tubes and understand the importance of spectroscopy to astronomy. Introduction

More information

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION Instructor: Kazumi Tolich Lecture 11 2 25.5 Electromagnetic waves Induced fields Properties of electromagnetic waves Polarization Energy of electromagnetic

More information

Wave Motion and Sound

Wave Motion and Sound Wave Motion and Sound 1. A back and forth motion that repeats itself is a a. Spring b. Vibration c. Wave d. Pulse 2. The number of vibrations that occur in 1 second is called a. A Period b. Frequency c.

More information

Experiment 4 Radiation in the Visible Spectrum

Experiment 4 Radiation in the Visible Spectrum Experiment 4 Radiation in the Visible Spectrum Emission spectra can be a unique fingerprint of an atom or molecule. The photon energies and wavelengths are directly related to the allowed quantum energy

More information

EM radiation: wave nature and particle nature (Grade 12) *

EM radiation: wave nature and particle nature (Grade 12) * OpenStax-CNX module: m39511 1 EM radiation: wave nature and particle nature (Grade 12) * Free High School Science Texts Project This work is produced by OpenStax-CNX and licensed under the Creative Commons

More information

Write the electron configuration for Chromium (Cr):

Write the electron configuration for Chromium (Cr): Write the electron configuration for Chromium (Cr): Energy level Aufbau Principle Atomic orbital Quantum Hund s Rule Atomic number Electron Configuration Whole number Pauli Exlcusion Principle Quantum

More information

Atomic Theory C &03

Atomic Theory C &03 Atomic Theory Part One: Flame Tests Part Two: Atomic Spectra Part Three: Applications of Spectra (optional) C12-2-02 &03 This activity will focus on the visible portion of the electromagnetic spectrum.

More information

The Theory of Electromagnetism

The Theory of Electromagnetism Notes: Light The Theory of Electromagnetism James Clerk Maxwell (1831-1879) Scottish physicist. Found that electricity and magnetism were interrelated. Moving electric charges created magnetism, changing

More information

Electrons, Energy, & the Electromagnetic Spectrum Notes

Electrons, Energy, & the Electromagnetic Spectrum Notes Electrons, Energy, & the Electromagnetic Spectrum Notes Bohr Model Diagram Interpretation What form of EM radiation is released when an electron in a hydrogen atom falls from the 5 th energy level to the

More information

IDS 102: Electromagnetic Radiation and the Nature of Light

IDS 102: Electromagnetic Radiation and the Nature of Light IDS 102: Electromagnetic Radiation and the Nature of Light Major concepts we will cover in this module are: electromagnetic spectrum; wave intensity vs. wavelength, and the difference between light reflection,

More information

Light is an electromagnetic wave (EM)

Light is an electromagnetic wave (EM) What is light? Light is a form of energy. Light travels in a straight line Light speed is 3.0 x 10 8 m/s Light is carried by photons Light can travel through a vacuum Light is a transverse wave Light is

More information

Which of the following can be used to calculate the resistive force acting on the brick? D (Total for Question = 1 mark)

Which of the following can be used to calculate the resistive force acting on the brick? D (Total for Question = 1 mark) 1 A brick of mass 5.0 kg falls through water with an acceleration of 0.90 m s 2. Which of the following can be used to calculate the resistive force acting on the brick? A 5.0 (0.90 9.81) B 5.0 (0.90 +

More information

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency. Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

L 35 Modern Physics [1]

L 35 Modern Physics [1] L 35 Modern Physics [1] Introduction- quantum physics Particles of light PHOTONS The photoelectric effect Photocells & intrusion detection devices The Bohr atom emission & absorption of radiation LASERS

More information

Chapter 4 - Light. Name: Block:

Chapter 4 - Light. Name: Block: Chapter 4 Notes: Light Name: Block: Properties of Waves Waves are a repeating disturbance or movement that energy through matter or space without causing any displacement of material Features of a wave:

More information

Producing and Harnessing Light

Producing and Harnessing Light Chemical Dominoes Activity 5 Producing and Harnessing Light GOALS In this activity you will: Describe the relationship between energy, frequency, and wavelength of electromagnetic radiation. Explain how

More information

ACTIVITY 1. Exploring Light from Gases

ACTIVITY 1. Exploring Light from Gases Name: WAVES of matter Class: Visual Quantum Mechanics ACTIVITY 1 Exploring Light from Gases Goal We will view the colors of light which are emitted by different gases. From these patterns of light we gain

More information

Duncan. Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 1. Figure 2. Figure 3

Duncan. Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 1. Figure 2. Figure 3 Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 1 Figure 2 Figure 3 Light Calculation Notes Here s how the type/form of EM radiation can be determined The amount

More information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter

More information

Unit 3: Optics Chapter 4. Properties of Light

Unit 3: Optics Chapter 4. Properties of Light Unit 3: Optics Chapter 4 Properties of Light There are many types of light sources... Fluorescence Incandescence Electric Bioluminescence Chemiluminescence Combustion The Nature of Light Pythagoras A Greek

More information

Chapter 17, Electromagnetic Waves Physical Science, McDougal-Littell, 2008

Chapter 17, Electromagnetic Waves Physical Science, McDougal-Littell, 2008 SECTION 1 (PP. 553-558): ELECTROMAGNETIC WAVES HAVE UNIQUE TRAITS. Georgia Standards: S8P4a Identify the characteristics of electromagnetic and mechanical waves; S8P4d Describe how the behavior of waves

More information

Experiment #4 Nature of Light: Telescope and Microscope and Spectroscope

Experiment #4 Nature of Light: Telescope and Microscope and Spectroscope Experiment #4 Nature of Light: Telescope and Microscope and Spectroscope In this experiment, we are going to learn the basic principles of the telescope and the microscope that make it possible for us

More information

Chapter 7 QUANTUM THEORY & ATOMIC STRUCTURE Brooks/Cole - Thomson

Chapter 7 QUANTUM THEORY & ATOMIC STRUCTURE Brooks/Cole - Thomson Chapter 7 QUANTUM THEORY & ATOMIC STRUCTURE 1 7.1 The Nature of Light 2 Most subatomic particles behave as PARTICLES and obey the physics of waves. Light is a type of electromagnetic radiation Light consists

More information

IGHT RADE ASSESSMENT PACKET Discover refraction, reflection, beam scattering, optical density, transmission, and absorption as you investigate the electromagnetic spectrum using lenses, mirrors and filters

More information

Observation of Atomic Spectra

Observation of Atomic Spectra Observation of Atomic Spectra Introduction In this experiment you will observe and measure the wavelengths of different colors of light emitted by atoms. You will first observe light emitted from excited

More information

Table of Contents Electrons in Atoms > Light and Quantized Energy > Quantum Theory and the Atom > Electron Configuration

Table of Contents Electrons in Atoms > Light and Quantized Energy > Quantum Theory and the Atom > Electron Configuration Electrons in Atoms October 20, 2014 Table of Contents Electrons in Atoms > Light and Quantized Energy > Quantum Theory and the Atom > Electron Configuration 1 Electromagnetic Spectrum Electromagnetic radiation

More information

White Light. Chapter 7 Electron Structure of the Atom

White Light. Chapter 7 Electron Structure of the Atom Chapter 7 Electron Structure of the Atom Electromagnetic Radiation and Energy The Bohr Model of the Hydrogen Atom The Modern Model of the Atom Periodicity of Electron Configurations Valence Electrons for

More information

Lab: Excited Electrons

Lab: Excited Electrons Part A: EMISSION SPECTROSCOPY Lab: Excited Electrons According to the Bohr atomic model, electrons orbit the nucleus within specific energy levels. These levels are defined by unique amounts of energy.

More information

Lab 11: Must what goes in be the same as what comes out? Spectroscopy & Fluorescence in Chlorophyll.

Lab 11: Must what goes in be the same as what comes out? Spectroscopy & Fluorescence in Chlorophyll. Lab 11: Must what goes in be the same as what comes out? Spectroscopy & Fluorescence in Chlorophyll. Introduction to Fluorescence: Fluorescence is one of the possible mechanisms for emission of light by

More information

Chapter 8. Spectroscopy. 8.1 Purpose. 8.2 Introduction

Chapter 8. Spectroscopy. 8.1 Purpose. 8.2 Introduction Chapter 8 Spectroscopy 8.1 Purpose In the experiment atomic spectra will be investigated. The spectra of three know materials will be observed. The composition of an unknown material will be determined.

More information

10/27/2017 [pgs ]

10/27/2017 [pgs ] Objectives SWBAT explain the relationship between energy and frequency. SWBAT predict the behavior of and/or calculate quantum and photon energy from frequency. SWBAT explain how the quantization of energy

More information

5.3. Physics and the Quantum Mechanical Model

5.3. Physics and the Quantum Mechanical Model Chemistry 5-3 Physics and the Quantum Mechanical Model Neon advertising signs are formed from glass tubes bent in various shapes. An electric current passing through the gas in each glass tube makes the

More information

Fresnel Equations cont.

Fresnel Equations cont. Lecture 11 Chapter 4 Fresnel quations cont. Total internal reflection and evanescent waves Optical properties of metals Familiar aspects of the interaction of light and matter Fresnel quations: phases

More information

AS 101: Day Lab #2 Summer Spectroscopy

AS 101: Day Lab #2 Summer Spectroscopy Spectroscopy Goals To see light dispersed into its constituent colors To study how temperature, light intensity, and light color are related To see spectral lines from different elements in emission and

More information

Fluorescence. Incandescence. Electric. Bioluminescence Chemiluminescence. Combustion

Fluorescence. Incandescence. Electric. Bioluminescence Chemiluminescence. Combustion Fluorescence Incandescence Electric Bioluminescence Chemiluminescence Combustion Pythagoras A Greek philosopher Believed light was beams of tiny particles The eyes could detect these particles and see

More information

Introduction to Photovoltaics

Introduction to Photovoltaics INTRODUCTION Objectives Understand the photovoltaic effect. Understand the properties of light. Describe frequency and wavelength. Understand the factors that determine available light energy. Use software

More information

4.2 Properties of Visible Light Date: (pages )

4.2 Properties of Visible Light Date: (pages ) 4.2 Properties of Visible Light Date: (pages 144-149) Visible light is a mixture of all the colours of the rainbow. A prism refracts light separating the colours. A second prism can recombine the colours

More information

Frequency: the number of complete waves that pass a point in a given time. It has the symbol f. 1) SI Units: Hertz (Hz) Wavelength: The length from

Frequency: the number of complete waves that pass a point in a given time. It has the symbol f. 1) SI Units: Hertz (Hz) Wavelength: The length from Frequency: the number of complete waves that pass a point in a given time. It has the symbol f. 1) SI Units: Hertz (Hz) Wavelength: The length from the one crest of a wave to the next. I. Electromagnetic

More information

An air conditioner is able to cool a building because it removes heat from the indoor air and transfers it outdoors. A chemical refrigerant in the

An air conditioner is able to cool a building because it removes heat from the indoor air and transfers it outdoors. A chemical refrigerant in the An air conditioner is able to cool a building because it removes heat from the indoor air and transfers it outdoors. A chemical refrigerant in the system absorbs the unwanted heat and pumps it through

More information

( J s)( m/s)

( J s)( m/s) Ch100: Fundamentals for Chemistry 1 LAB: Spectroscopy Neon lights are orange. Sodium lamps are yellow. Mercury lights are bluish. Electricity is doing something to the electrons of these elements to produce

More information

Conceptual Physics. Luis A. Anchordoqui. Department of Physics and Astronomy Lehman College, City University of New York. Lesson VI October 3, 2017

Conceptual Physics. Luis A. Anchordoqui. Department of Physics and Astronomy Lehman College, City University of New York. Lesson VI October 3, 2017 Conceptual Physics Luis A. Anchordoqui Department of Physics and Astronomy Lehman College, City University of New York Lesson VI October 3, 2017 https://arxiv.org/abs/1711.07445 L. A. Anchordoqui (CUNY)

More information

To observe flame test colors produced by ions in solution.

To observe flame test colors produced by ions in solution. Flame Tests PURPOSE To determine the identities of ions in two solutions of unknown composition by comparing the colors they produce in flame tests with colors produced by solutions of known composition.

More information

Chemistry 212 ATOMIC SPECTROSCOPY

Chemistry 212 ATOMIC SPECTROSCOPY Chemistry 212 ATOMIC SPECTROSCOPY The emission and absorption of light energy of particular wavelengths by atoms and molecules is a common phenomenon. The emissions/absorptions are characteristic for each

More information

Light. October 14, ) Exam Review 2) Introduction 3) Light Waves 4) Atoms 5) Light Sources

Light. October 14, ) Exam Review 2) Introduction 3) Light Waves 4) Atoms 5) Light Sources Light October 14, 2002 1) Exam Review 2) Introduction 3) Light Waves 4) Atoms 5) Light Sources Waves You know of many types of waves water, sound, seismic, etc A wave is something oscillating back and

More information

Light: Transverse WAVE

Light: Transverse WAVE Light Longitudinal WAVES Light: Transverse WAVE Light: Particle or wave Photon The Wave Nature of Light 1. Unlike other branches of science, astronomers cannot touch or do field work on their samples.

More information

Atomic Structure and the Periodic Table

Atomic Structure and the Periodic Table Atomic Structure and the Periodic Table The electronic structure of an atom determines its characteristics Studying atoms by analyzing light emissions/absorptions Spectroscopy: analysis of light emitted

More information

EP118 Optics. Content TOPIC 1 LIGHT. Department of Engineering Physics University of Gaziantep

EP118 Optics. Content TOPIC 1 LIGHT. Department of Engineering Physics University of Gaziantep EP11 Optics TOPIC 1 LIGHT Department of Engineering Physics University of Gaziantep July 2011 Sayfa 1 Content 1. History of Light 2. Wave Nature of Light 3. Quantum Theory of Light 4. Elecromagnetic Wave

More information

Optical Systems Program of Studies Version 1.0 April 2012

Optical Systems Program of Studies Version 1.0 April 2012 Optical Systems Program of Studies Version 1.0 April 2012 Standard1 Essential Understand Optical experimental methodology, data analysis, interpretation, and presentation strategies Essential Understandings:

More information

Modern Physics- Introduction. L 35 Modern Physics [1] ATOMS and classical physics. Newton s Laws have flaws! accelerated charges radiate energy

Modern Physics- Introduction. L 35 Modern Physics [1] ATOMS and classical physics. Newton s Laws have flaws! accelerated charges radiate energy L 35 Modern Physics [1] Introduction- quantum physics Particles of light PHOTONS The photoelectric effect Photocells & intrusion detection devices The Bohr atom emission & absorption of radiation LASERS

More information

Name Class Date ELECTRONS AND THE STRUCTURE OF ATOMS

Name Class Date ELECTRONS AND THE STRUCTURE OF ATOMS Electrons in Atoms ELECTRONS AND THE STRUCTURE OF ATOMS 5.1 Revising the Atomic Model Essential Understanding of an atom. An electron s energy depends on its location around the nucleus Reading Strategy

More information

DIFFRACTION GRATING. OBJECTIVE: To use the diffraction grating in the formation of spectra and in the measurement of wavelengths.

DIFFRACTION GRATING. OBJECTIVE: To use the diffraction grating in the formation of spectra and in the measurement of wavelengths. DIFFRACTION GRATING OBJECTIVE: To use the diffraction grating in the formation of spectra and in the measurement of wavelengths. THEORY: The operation of the grating is depicted in Fig. 1 on page Lens

More information

Chapter 5 Light and Matter: Reading Messages from the Cosmos. What is light? Properties of Waves. Waves. The Electromagnetic Spectrum

Chapter 5 Light and Matter: Reading Messages from the Cosmos. What is light? Properties of Waves. Waves. The Electromagnetic Spectrum Chapter 5 Light and Matter: Reading Messages from the Cosmos What is light? Light is a form of radiant energy Light can act either like a wave or like a particle (photon) Spectrum of the Sun 1 2 Waves

More information

Physics and the Quantum Mechanical Model

Physics and the Quantum Mechanical Model chemistry 1 of 38 Mechanical Model Neon advertising signs are formed from glass tubes bent in various shapes. An electric current passing through the gas in each glass tube makes the gas glow with its

More information

Chemistry 101 Chapter 11 Modern Atomic Theory

Chemistry 101 Chapter 11 Modern Atomic Theory Chemistry 101 Chapter 11 Modern Atomic Theory Electromagnetic radiation: energy can be transmitted from one place to another by lightmore properly called electromagnetic radiation. Many kinds of electromagnetic

More information

Lab #13: Polarization

Lab #13: Polarization Lab #13: Polarization Introduction In this experiment we will investigate various properties associated with polarized light. We will study both its generation and application. Real world applications

More information

Electron Configuration! Chapter 5

Electron Configuration! Chapter 5 Electron Configuration! Chapter 5 DO NOW - Finish coloring your periodic tables! (5 min) State at Room Temperature Appearance Conductivity Malleability and Ductility Metals - solid except for mercury

More information

EA Notes (Scen 101), Tillery Chapter 7. Light

EA Notes (Scen 101), Tillery Chapter 7. Light EA Notes (Scen 101), Tillery Chapter 7 Light Introduction Light is hard to study because you can't see it, you only see it's effects. Newton tried to explain the energy in a light beam as the KE of a particle

More information

Modern Atomic Theory

Modern Atomic Theory Modern Atomic Theory In science, often times chemical or physical behavior can not be seen with the naked eye (nor with the use of some other device). Consequently, an understanding and explanation of

More information

Chapter 4 Spectroscopy

Chapter 4 Spectroscopy Chapter 4 Spectroscopy The beautiful visible spectrum of the star Procyon is shown here from red to blue, interrupted by hundreds of dark lines caused by the absorption of light in the hot star s cooler

More information

Sound and Light. Light

Sound and Light. Light Sound and Light Light What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree with the statement or a D if you

More information

Light. Mike Maloney Physics, SHS

Light. Mike Maloney Physics, SHS Light Mike Maloney Physics, SHS 1 Light What is LIGHT? WHERE DOES IT COME FROM? 2003 Mike Maloney 2 What is Light? Light is a wave, or rather acts like a wave. How do we know since we cannot see it? We

More information

Energy of Waves. What is the relationship between l, n and Energy?!

Energy of Waves. What is the relationship between l, n and Energy?! Chapter 5 Part 2 c = ln Practice! What is the wavelength of a microwave that has a frequency of 1.56 x 10 9 Hz? The red-colored light in a fireworks display might be produced when Strontium salts are heated.

More information

Everyday Applications drilling and cutting alignment and guidance reading bar codes recording and playing compact discs. Chemistry Concepts in Lasers

Everyday Applications drilling and cutting alignment and guidance reading bar codes recording and playing compact discs. Chemistry Concepts in Lasers The Chemistry of Lasers How is Chemistry Related to LAser technology? Definition of Laser A device that generates an intense beam of (nearly monochromatic, single wavelength) electromagnetic radiation

More information

Chapter 6 - Electronic Structure of Atoms

Chapter 6 - Electronic Structure of Atoms Chapter 6 - Electronic Structure of Atoms 6.1 The Wave Nature of Light To understand the electronic structure of atoms, one must understand the nature of electromagnetic radiation Visible light is an example

More information

Electromagnetic Radiation and Scientific Instruments. PTYS April 1, 2008

Electromagnetic Radiation and Scientific Instruments. PTYS April 1, 2008 Electromagnetic Radiation and Scientific Instruments PTYS 206-2 April 1, 2008 Announcements Deep Impact 6 PM Wednesday Night Pizza, no beer Watch at home if you can t watch here. It will be discussed in

More information

10.1 Properties of Light

10.1 Properties of Light 10.1 Properties of Light Every time you see, you are using light. You can t see anything in complete darkness! Whether you are looking at a light bulb, or a car, or this book, light brings information

More information

Understanding Sight Requires. Understanding Light Understanding the Eye-Brain

Understanding Sight Requires. Understanding Light Understanding the Eye-Brain Seeing Things Understanding Sight Requires Understanding Light Understanding the Eye-Brain The Eye & Brain (- are part of how we see.) http://www.michaelbach.de/ot/mot_adaptspiral/index.html Meet our

More information

Electromagnetic Radiation

Electromagnetic Radiation Electromagnetic Radiation aka Light Properties of Light are simultaneously wave-like AND particle-like Sometimes it behaves like ripples on a pond (waves). Sometimes it behaves like billiard balls (particles).

More information

Magnetic Fields and Forces

Magnetic Fields and Forces Magnetic Fields and Forces Electric fields are produced by static electric charges. Magnetic fields are produced by: A. Magnetic charges B. Electric Currents Only C. Magnets Only D. Both Magnets and Electric

More information

ATOMIC PHYSICS. history/cosmology/tools/ tools-spectroscopy.htm CHAPTER 9 - FROM SPECTROSCOPY TO ATOMS

ATOMIC PHYSICS.   history/cosmology/tools/ tools-spectroscopy.htm CHAPTER 9 - FROM SPECTROSCOPY TO ATOMS ATOMIC PHYSICS http://www.aip.org/ history/cosmology/tools/ tools-spectroscopy.htm CHAPTER 9 - FROM SPECTROSCOPY TO ATOMS What We Will Study Basics of electromagnetic radiation - The AC generator, again

More information