Chem 3372: Organic Chemistry Summer II 2017, M F 3:30 pm 5:20 pm Fondren Sci Bldg 133

Size: px
Start display at page:

Download "Chem 3372: Organic Chemistry Summer II 2017, M F 3:30 pm 5:20 pm Fondren Sci Bldg 133"

Transcription

1 Chem 3372: rganic Chemistry Summer II 2017, M F 3:30 pm 5:20 pm Fondren Sci Bldg 133 Instructor: Professor Alexander R. Lippert, PhD ffice: 141 FSC alippert@smu.edu (please include CHEM 3372 in the subject line) Telephone: ffice hours: TBD TA: TBD TA ffice Hours: TBD Website: Textbook: rganic Chemistry, 4 th Edition, by Janice Gorzynski Smith rganic chemistry focuses on the composition, properties, and behavior of compounds that contain the element carbon, spanning from biological molecules to drugs to materials. This course is the second in a two-semester series to introduce students to the principles, concepts, and practice of organic chemistry. Learning utcomes: Students will be able to identify and draw complex organic molecules. Students will be able to predict the reactivity of basic organic molecules. Students will be able to formulate basic synthetic schemes. Students will be able to solve basic organic structures from spectral data.

2 Assignments and Grades: Homework 10% Exam I 20% Exam II 20% Exam III 20% Final 30% Connect Homework Assignments: Homework assignments will be found on the faculty website and the problems with a (*) will be graded for completion. Assignments should be completed and submitted online before 11:59 pm on the due date. Exams and Finals: Exams and finals will be given during class and will be cumulative. ffice Hours: ffice hours will be held after class and will involve extra practice problems as well as answering one-on-one questions.

3 Class Schedule: Thurs July 6 Chap 15 Mass Spec and IR Fri July 7 Chap 13 Radical Reactions Mon July 10 Chap 14 NMR Tues July 11 Chap 16 Conjugation, Resonance, and Dienes Wed July 12 Chap 17 Benzene and Aromatic Compounds Thurs July 13 Exam 1 Fri July 14 Chap 18 Reactions of Aromatic Compounds Mon July 17 Chap 18 Reactions of Aromatic Compounds Tues July 18 Chap 19 Carboxylic Acids Wed July 19 Chap 20 Intro to Carbonyl Chemistry

4 Tues July 18 Chap 19 Carboxylic Acids Wed July 19 Chap 20 Intro to Carbonyl Chemistry Thurs July 20 Chap 20 Intro to rganometallic Chemistry Fri July 21 Chap 21 Aldehydes and Ketones Mon July 24 Exam II Tues July 25 Chap 21 Aldehydes and Ketones Wed July 26 Chap 22 Carboxylic Acid Derivatives Thurs July 27 Chap 23 Enols and Enolates Fri July 28 Chap 24 Carbonyl Condensation Reactions Mon July 31 Exam III Tues August 1 Chap 25 Amines Wed August 2 Chap 26 Cross Coupling Reactions Thurs August 3 Chap 27 Pericyclic Reactions Fri August 4 Final *Schedule is tentative and subject to change at the instructor s discretion.

5 Disability Accommodations: Students needing academic accommodations for a disability must first be registered with Disability Accommodations & Success Strategies (DASS) to verify the disability and to establish eligibility for accommodations. Students may call or visit to begin the process. nce registered, students should then schedule an appointment with the professor to make appropriate arrangements. (University Policy No. 2.4.) Excused Medical Absences: Verification of medical illness and request for an excused absence from class will be handled in one of two ways. A physician or staff member from health/counseling and testing will provide either (1) a hand written note on a Health Center prescription form or 2) a signed letter written on Health Center stationery. Excused medical absences shall have specific dates of time periods indicated. Encounter Forms and Walk-ut Statements verify a student's visit to the Health Center BUT D NT INDICATE AN EXCUSED MEDICAL ABSENCE. Religious bservance: Religiously observant students wishing to be absent on holidays that require missing class should notify their professors in writing at the beginning of the semester, and should discuss with them, in advance, acceptable ways of making up any work missed because of the absence. (University Policy No. 1.9.) Excused Absences for University Extracurricular Activities: Students participating in an officially sanctioned, scheduled University extracurricular activity should be given the opportunity to make up class assignments or other graded assignments missed as a result of their participation. It is the responsibility of the student to make arrangements with the instructor prior to any missed scheduled examination or other missed assignment for making up the work. (University Undergraduate Catalogue)

6 Study Tips: 1. Review 1 st semester 2. Come to office hours (practice, practice) 3. Make a list of reactions (refer during syntheses)

7 Introduction- In -Chem II, we will really learn how to make molecules. N H NH 2 tamiflu (flu) H H H N H H H H NH 2 tetracycline (antibacterial) HS N H captopril (heart failure)

8 Introduction- In -Chem II, we will really learn how to make molecules. N N H N H NH 2 tamiflu (flu) NH lysergic acid diethylamide H H H N H H 3 C NH 2 H H H NH 2 H 3 C CH 3 tetracycline (antibacterial) mescaline HS N captopril (heart failure) H MDMA HN

9 Introduction- In -Chem II, we will really learn how to make molecules. N N H H N H N H Chapter 22 Chapter 21 NH NH NH Cl Chapter Chapter 18 NH NH

10 Chapters 13 14: Spectroscopy Interactions between light, energy, and matter allow us to "see" molecules. Mass spectroscopy electron beams, electric field (Ch 13 pt 1) IR Spectroscopy infrared light (Ch 13, pt 2) NMR Spectroscopy radio waves and magnetic fields (Ch 14)

11 13.1 Mass Spectrometry A. General Features electron beam ionizes and fragments molecules fragments separated by M/Z ratio M + is called the molecular ion or parent ion

12 13.1 Mass Spectrometry A. General Features M + (molecular ion) breaks into fragments (fragmentation) X-axis: mass-to-charge (m/z) ratio Y-axis: relative abundance tallest peak is called base peak (relative abundance = 100) base peak is not always the molecular ion M+1 peak due to 13 C ( 13 CH 4 ) +

13 13.1 Mass Spectrometry A. General Features Example: Hexane A. B. C. Which peak is the molecular ion? Which peak is the base peak?

14 13.1 Mass Spectrometry A. General Features Example: Hexane Which peak is the molecular ion? m/z = 86 Which peak is the base peak? m/z = 57

15 13.1 Mass Spectrometry B. Analyzing Unknowns by Molecular Ion

16 13.1 Mass Spectrometry B. Analyzing Unknowns by Molecular Ion General Guidelines: Divide molecular ion by 12 = max # Carbons (remainder = #H) Replace12H for 1C Replace 1 for CH 4 Nitrogen: odd #N gives odd molecular ion, even #N gives even molecular ion Try drawing the structure to see if it makes sense Example: Propose possible molecular formulas for m/z = 86.

17 13.2 Alkyl Halides and the M + 2 Peak Chlorine and Bromine have two stable isotopes (giving characteristic fingerprints!): 35 Cl and 37 Cl in a 3:1 ratio 79 Br and 81 Br in a 1:1 ratio C 3 H 35 7 Cl m/z = 78 C 3 H 37 7 Cl m/z = 80 C 3 H 79 7 Br m/z = 122 C 3 H 81 7 Br m/z = 124

18 13.3 Fragmentation A. General Features of Fragmentation Electron beam removes 1 e to form an unstable radical cation Bond cleavage forms more stable (substituted) cation Loss of CH 3 ( 15) Loss of CH 2 ( 14) only charged fragments show up on MS

19 13.3 Fragmentation A. General Features of Fragmentation Example 2,3-dimethyl pentane shows fragments at m/z =85 and 71. Propose structures for these fragments. (on board)

20 13.3 Fragmentation *** B. Fragmentation Patterns of Some Common Functional Groups Aldehydes/Ketones (acylium ion formation by a-cleavage): Alcohols (a-cleavage): Alcohols (dehydration):

21 13.4 ther Types of Mass Spectrometry A. High Resolution Mass Spectrometry (HRMS) Accurate to 4 decimal places Many molecules have similar molecular weight, but can be differentiated with HRMS

22 13.4 ther Types of Mass Spectrometry C. Electrospray Ionization Mass Spectrometry (ESI-MS) ESI is very gentle ionization method Useful for higher molecular weight molecules like peptides and proteins Multiple ionization states (Z) often seen

23 13.4 MS Sample Problems (13.24a, 13.26a, 13.30a)

24 13.5 Electromagnetic Radiation A. Light and Energy Wavelength (l) distance from peak to peak (m) Frequency (n) number of waves per time (Hz = s 1 ) Speed of light (c) = 3.0 x 10 8 m s 1 Planck's constant (h) = 6.63 x J s higher l = lower E higher n = higher E c = ln E = hn = hc/l

25 13.5 Electromagnetic Radiation B. Interaction of Light and Matter Wavelength (l) distance from peak to peak (m) Frequency (n) number of waves per time (s 1 ) Speed of light (c) = 3.0 x 10 8 ms 1 Planck's constant (h) = 6.63 x Js higher l = lower E higher n = higher E c = ln E = hn = hc/l

26 13.6 Infrared Spectroscopy A. Background Infrared radiation: l = µm n = 1.2 x x Hz (hard to report) Wavenumber (n) ~ = 1/ l = cm 1 (easy to report) Energy increases as wavenumber increases Absorption of IR light causes changes in bond vibrations Different bonds vibrate at different frequencies (wave numbers) IR spectroscopy can differentiate bonds and functional groups

27 13.6 Infrared Spectroscopy B. Characteristics of IR Spectrum IR spectrometer scans through the IR spectrum and reports on light absorption Energy increases as wavenumber increases Each peak corresponds to a specific bond X-axis: wavenumber Y-axis: Transmittance Two main regions: Functional Group (> 1500 cm 1 ) Fingerprint (<1500 cm 1 ) H

28 13.6 Infrared Spectroscopy B. Characteristics of IR Spectrum Similar molecules may have similar Functional Group regions but unique Fingerprint regions

29 13.7 IR Absorptions A. Where Particular Bonds Absorb in the IR 1. Bond strength: stronger bonds vibrate at higher energy and higher n~ 2. Atom mass: bonds with lighter atoms vibrate at higher energy and higher ~ n

30 13.7 IR Absorptions A. Where Particular Bonds Absorb in the IR ~ ~

31 13.7B IR Absorptions in Hydrocarbons C sp3 H cm 1 C sp2 H cm 1 C sp3 H cm 1 C C 1650 cm 1 C sp H 3300 cm 1 C sp3 H cm cm 1 C C

32 13.7C IR Absorptions in xygen Compounds H H cm 1 C ~1700 cm 1 precise value can differentiate specific carbonyls no distinctive functional group peaks

33 13.7D IR Absorptions in Nitrogen Compounds N H (2 peaks) 3300, 3400 cm 1 NH 2 N H (2 peaks) 3200, 3400 cm 1 C 1660 cm 1 H 2 N N C N 2250 cm 1

34 13.7E Examples a. b. H c. H d.

35 13.7E Examples a. b. H N c. N d.

36 13.7E Examples a. b. c. H d.

37 13.8 MS and IR to Determine an Unknown

38 13.8 MS and IR to Determine an Unknown

12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy

12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy 12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy Determining the Structure of an Organic Compound The analysis of the outcome of a reaction requires that we know the full structure

More information

Chapter 12 Mass Spectrometry and Infrared Spectroscopy

Chapter 12 Mass Spectrometry and Infrared Spectroscopy Organic Chemistry, 6 th Edition L. G. Wade, Jr. Chapter 12 Mass Spectrometry and Infrared Spectroscopy Jo Blackburn Richland College, Dallas, TX Dallas County Community College District 2006, Prentice

More information

ORGANIC - BRUICE 8E CH MASS SPECT AND INFRARED SPECTROSCOPY

ORGANIC - BRUICE 8E CH MASS SPECT AND INFRARED SPECTROSCOPY !! www.clutchprep.com CONCEPT: PURPOSE OF ANALYTICAL TECHNIQUES Classical Methods (Wet Chemistry): Chemists needed to run dozens of chemical reactions to determine the type of molecules in a compound.

More information

(2) Read each statement carefully and pick the one that is incorrect in its information.

(2) Read each statement carefully and pick the one that is incorrect in its information. Organic Chemistry - Problem Drill 17: IR and Mass Spectra No. 1 of 10 1. Which statement about infrared spectroscopy is incorrect? (A) IR spectroscopy is a method of structure determination based on the

More information

Infrared Spectroscopy

Infrared Spectroscopy Infrared Spectroscopy Introduction Spectroscopy is an analytical technique which helps determine structure. It destroys little or no sample. The amount of light absorbed by the sample is measured as wavelength

More information

Welcome to Organic Chemistry II

Welcome to Organic Chemistry II Welcome to Organic Chemistry II Erika Bryant, Ph.D. erika.bryant@hccs.edu Class Syllabus 3 CHAPTER 12: STRUCTURE DETERMINATION 4 What is this solution Soda Tea Coffee??? 5 What is this solution Soda Tea

More information

CHEM 241 UNIT 5: PART A DETERMINATION OF ORGANIC STRUCTURES BY SPECTROSCOPIC METHODS [MASS SPECTROMETRY]

CHEM 241 UNIT 5: PART A DETERMINATION OF ORGANIC STRUCTURES BY SPECTROSCOPIC METHODS [MASS SPECTROMETRY] CHEM 241 UNIT 5: PART A DETERMINATION OF ORGANIC STRUCTURES BY SPECTROSCOPIC METHODS [MASS SPECTROMETRY] 1 Introduction Outline Mass spectrometry (MS) 2 INTRODUCTION The analysis of the outcome of a reaction

More information

DEPARTMENT: Chemistry

DEPARTMENT: Chemistry CODE CHEM 204 TITLE: Organic Chemistry II INSTITUTE: STEM DEPARTMENT: Chemistry COURSE DESCRIPTION: A continuation of CHEM-203, students will extend their studies into topics including aromatic hydrocarbons,

More information

ORGANIC - EGE 5E CH UV AND INFRARED MASS SPECTROMETRY

ORGANIC - EGE 5E CH UV AND INFRARED MASS SPECTROMETRY !! www.clutchprep.com CONCEPT: IR SPECTROSCOPY- FREQUENCIES There are specific absorption frequencies in the functional group region that we should be familiar with EXAMPLE: What are the major IR absorptions

More information

Chapter 20. Mass Spectroscopy

Chapter 20. Mass Spectroscopy Chapter 20 Mass Spectroscopy Mass Spectrometry (MS) Mass spectrometry is a technique used for measuring the molecular weight and determining the molecular formula of an organic compound. Mass Spectrometry

More information

Introduction. The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants

Introduction. The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants Introduction The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants Spectroscopy and the Electromagnetic Spectrum Unlike mass spectrometry,

More information

The lecture schedule is only a rough guide and will be likely changed as needed.

The lecture schedule is only a rough guide and will be likely changed as needed. CEHM 239 ORGANIC CHEMISTRY II Spring 2010 Instructor: Professor Hyun-Soon Chong Chemistry Division, BCPS Dept, IIT, LS 398, Chong@iit.edu, 312-567-3235 Course Hours: TR 1:50pm-3:05pm in LS 111 Office Hours:

More information

JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II. 5 Credit Hours. Prepared by: Richard A. Pierce

JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II. 5 Credit Hours. Prepared by: Richard A. Pierce JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II 5 Credit Hours Prepared by: Richard A. Pierce Revised Date: January 2008 by Ryan H. Groeneman Arts & Science Education Dr. Mindy Selsor, Dean

More information

Fall 2017 CHE 275 Organic Chemistry I

Fall 2017 CHE 275 Organic Chemistry I Fall 2017 CHE 275 Organic Chemistry I Instructor: Professor Yan-Yeung Luk (yluk@syr.edu) ; Phone: 315-443-7440 Office: Center for Science and Technology (CST) 3-038 Office Hours: Mon & Wed 10:45AM 11:45AM,

More information

Chapter 12 Structure Determination: Mass Spectrometry and Infrared Spectroscopy

Chapter 12 Structure Determination: Mass Spectrometry and Infrared Spectroscopy Chapter 12 Structure Determination: Mass Spectrometry and Infrared Spectroscopy Figure 12.1 - The electron-ionization, magneticsector mass spectrometer Representing the Mass Spectrum Base Peak Parent

More information

Infrared Spectroscopy: Identification of Unknown Substances

Infrared Spectroscopy: Identification of Unknown Substances Infrared Spectroscopy: Identification of Unknown Substances Suppose a white powder is one of the four following molecules. How can they be differentiated? H N N H H H H Na H H H H H A technique that is

More information

Determining the Structure of an Organic Compound

Determining the Structure of an Organic Compound Chapter 12- Structure Determination: Mass Spectrometry and Infrared Spectroscopy Ashley Piekarski, Ph.D. Determining the Structure of an Organic Compound The analysis of the outcome of a reac=on requires

More information

ORGANIC - CLUTCH CH ANALYTICAL TECHNIQUES: IR, NMR, MASS SPECT

ORGANIC - CLUTCH CH ANALYTICAL TECHNIQUES: IR, NMR, MASS SPECT !! www.clutchprep.com CONCEPT: PURPOSE OF ANALYTICAL TECHNIQUES Classical Methods (Wet Chemistry): Chemists needed to run dozens of chemical reactions to determine the type of molecules in a compound.

More information

Chemistry 200: Basic Chemistry and Applications Course Syllabus: Spring

Chemistry 200: Basic Chemistry and Applications Course Syllabus: Spring Chemistry 200: Basic Chemistry and Applications Course Syllabus: Spring 2017 2018 Course Instructors Faraj Hasanayn; Office of Faraj Hasanayn: Chem Bldg. Rm 522 Office Hours: TBA Email: fh19@aub.edu.lb.

More information

ORGANIC - CLUTCH CH ANALYTICAL TECHNIQUES: IR, NMR, MASS SPECT

ORGANIC - CLUTCH CH ANALYTICAL TECHNIQUES: IR, NMR, MASS SPECT !! www.clutchprep.com CONCEPT: PURPOSE OF ANALYTICAL TECHNIQUES Classical Methods (Wet Chemistry): Chemists needed to run dozens of chemical reactions to determine the type of molecules in a compound.

More information

sample was a solution that was evaporated in the spectrometer (such as with ESI-MS) ions such as H +, Na +, K +, or NH 4

sample was a solution that was evaporated in the spectrometer (such as with ESI-MS) ions such as H +, Na +, K +, or NH 4 Introduction to Spectroscopy V: Mass Spectrometry Basic Theory: Unlike other forms of spectroscopy used in structure elucidation of organic molecules mass spectrometry does not involve absorption/emission

More information

Spring Term 2012 Dr. Williams (309 Zurn, ex 2386)

Spring Term 2012 Dr. Williams (309 Zurn, ex 2386) Chemistry 242 Organic Chemistry II Spring Term 2012 Dr. Williams (309 Zurn, ex 2386) Web Page: http://math.mercyhurst.edu/~jwilliams/ jwilliams@mercyhurst.edu (or just visit Department web site and look

More information

This course satisfies the Pure and Applied Sciences Pillar (UC Credit) Level 1. This course is an introductory course in

This course satisfies the Pure and Applied Sciences Pillar (UC Credit) Level 1. This course is an introductory course in Lattman Page 1 of 5 CHEM 1301 Chemistry for the Liberal Arts May Term 2018 Course Overview This course satisfies the Pure and Applied Sciences Pillar (UC Credit) Level 1. This course is an introductory

More information

Organic Chemistry: CHEM2322

Organic Chemistry: CHEM2322 Etiquette & Course Overview Organic Chemistry: Structure Determination MS & IR Dr. Christopher J. O Brien 203 CRB, cobrien@uta.edu Classroom etiquette Arrive on time if you are late you must quietly take

More information

CHE 251 Contemporary Organic Chemistry

CHE 251 Contemporary Organic Chemistry CHE 251 Contemporary Organic Chemistry University at Buffalo Fall Semester 2017 Announcement Sheet Days Time Place MWF 10:00 10:50 AM Park 145 STAFF Lecturer: Office Phone Email Office Hours* Dr. Qing

More information

A SURVEY OF ORGANIC CHEMISTRY CHEMISTRY 1315 TuTr 9:35-10:55 am, Boggs B6

A SURVEY OF ORGANIC CHEMISTRY CHEMISTRY 1315 TuTr 9:35-10:55 am, Boggs B6 GEORGIA INSTITUTE OF TECHNOLOGY School of Chemistry and Biochemistry Spring 2004 A SURVEY OF ORGANIC CHEMISTRY CHEMISTRY 1315 TuTr 9:35-10:55 am, Boggs B6 Instructor: Marcus Weck Office: Boggs 3-85 Phone:

More information

Hunan University. CHEM32: Organic Chemistry

Hunan University. CHEM32: Organic Chemistry Academic Inquiries: Hunan University Email: iss@hnu.edu.cn Hunan University CHEM32: Organic Chemistry Professor: To be announced Total contact hours: 54 hours Credit: 4 Course Description Topics covered

More information

PHYS 1311 Elements of Astronomy

PHYS 1311 Elements of Astronomy PHYS 1311 Elements of Astronomy Syllabus SMU Department of Physics SMU-IN-TAOS, AUG. 2016 Professors Jodi Cooley and Stephen Sekula Syllabus for PHYS 1311 General Information A descriptive survey of astronomy

More information

Georgia Gwinnett College CHEM 2212 Organic Chemistry II Course Syllabus Summer MTWR, 9-11am, A1640 (class); MTW, pm, A1290 (lab)

Georgia Gwinnett College CHEM 2212 Organic Chemistry II Course Syllabus Summer MTWR, 9-11am, A1640 (class); MTW, pm, A1290 (lab) Georgia Gwinnett College CHEM 2212 Organic Chemistry II Course Syllabus Summer 2008 Class Meetings: Instructor: Office: E-Mail: Phone Number: Wiki page: MTWR, 9-11am, A1640 (class); MTW, 1.15-4pm, A1290

More information

Lattman Page 1 of 5 CHEM 1301 Chemistry for the Liberal Arts May Term Course Overview

Lattman Page 1 of 5 CHEM 1301 Chemistry for the Liberal Arts May Term Course Overview Lattman Page 1 of 5 CHEM 1301 Chemistry for the Liberal Arts May Term 2019 Course Overview This course satisfies the Pure and Applied Sciences Pillar (UC Credit) Level 1. This course is an introductory

More information

PAPER No.12 :Organic Spectroscopy MODULE No.30: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass - Part II

PAPER No.12 :Organic Spectroscopy MODULE No.30: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass - Part II Subject Chemistry Paper No and Title Module No and Title Module Tag 12 : rganic Spectroscopy 30: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass Part-II CHE_P12_M30 TABLE F CNTENTS 1. Learning utcomes

More information

JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II. 5 Credit Hours. Prepared by: Richard A. Pierce. Revised by: Sean Birke October, 2013

JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II. 5 Credit Hours. Prepared by: Richard A. Pierce. Revised by: Sean Birke October, 2013 JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II 5 Credit Hours Prepared by: Richard A. Pierce Revised by: Sean Birke October, 2013 Ms. Linda Abernathy, Math, Science & Business Division Chair

More information

OAT Organic Chemistry - Problem Drill 19: NMR Spectroscopy and Mass Spectrometry

OAT Organic Chemistry - Problem Drill 19: NMR Spectroscopy and Mass Spectrometry OAT Organic Chemistry - Problem Drill 19: NMR Spectroscopy and Mass Spectrometry Question No. 1 of 10 Question 1. Which statement concerning NMR spectroscopy is incorrect? Question #01 (A) Only nuclei

More information

More information can be found in Chapter 12 in your textbook for CHEM 3750/ 3770 and on pages in your laboratory manual.

More information can be found in Chapter 12 in your textbook for CHEM 3750/ 3770 and on pages in your laboratory manual. CHEM 3780 rganic Chemistry II Infrared Spectroscopy and Mass Spectrometry Review More information can be found in Chapter 12 in your textbook for CHEM 3750/ 3770 and on pages 13-28 in your laboratory manual.

More information

CHE 325 ORGANIC CHEMISTRY II Spring 2017

CHE 325 ORGANIC CHEMISTRY II Spring 2017 Instructor: CHE 325 ORGANIC CHEMISTRY II Spring 2017 Professor James Kallmerten 4-014A Center for Science and Technology Phone: 3-2854 Email: jkallmer@syr.edu Office Hours: Monday 11 am -1 pm, Wednesday

More information

SPECTROSCOPY MEASURES THE INTERACTION BETWEEN LIGHT AND MATTER

SPECTROSCOPY MEASURES THE INTERACTION BETWEEN LIGHT AND MATTER SPECTROSCOPY MEASURES THE INTERACTION BETWEEN LIGHT AND MATTER c = c: speed of light 3.00 x 10 8 m/s (lamda): wavelength (m) (nu): frequency (Hz) Increasing E (J) Increasing (Hz) E = h h - Planck s constant

More information

Chemistry Syllabus Fall Term 2017

Chemistry Syllabus Fall Term 2017 Chemistry 9 - Syllabus Fall Term 17 Date Lecture Number - General Subject Chapter W 8/30 F 9/1 1 - Introduction and orgo I review X - Review, friendly diagnostic exam M 9/4 2 - Orgo I review, exam highlights

More information

Mass Spectrometry. Introduction EI-MS and CI-MS Molecular mass & formulas Principles of fragmentation Fragmentation patterns Isotopic effects

Mass Spectrometry. Introduction EI-MS and CI-MS Molecular mass & formulas Principles of fragmentation Fragmentation patterns Isotopic effects Mass Spectrometry Introduction EI-MS and CI-MS Molecular mass & formulas Principles of fragmentation Fragmentation patterns Isotopic effects 1 Introduction to MS Mass spectrometry is the method of analysis

More information

3 Use of Mass Spectra to Obtain Structural Information

3 Use of Mass Spectra to Obtain Structural Information 3 Use of Mass Spectra to Obtain Structural Information 1 Mass Spectrometry One of the most sensitive and versatile analytical tools More sensitive than other spectroscopic methods (e.g. IR spectroscopy)

More information

Lecture 14 Organic Chemistry 1

Lecture 14 Organic Chemistry 1 CHEM 232 Organic Chemistry I at Chicago Lecture 14 Organic Chemistry 1 Professor Duncan Wardrop February 25, 2010 1 CHEM 232 Organic Chemistry I at Chicago Mass Spectrometry Sections: 13.24-13.25 2 Spectroscopy

More information

Course Syllabus. Department: Science & Technology. Date: April I. Course Prefix and Number: CHM 212. Course Name: Organic Chemistry II

Course Syllabus. Department: Science & Technology. Date: April I. Course Prefix and Number: CHM 212. Course Name: Organic Chemistry II Department: Science & Technology Date: April 2012 I. Course Prefix and Number: CHM 212 Course Name: Organic Chemistry II Course Syllabus Credit Hours and Contact Hours: 5 credit hours and 7 (3:3:1) contact

More information

ORGANIC - BROWN 8E CH INFRARED SPECTROSCOPY.

ORGANIC - BROWN 8E CH INFRARED SPECTROSCOPY. !! www.clutchprep.com CONCEPT: PURPOSE OF ANALYTICAL TECHNIQUES Classical Methods (Wet Chemistry): Chemists needed to run dozens of chemical reactions to determine the type of molecules in a compound.

More information

MASS SPECTROSCOPY (MS)

MASS SPECTROSCOPY (MS) MASS SPECTOSCOPY (MS) Castor seeds icin (toxic protein) INTODUCTION Does not involve absorption of electromagnetic radiation. It is a spectroscopic technique, by virtue of its use in structure elucidation.

More information

Lecture 11. IR Theory. Next Class: Lecture Problem 4 due Thin-Layer Chromatography

Lecture 11. IR Theory. Next Class: Lecture Problem 4 due Thin-Layer Chromatography Lecture 11 IR Theory Next Class: Lecture Problem 4 due Thin-Layer Chromatography This Week In Lab: Ch 6: Procedures 2 & 3 Procedure 4 (outside of lab) Next Week in Lab: Ch 7: PreLab Due Quiz 4 Ch 5 Final

More information

CHEM 293 Summer 2018

CHEM 293 Summer 2018 CHEM 93 Summer 08 CONCORDIA UNIVERSITY DEPARTMENT OF CHEMISTRY & BIOCHEMISTRY CHEMISTRY 93 - SPECTROSCOPY AND STRUCTURE OF ORGANIC COMPOUNDS This course aims at presenting an introduction to the techniques

More information

CHEMISTRY Topic #3: Using Spectroscopy to Identify Molecules: Radicals and Mass Spectrometry (MS) Spring 2018 Dr.

CHEMISTRY Topic #3: Using Spectroscopy to Identify Molecules: Radicals and Mass Spectrometry (MS) Spring 2018 Dr. CHEMISTRY 2600 Topic #3: Using Spectroscopy to Identify Molecules: Radicals and Mass Spectrometry (MS) Spring 2018 Dr. Susan Findlay Mass Spectrometry: How Does It Work? In CHEM 1000, you saw that mass

More information

Structural Determination Of Compounds

Structural Determination Of Compounds EXPERIMENT 10 Mass Spectroscopy Structural Determination Of Compounds. Introduction - In mass spectrometry, a substance is bombarded with an electron beam having sufficient energy to fragment the molecule.

More information

Syllabus for CHEM 241 Organic Chemistry I, 3CR, Great Basin College

Syllabus for CHEM 241 Organic Chemistry I, 3CR, Great Basin College Syllabus for CHEM 241 Organic Chemistry I, 3CR, Great Basin College Instructor: David Freistroffer Office: Lundberg 109 (in the fishbowl) Phone: 753-2018, but please use email for fastest possible response

More information

MATH 251 Ordinary and Partial Differential Equations Summer Semester 2017 Syllabus

MATH 251 Ordinary and Partial Differential Equations Summer Semester 2017 Syllabus MATH 251 Ordinary and Partial Differential Equations Summer Semester 2017 Syllabus Course Description: Ordinary and Partial Differential Equations. First and second order equations; series solutions; Laplace

More information

CHM 223 Organic Chemistry I Prof. Chad Landrie. Lecture 10: September 20, 2018 Ch. 12: Spectroscopy mass spectrometry infrared spectroscopy

CHM 223 Organic Chemistry I Prof. Chad Landrie. Lecture 10: September 20, 2018 Ch. 12: Spectroscopy mass spectrometry infrared spectroscopy M 223 Organic hemistry I Prof. had Landrie Lecture 10: September 20, 2018 h. 12: Spectroscopy mass spectrometry infrared spectroscopy i>licker Question onsider a solution that contains 65g R enantiomer

More information

Structure Determination. How to determine what compound that you have? One way to determine compound is to get an elemental analysis

Structure Determination. How to determine what compound that you have? One way to determine compound is to get an elemental analysis Structure Determination How to determine what compound that you have? ne way to determine compound is to get an elemental analysis -basically burn the compound to determine %C, %H, %, etc. from these percentages

More information

15.04.jpg. Mass spectrometry. Electron impact Mass spectrometry

15.04.jpg. Mass spectrometry. Electron impact Mass spectrometry Mass spectrometry Electron impact Mass spectrometry 70 ev = 1614 kcal/mol - contrast with energy from IR (1-10 kcal/mol) or NMR (0.2 cal/mol) - typical C-C bond = 100 kcal/mol Point: lots of energy in

More information

CHE 371: Kinetics and Thermodynamics Fall 2008

CHE 371: Kinetics and Thermodynamics Fall 2008 CHE 371: Kinetics and Thermodynamics Fall 2008 Class Meetings: Lecture: M, T, W, F 9:00 AM, Olin 103 Laboratory: T, W 1:30-5:20 PM, R 2:30-6:20 PM Instructor: Prof. Amanda Nienow, Nobel 106C, 933-7327,

More information

Feb. 12, To: The UGC From: Patricia LiWang for Natural Sciences faculty RE: Proposed Physical Biochemistry course.

Feb. 12, To: The UGC From: Patricia LiWang for Natural Sciences faculty RE: Proposed Physical Biochemistry course. Feb. 12, 2009 To: The UGC From: Patricia LiWang for Natural Sciences faculty RE: Proposed Physical Biochemistry course To the UGC, We propose the addition of a new course to the Natural Sciences Curriculum,

More information

CHEM Chapter 12 Infrared and Mass Spec (homework). Stafford. S18

CHEM Chapter 12 Infrared and Mass Spec (homework). Stafford. S18 Exhibit 12-4 The following question(s) refer to the mass spectrum shown below. 1. Refer to Exhibit 12-4. This compound contains C, H, and one other atom. Identify the other atom from the mass spectrum

More information

CHEM 333 Spring 2016 Organic Chemistry I California State University Northridge

CHEM 333 Spring 2016 Organic Chemistry I California State University Northridge CHEM 333 Spring 2016 Organic Chemistry I California State University Northridge Lecture: Instructor: Thomas Minehan Office: Science 2314 Office hours: MW 12:00-1:00 pm E.mail: thomas.minehan@csun.edu Class

More information

Chemistry 2281G: Inorganic Chemistry of the Main Group Elements

Chemistry 2281G: Inorganic Chemistry of the Main Group Elements Chemistry 2281G: Inorganic Chemistry of the Main Group Elements 1. Course Information Course Description Chemistry 2281G will be composed of two main components; (1) Introduction to bonding in polyatomic

More information

Organic Chemistry Syllabus

Organic Chemistry Syllabus Organic Chemistry Syllabus 2017-2018 Instructor Information: Teacher: James Poindexter Room: Belle Vernon Area High School, Room 412 Contact: Phone: 724-808-2500; ext.2412 Email: james.poindexter@bellevernonarea.net

More information

Randa AbiRafi Jaber Office: Chem Bldg. Rm 212 Office Hrs: Tue, Wed 11:00 Thu: 2:00 3:00 pm

Randa AbiRafi Jaber Office: Chem Bldg. Rm 212 Office Hrs: Tue, Wed 11:00 Thu: 2:00 3:00 pm Faraj Hasanayn Office Chem Bldg. Rm 522 Office Hrs: Mon: 10:30 11:30 am Tuesday: 1:30 2:30 pm, and by appointment Email: fh19@aub.edu.lb, Phone Ext: 3994 Randa AbiRafi Jaber Office: Chem Bldg. Rm 212 Office

More information

Symmetric Stretch: allows molecule to move through space

Symmetric Stretch: allows molecule to move through space BACKGROUND INFORMATION Infrared Spectroscopy Before introducing the subject of IR spectroscopy, we must first review some aspects of the electromagnetic spectrum. The electromagnetic spectrum is composed

More information

PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS BASIC ORGANIC & BIOCHEMISTRY CHEM 1020

PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS BASIC ORGANIC & BIOCHEMISTRY CHEM 1020 PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS BASIC ORGANIC & BIOCHEMISTRY CHEM 1020 Class Hours: 3.0 Credit Hours: 4.0 Laboratory Hours: 3.0 Revised: Spring 2011 Catalog Course Description: Organic

More information

Organic Chemistry 112 A B C - Syllabus Addendum for Prospective Teachers

Organic Chemistry 112 A B C - Syllabus Addendum for Prospective Teachers Chapter Organic Chemistry 112 A B C - Syllabus Addendum for Prospective Teachers Ch 1-Structure and bonding Ch 2-Polar covalent bonds: Acids and bases McMurry, J. (2004) Organic Chemistry 6 th Edition

More information

CHEM 25: Organic Chemistry I https://moodle.drew.edu (2009FA-CHEM )

CHEM 25: Organic Chemistry I https://moodle.drew.edu (2009FA-CHEM ) CHEM 25: Organic Chemistry I https://moodle.drew.edu (2009FA-CHEM-25-001) Instructor Jane M. Liu, Ph.D. Hall of Sciences S212 jliu3@drew.edu (973-408-3303) Class 9:30-10:35am M, W, F (S244) Laboratory

More information

Radiant energy is proportional to its frequency (cycles/s = Hz) as a wave (Amplitude is its height) Different types are classified by frequency or

Radiant energy is proportional to its frequency (cycles/s = Hz) as a wave (Amplitude is its height) Different types are classified by frequency or CHEM 241 UNIT 5: PART B INFRA-RED RED SPECTROSCOPY 1 Spectroscopy of the Electromagnetic Spectrum Radiant energy is proportional to its frequency (cycles/s = Hz) as a wave (Amplitude is its height) Different

More information

Chemistry Organic Chemistry II, Spring 2018

Chemistry Organic Chemistry II, Spring 2018 Chemistry 2320 Organic Chemistry II, Spring 2018 Instructor: Dr. Tom Chang Office: Widtsoe 337 Phone: 797-3545 Email: tom.chang@usu.edu Meeting Time/Place: MWF 10:30-11:20 am, Eccles Business Building

More information

Propose a structure for an alcohol, C4H10O, that has the following

Propose a structure for an alcohol, C4H10O, that has the following Propose a structure for an alcohol, C4H10O, that has the following 13CNMR spectral data: Broadband _ decoupled 13CNMR: 19.0, 31.7, 69.5 б DEPT _90: 31.7 б DEPT _ 135: positive peak at 19.0 & 31.7 б, negative

More information

EXPT. 7 CHARACTERISATION OF FUNCTIONAL GROUPS USING IR SPECTROSCOPY

EXPT. 7 CHARACTERISATION OF FUNCTIONAL GROUPS USING IR SPECTROSCOPY EXPT. 7 CHARACTERISATION OF FUNCTIONAL GROUPS USING IR SPECTROSCOPY Structure 7.1 Introduction Objectives 7.2 Principle 7.3 Requirements 7.4 Strategy for the Interpretation of IR Spectra 7.5 Practice Problems

More information

CHEM 3.2 (AS91388) 3 credits. Demonstrate understanding of spectroscopic data in chemistry

CHEM 3.2 (AS91388) 3 credits. Demonstrate understanding of spectroscopic data in chemistry CHEM 3.2 (AS91388) 3 credits Demonstrate understanding of spectroscopic data in chemistry Spectroscopic data is limited to mass, infrared (IR) and 13 C nuclear magnetic resonance (NMR) spectroscopy. Organic

More information

Organic Chemistry II (CHE ) Examination I February 11, Name (Print legibly): Key. Student ID#:

Organic Chemistry II (CHE ) Examination I February 11, Name (Print legibly): Key. Student ID#: rganic hemistry II (HE 232-001) Examination I February 11, 2009 Name (Print legibly): Key (last) (first) Student ID#: PLEASE observe the following: You are allowed to have scratch paper (provided by me),

More information

Sul Ross State University Syllabus for Organic Chemistry II: CHEM 3408 (Spring 2017)

Sul Ross State University Syllabus for Organic Chemistry II: CHEM 3408 (Spring 2017) Sul Ross State University Syllabus for Organic Chemistry II: CHEM 3408 (Spring 2017) Class: Organic Chemistry II Instructor: Dr. David J. Leaver Room: WSB 307 Office: WSB 318 Time: MWF 9:00-9:50am Office

More information

Course syllabus for Chemistry 109C Organic Chemistry

Course syllabus for Chemistry 109C Organic Chemistry Course syllabus for Chemistry 109C Organic Chemistry Class meets: Tue, Thu 5:00 6:15 PM Chem 1179 Spring 2005 Instructor: Prof. Kalju Kahn, Office: PSB-N 1511, E-mail: kalju@chem.ucsb.edu Phone: 893-6157

More information

CH 3. mirror plane. CH c d

CH 3. mirror plane. CH c d CAPTER 20 Practice Exercises 20.1 The index of hydrogen deficiency is two. The structural possibilities include two double bonds, a double do 20.3 (a) As this is an alkane, it contains only C and and has

More information

Chapter 5. Mass spectrometry

Chapter 5. Mass spectrometry ionization and fragmentation Chapter 5. Mass spectrometry which fragmentations? mass and frequency, m/z and count rate Reading: Pavia Chapters 3 and 4 Don t need 3.3 B-D, 3.4 B-D Use the text to clarify

More information

Kingdom of Saudi Arabia. The National Commission for Academic Accreditation & Assessment

Kingdom of Saudi Arabia. The National Commission for Academic Accreditation & Assessment ATTACHMENT 2 (e) Course Specifications Kingdom of Saudi Arabia The National Commission for Academic Accreditation & Assessment Course Specifications (CS)!1 Course Specifications Institution Date University

More information

PAPER No.12 :Organic Spectroscopy MODULE No.29: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass - Part I

PAPER No.12 :Organic Spectroscopy MODULE No.29: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass - Part I Subject Chemistry Paper No and Title Module No and Title Module Tag 12: rganic Spectroscopy 29: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass - Part I CHE_P12_M29 TABLE F CNTENTS 1. Learning utcomes

More information

ORGANIC REACTIONS Chem223 (Winter 2019)

ORGANIC REACTIONS Chem223 (Winter 2019) ORGANIC REACTIONS Chem223 (Winter 2019) Lectures: Mondays 10:30-11:30 am Wednesdays 9:30-10:30 am Fridays 8:30-9:30 am Location: Stirling B (lectures), Che118 (labs) Course instructor: Dr Anne Petitjean

More information

Chemistry 330 Fall 2015 Organic Chemistry I

Chemistry 330 Fall 2015 Organic Chemistry I Chemistry 330 Fall 2015 Organic Chemistry I Instructor: John G. Kodet Contact Information: Office: Faraday Hall 335 Email: jkodet@niu.edu Office Hours: MW 2:00-3:00 pm, and by appointment Lecture: MWF

More information

Chemistry 4715/8715 Physical Inorganic Chemistry Fall :20 pm 1:10 pm MWF 121 Smith. Kent Mann; 668B Kolthoff; ;

Chemistry 4715/8715 Physical Inorganic Chemistry Fall :20 pm 1:10 pm MWF 121 Smith. Kent Mann; 668B Kolthoff; ; Chemistry 4715/8715 Physical Inorganic Chemistry Fall 2017 12:20 pm 1:10 pm MWF 121 Smith Instructor: Text: be made available). Kent Mann; 668B Kolthoff; 625-3563; krmann@umn.edu R.S. Drago, Physical Methods

More information

Lecture 13 Organic Chemistry 1

Lecture 13 Organic Chemistry 1 EM 232 rganic hemistry I at hicago Lecture 13 rganic hemistry 1 Professor Duncan Wardrop February 23, 2010 1 EM 232 rganic hemistry I at hicago Spectroscopy & Spectrometry hapter 13 2 EM 232 rganic hemistry

More information

Mass spectrometry and elemental analysis

Mass spectrometry and elemental analysis Mass spectrometry and elemental analysis A schematic representation of a single-focusing mass spectrometer with an electron-impact (EI) ionization source. M: + e _ M +. + 2e _ Ionization and fragmentation

More information

CHEM 121: Chemical Biology

CHEM 121: Chemical Biology Instructors Prof. Jane M. Liu (HS-212) jliu3@drew.edu x3303 Office Hours Anytime my office door is open CHEM 121: Chemical Biology Class MF 2:30-3:45 pm PRE-REQUISITES: CHEM 117 COURSE OVERVIEW This upper-level

More information

CHE 262 (03): Organic Chemistry II Spring 2018 Syllabus MWF 12:50-1:50 in Phillips Lecture Hall

CHE 262 (03): Organic Chemistry II Spring 2018 Syllabus MWF 12:50-1:50 in Phillips Lecture Hall CHE 262 (03): Organic Chemistry II Spring 2018 Syllabus MWF 12:50-1:50 in Phillips Lecture Hall Professor: Dr. Mark V. Wilson Office: Hoyt 360 Email: wilsonmv@westminster.edu (Best way to contact me.)

More information

Chemistry 2332, Honors Organic Chemistry II Spring Semester 2013

Chemistry 2332, Honors Organic Chemistry II Spring Semester 2013 Chemistry 2332, Honors Organic Chemistry II Spring Semester 2013 Instructor: Professor Jane E. Wissinger, Kolthoff 455, 612-625-9586, jwiss@umn.edu Office Hours: Mon. 10:30-11:30 a.m. Wed. 3:30-4:30 p.m.,

More information

CHE 325 SPECTROSCOPY (A) CHAP 13A ASSIGN CH 2 CH CH 2 CH CHCH 3

CHE 325 SPECTROSCOPY (A) CHAP 13A ASSIGN CH 2 CH CH 2 CH CHCH 3 CE 325 SPECTRSCPY (A) CAP 13A ASSIGN 1. Which compound would have a UV absorption band at longest wavelength? A. I B. II C. III D. IV E. V C CC 3 CC C 2 C CC 3 I II III C 2 C C 2 C CC 3 IV V 2. Select

More information

Chemistry 262: Organic Chemistry II Winter 2018

Chemistry 262: Organic Chemistry II Winter 2018 Chemistry 262: Organic Chemistry II Winter 2018 The second of a three quarter sequence in organic chemistry for university transfer, intended primarily for science majors, and those fulfilling requirements

More information

PELLISSIPPI STATE TECHNICAL COMMUNITY COLLEGE MASTER SYLLABUS ORGANIC CHEMISTRY II CHEM 2020

PELLISSIPPI STATE TECHNICAL COMMUNITY COLLEGE MASTER SYLLABUS ORGANIC CHEMISTRY II CHEM 2020 PELLISSIPPI STATE TECHNICAL COMMUNITY COLLEGE MASTER SYLLABUS ORGANIC CHEMISTRY II CHEM 2020 Class Hours: 3.0 Credit Hours: 4.0 Laboratory Hours: 3.0 Date Revised: Fall 2001 Catalog Course Description:

More information

Syllabus for CHEM 220 (and CHEM 220L) Introductory Organic Chemistry

Syllabus for CHEM 220 (and CHEM 220L) Introductory Organic Chemistry Syllabus for CHEM 220 (and CHEM 220L) Introductory Organic Chemistry Instructor: Dr. David Freistroffer Office: Lundberg 109C (in the fishbowl ) Phone: 753-2018 Email: davidf@gwmail.gbcnv.edu Office hours:

More information

DEPARTMENT: Chemistry

DEPARTMENT: Chemistry CODE: CHEM 203 TITLE: Organic Chemistry I INSTITUTE: STEM DEPARTMENT: Chemistry COURSE DESCRIPTION: Students will apply many concepts from general chemistry to a study of organic chemistry. They will be

More information

SYLLABUS. Departmental Syllabus. Organic Chemistry I CHEM Departmental Syllabus. Departmental Syllabus. Departmental Syllabus

SYLLABUS. Departmental Syllabus. Organic Chemistry I CHEM Departmental Syllabus. Departmental Syllabus. Departmental Syllabus DATE OF LAST REVIEW: 05/2018 CIP CODE: 24.0101 SYLLABUS SEMESTER: COURSE TITLE: COURSE NUMBER: Organic Chemistry I CHEM-0211 CREDIT HOURS: 3 INSTRUCTOR: OFFICE LOCATION: OFFICE HOURS: TELEPHONE: EMAIL:

More information

EASTERN ARIZONA COLLEGE General Organic Chemistry I

EASTERN ARIZONA COLLEGE General Organic Chemistry I EASTERN ARIZONA COLLEGE General Organic Chemistry I Course Design 2015-2016 Course Information Division Science Course Number CHM 235 (SUN# CHM 2235) Title General Organic Chemistry I Credits 4 Developed

More information

Syllabus for Chemistry 12A Spring Semester 2015

Syllabus for Chemistry 12A Spring Semester 2015 Syllabus for Chemistry 12A Spring Semester 2015 Taught by: Sam Gillette, Ph.D. email: sgillette@peralta.edu Phone: 510-981-5016 Office: BCC 541 Lab: BCC 514 Web Site: http://www.berkeleycitycollege.edu/wp/sgillette/

More information

Mass Spectroscopy. Dr. Sapna Gupta

Mass Spectroscopy. Dr. Sapna Gupta Mass Spectroscopy Dr. Sapna Gupta What is Mass Spectroscopy It is an analytical technique for measuring the mass-tocharge ratio (m/z) of ions in the gas phase. Mass spectrometry is our most valuable analytical

More information

EXPT. 9 DETERMINATION OF THE STRUCTURE OF AN ORGANIC COMPOUND USING UV, IR, NMR AND MASS SPECTRA

EXPT. 9 DETERMINATION OF THE STRUCTURE OF AN ORGANIC COMPOUND USING UV, IR, NMR AND MASS SPECTRA EXPT. 9 DETERMINATION OF THE STRUCTURE OF AN ORGANIC COMPOUND USING UV, IR, NMR AND MASS SPECTRA Structure 9.1 Introduction Objectives 9.2 Principle 9.3 Requirements 9.4 Strategy for the Structure Elucidation

More information

Mass Spectrometry. General Principles

Mass Spectrometry. General Principles General Principles Mass Spectrometer: Converts molecules to ions Separates ions (usually positively charged) on the basis of their mass/charge (m/z) ratio Quantifies how many units of each ion are formed

More information

HWeb27 ( ; )

HWeb27 ( ; ) HWeb27 (9.1-9.2; 9.12-9.18) 28.1. Which of the following cannot be determined about a compound by mass spectrometry? [a]. boiling point [b]. molecular formula [c]. presence of heavy isotopes (e.g., 2 H,

More information

Electrophiles are attracted to the π bond Addition sees a π bond replaced with a σ bond There are many different types of addition reactions:

Electrophiles are attracted to the π bond Addition sees a π bond replaced with a σ bond There are many different types of addition reactions: Nucleophiles and Electrophiles Nucleophiles are the atoms that donates the electron pairs and is added to the molecules (In the example above this is the CN) Electrophiles are the atoms that seek electron

More information

E35 SPECTROSCOPIC TECHNIQUES IN ORGANIC CHEMISTRY

E35 SPECTROSCOPIC TECHNIQUES IN ORGANIC CHEMISTRY E35 SPECTRSCPIC TECNIQUES IN RGANIC CEMISTRY Introductory Comments. These notes are designed to introduce you to the basic spectroscopic techniques which are used for the determination of the structure

More information

Calculate a rate given a species concentration change.

Calculate a rate given a species concentration change. Kinetics Define a rate for a given process. Change in concentration of a reagent with time. A rate is always positive, and is usually referred to with only magnitude (i.e. no sign) Reaction rates can be

More information

Chemistry 103: Basic General Chemistry (4.0 Credits) Fall Semester Prerequisites: Placement or concurrent enrollment in DEVM F105 or higher

Chemistry 103: Basic General Chemistry (4.0 Credits) Fall Semester Prerequisites: Placement or concurrent enrollment in DEVM F105 or higher Chemistry 103: Basic General Chemistry (4.0 Credits) Fall Semester 2017 Instructor: Dr. Kriya L. Dunlap Office: WRRB 230 Telephone: 474-2766 (office) Email: kldunlap@alaska.edu Lecture: MWF 3:30 4:30,

More information

Syllabus CHEM 3421 Inorganic Quantitative Analysis, Fall 2017

Syllabus CHEM 3421 Inorganic Quantitative Analysis, Fall 2017 Syllabus CHEM 3421 Inorganic Quantitative Analysis, Fall 2017 Instructor: Dr. David Carter Office hours: Mon. 1:30-3 PM; Wed. 8-9:30 AM, Thur. 9:30-11:30 AM or by appointment Office: CAV 218 Office Phone:

More information