EASTERN ARIZONA COLLEGE General Organic Chemistry I

Size: px
Start display at page:

Download "EASTERN ARIZONA COLLEGE General Organic Chemistry I"

Transcription

1 EASTERN ARIZONA COLLEGE General Organic Chemistry I Course Design Course Information Division Science Course Number CHM 235 (SUN# CHM 2235) Title General Organic Chemistry I Credits 4 Developed by Phil McBride Lecture/Lab Ratio 3 Lecture/3 Lab Transfer Status ASU NAU UA CHM 233 (3) & CHM 237 (1) CHM 235L --and-- CHM 235 CHEM 243A --and-- CHEM 241A Activity Course No CIP Code Assessment Mode Pre/Post Test (62 Questions/130 Points) Semester Taught Fall GE Category Lab Science Separate Lab Yes Awareness Course No Intensive Writing Course No Prerequisites CHM 152 Educational Value Students will gain an understanding of the role that organic chemistry plays in their lives, and the role that organic chemistry plays in the agricultural and medical fields. Students learn how to identify problems and work as a team to solve those problems. Students learn how to predict reactions and devise methods to synthesize organic compounds. Students learn to work as part of a cooperative team. Students learn the composition and reactivity of several chemicals that they will encounter in various scientific fields. The students learn about hazardous waste and safety precautions that must be followed when dealing with organic chemicals. Description General principles of organic chemistry with emphasis on reactivity and synthesis. Topics include bonding, structure and properties of organic compounds, stereochemistry, overview of organic reactions, kinetics and thermodynamics, structure, synthesis, and reaction of alkenes, alkynes, and alkyl halides, nucleophilic substitution and elimination reactions, structure determination using Mass Spectrometry, Infrared Spectroscopy, and Nuclear Magnetic Resonance Spectroscopy, aromaticity, and electrophilic aromatic substitution reactions. EASTERN ARIZONA COLLEGE General Organic Chemistry I

2 Supplies Laboratory Notebook: Comp Book 5x5 Ruled Scientific Calculator Competencies and 1. Review the principles of atomic and molecular structure, bonding, and acid-base chemistry. a. Draw and interpret Lewis, condensed, and line-angle structural formulas. Show which atoms bear formal charges. b. Draw resonance forms and use them to predict stabilities. c. Calculate empirical and molecular formulas from elemental compositions. d. Predict relative acidities and basicities based on structure, bonding, and resonance of conjugate acid-base pairs. e. Identify nucleophiles (Lewis bases) and electrophiles (Lewis acids), and write equations for Lewis acid-base reactions. 2. Visualize the structure and properties of Organic Molecules. a. Draw the structure of a single bond, a double bond, and a triple bond. b. Predict the hybridization and geometry of the atoms in a molecule. c. Draw a good three-dimensional representation of a given molecule. d. Identify constitutional isomers and stereoisomers. e. Identify polar and nonpolar molecules and predict which ones can engage in hydrogen bonding. f. Predict general trends in the boiling points and solubilities of compounds, based on their size, polarity, and hydrogen-bonding ability. g. Identify the general classes of hydrocarbons and draw structural formulas for examples. h. Identify the classes of compounds containing oxygen or nitrogen, and draw structural formulas for examples. EASTERN ARIZONA COLLEGE General Organic Chemistry I

3 3. Acquaint self with the structure and stereochemistry of Alkanes. a. Explain and predict trends in physical properties of alkanes. b. Correctly name alkanes, cycloalkanes, and bicyclic alkanes. c. Draw the structure and give the molecular formula, when given the name of an alkane. d. Compare the energies of alkane conformations and predict the most stable conformation. e. Compare the energies of cycloalkanes and explain ring strain. f. Identify and draw cis and trans stereoisomers of cycloalkanes. g. Draw accurate cyclohexane conformations, and predict the most stable conformations of substituted cyclohexanes. 4. Develop an understanding of the kinetics and thermodynamics involved in chemical reactions. a. Explain the mechanism and energetics of the free-radical halogenation of alkanes. b. Predict the products of halogenation of an alkane, based on the selectivity of halogenation. c. Calculate free-energy changes from equilibrium constants. d. Calculate enthalpy changes from bond-dissociation energies. e. Determine the order of a reaction, and suggest a possible mechanism based on its rate equation. f. Use energy diagrams to discuss transition states, activation energies, intermediates, and the rate-determining step of a reaction. g. Explain how to use isotope effects to determine whether a C-H bond is being broken in the rate-determining step of a reaction. h. Use the Hammond postulate to predict whether a transition state will be reactant-like or EASTERN ARIZONA COLLEGE General Organic Chemistry I

4 product-like. i. Describe the structures of carbocations, carbanions, free radicals, and carbenes and the structural features that stabilize them. Explain which are electrophilic and which are nucleophilic. 5. Visualize the three-dimensional structure of molecules in order to discriminate between molecules with subtle stereochemical differences. a. Classify molecules as chiral or achiral, and identify mirror planes of symmetry. b. Identify chiral carbon atoms and name them using the (R) and (S) nomenclature. c. Calculate specific rotations from polarimetry data. d. Draw all stereoisomers of a given structure. e. Identify enantiomers, diastereomers, and meso compounds. f. Draw correct Fischer projections of chiral carbon atoms. g. Predict the stereochemistry of products of reactions such as substitutions and eliminations on optically active compounds. h. Predict the differences in products of stereospecific reactions of diastereomers. 6. Develop an understanding of the physical properties and reactions of alkyl halides. a. Predict and explain the rearrangement of cations in first-order reactions. b. Predict which substitutions or eliminations will be faster, based on differences in substrate, base/nucleophile, leaving group, or solvent. c. Predict whether a reaction will be first order or second order. d. Predict predominance of substitution or elimination, when possible. EASTERN ARIZONA COLLEGE General Organic Chemistry I

5 e. Use the Saytzeff rule to predict major and minor elimination products. f. Use retrosynthetic analysis to solve multistep synthesis problems with alkyl halides as reagents, intermediates, or products. 7. Construct an understanding of the physical properties and synthesis of alkenes. a. Draw and name all alkenes with a given molecular formula. b. Use the E-Z and cis-trans systems to name geometric isomers. c. Use heats of hydrogenation to compare stabilities of alkenes. d. Predict relative stabilities of alkenes and cycloalkenes, based on structure and stereochemistry. e. Predict the products of dehydrohalogenation of alkyl halides, dehalogenation of dibromides, and dehydration of alcohols, including major and minor products. f. Propose logical mechanisms for dehydrohalogenation, dehalogenation, and dehydration reactions. g. Predict and explain the stereochemistry of E2 eliminations to form alkenes. h. Propose effective single-step and multistep syntheses of alkenes. 8. Develop an understanding of the reactions of alkenes. a. Predict the products of additions, oxidations, reductions, and cleavages of alkenes, including (a) Orientation of reaction (regiochemistry) (b) Stereochemistry. b. Propose logical mechanisms to explain the observed products of alkene reactions, including regiochemistry and stereochemistry. c. Use alkenes as starting materials and intermediates in devising one-step and multistep EASTERN ARIZONA COLLEGE General Organic Chemistry I

6 syntheses. d. Choose the better method and explain its advantages when more than one method is usable for a chemical transformation. e. Use clues provided by products of reactions such as ozonolysis to determine the structure of an unknown alkene. 9. Develop an understanding of the physical properties, synthesis, and reactions of alkynes a. Name alkynes and draw the structure from their names. b. Explain why alkynes are more acidic than alkanes and alkenes. Show how to generate nucleophilic acetylide ions and heavy-metal acetylides. c. Propose effective single-step and multistep syntheses of alkynes. d. Predict the products of additions, oxidations, reductions, and cleavages of alkynes, including orientation of reaction (regiochemistry) and stereochemistry. e. Use alkynes as starting materials and intermediates in one-step and multistep syntheses. f. Show how the reduction of an alkyne leads to an alkene or alkene derivative with the desired stereochemistry. 10. Determine the structure of organic compounds with the use of Infrared (IR) Spectroscopy and Mass Spectrometry (MS). a. Given an IR spectrum, identify the reliable characteristic peaks. b. Explain why some characteristic peaks are usually strong or weak and why some may be absent. EASTERN ARIZONA COLLEGE General Organic Chemistry I

7 c. Predict the stretching frequencies of common functional groups. d. Identify functional groups from IR spectra. e. Identify conjugated and strained C=O bonds and conjugated and aromatic C=C bonds from their absorptions in the IR spectrum. f. Determine molecular weights from mass spectra. g. Use mass spectra to recognize the presence of Br, C1, I, N, and S atoms, when possible. h. Predict the major ions from fragmentation of alkanes, alkenes, and alcohols. i. Use the fragmentation pattern to determine whether a proposed structure is consistent with the mass spectrum. 11. Determine the structure of organic compounds with the use of Nuclear Magnetic Resonance Spectroscopy (NMR). a. Given a structure, determine which protons are equivalent and which are nonequivalent; predict the number of signals and their approximate chemical shifts. b. Use the integral trace to determine the relative numbers of different types of protons. c. Predict which protons in a structure will be magnetically coupled, and predict the number of peaks. d. Use proton spin-spin splitting patterns to determine the structure of alkyl and other groups. e. Draw the general features of the NMR spectrum of a given compound. f. Predict the approximate chemical shifts of carbon atoms in a given compound. g. Combine information from NMR, IR, and MS spectra to determine the structures of organic compounds. o EASTERN ARIZONA COLLEGE General Organic Chemistry I

8 12. Consider the unique properties of conjugated systems and methods used to detect them (UV spectroscopy) a. Show how to construct the molecular orbitals of ethylene, butadiene, and the allylic system. b. Show the electronic configurations of ethylene, butadiene, and the allyl cation, radical, anion. c. Recognize reactions that are enhanced by resonance stabilization of the intermediates. d. Develop mechanisms to explain the enhanced rates of observed products. e. Predict the products of Diels-Alder reactions. 13. Visualize the structure and properties of aromatic compounds. a. Construct the molecular orbitals of a cyclic system of p orbitals similar to benzene and cyclobutadiene. b. Use the polygon rule to draw the energy diagram for a cyclic system of p orbitals, and fill in the electrons to show whether a given compound or ion is aromatic or antiaromatic. c. Use Huckel's rule to predict whether a given annulene, heterocycle, or ion will be aromatic, antiaromatic, or nonaromatic. d. Name aromatic compounds and draw their structures from the names. e. Use IR, NMR, UV, and mass spectra to determine the structures of aromatic compounds. f. Given an aromatic compound, predict the important features of its spectra. EASTERN ARIZONA COLLEGE General Organic Chemistry I

9 14. Demonstrate the reactions of aromatic compounds. a. Predict products and give mechanisms for the common electrophilic aromatic substitutions: halogenation, nitration, sulfonation, and Friedel-Crafts alkylation and acylation. b. Draw resonance structures for the sigma complexes resulting from electrophilic attack on substituted aromatic rings. c. Predict the position(s) of electrophilic aromatic substitution on molecules containing substituents on one or more aromatic rings. d. Design syntheses that use the influence of substituents to generate the correct isomers of multisubstituted aromatic compounds. e. Predict the products of Birch reduction, hydrogenation, and chlorination of aromatic compounds. Types of Instruction Classroom Lecture Discussion Cooperative Learning Activities Multi-Media Presentations Laboratory Activities Grading Information Grading Rationale Exams will be given after every 2 or 3 chapters in the textbook. Laboratory activities will be held each week. Laboratory notebooks will be turned in and graded each week. A post test will be given at the end of the semester. Category Weights Pre-test: 0% Homework: 15% Laboratory activities: 25% Exams: 50% Post Test: 10% EASTERN ARIZONA COLLEGE General Organic Chemistry I

10 Grading Scale A % B 80-89% C 65-79% D 50-64% F 0-59% EASTERN ARIZONA COLLEGE General Organic Chemistry I

CHM 235 GENERAL ORGANIC CHEMISTRY I

CHM 235 GENERAL ORGANIC CHEMISTRY I CHM 235 GENERAL ORGANIC CHEMISTRY I PRESENTED AND APPROVED: AUGUST 9, 2012 EFFECTIVE: FALL 2013-14 Prefix & Number CHM 235 Course Title: General Organic Chemistry I Purpose of this submission: New Change/Updated

More information

COURSE OBJECTIVES / OUTCOMES / COMPETENCIES.

COURSE OBJECTIVES / OUTCOMES / COMPETENCIES. COURSE OBJECTIVES / OUTCOMES / COMPETENCIES. By the end of the course, students should be able to do the following: See Test1-4 Objectives/Competencies as listed in the syllabus and on the main course

More information

KOT 222 Organic Chemistry II

KOT 222 Organic Chemistry II KOT 222 Organic Chemistry II Course Objectives: 1) To introduce the chemistry of alcohols and ethers. 2) To study the chemistry of functional groups. 3) To learn the chemistry of aromatic compounds and

More information

Course Outline. TERM EFFECTIVE: Fall 2016 CURRICULUM APPROVAL DATE: 03/14/2016

Course Outline. TERM EFFECTIVE: Fall 2016 CURRICULUM APPROVAL DATE: 03/14/2016 5055 Santa Teresa Blvd Gilroy, CA 95023 Course Outline COURSE: CHEM 12A DIVISION: 10 ALSO LISTED AS: TERM EFFECTIVE: Fall 2016 CURRICULUM APPROVAL DATE: 03/14/2016 SHORT TITLE: ORGANIC CHEMISTRY LONG TITLE:

More information

Required Materials For complete material(s) information, refer to

Required Materials For complete material(s) information, refer to Butler Community College Science, Technology, Engineering, and Math Division Robert Carlson Revised Fall 2017 Implemented Spring 2018 COURSE OUTLINE Organic Chemistry 1 Course Description CH 240. Organic

More information

JEFFERSON COLLEGE COURSE SYLLABUS CHM200 ORGANIC CHEMISTRY I. 5 Credit Hours. Prepared by: Richard A. Pierce

JEFFERSON COLLEGE COURSE SYLLABUS CHM200 ORGANIC CHEMISTRY I. 5 Credit Hours. Prepared by: Richard A. Pierce JEFFERSON COLLEGE COURSE SYLLABUS CHM200 ORGANIC CHEMISTRY I 5 Credit Hours Prepared by: Richard A. Pierce Revised Date: January 2008 by Ryan H. Groeneman Arts & Science Education Dr. Mindy Selsor, Dean

More information

COURSE UNIT DESCRIPTION. Type of the course unit. Mode of delivery Period of delivery Language of instruction Face to face Autumn English

COURSE UNIT DESCRIPTION. Type of the course unit. Mode of delivery Period of delivery Language of instruction Face to face Autumn English Course unit title Organic Chemistry I Lecturer(s) Dr. Rimantas Vaitkus COURSE UNIT DESCRIPTION Department Dept. Organic Chemistry, Vilnius University Cycle First Type of the course unit Mode of delivery

More information

JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II. 5 Credit Hours. Prepared by: Richard A. Pierce

JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II. 5 Credit Hours. Prepared by: Richard A. Pierce JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II 5 Credit Hours Prepared by: Richard A. Pierce Revised Date: January 2008 by Ryan H. Groeneman Arts & Science Education Dr. Mindy Selsor, Dean

More information

Organic Chemistry I Lesson Objectives, Lesson Problems, Course Outline Spring 2008

Organic Chemistry I Lesson Objectives, Lesson Problems, Course Outline Spring 2008 Organic Chemistry I Lesson Objectives, Lesson Problems, Course Outline Spring 2008 Lesson Date Assignment Lesson Objective Description Lesson Problems 4 14-Jan Chapter 1 Quiz Describe how bond polarity

More information

CHEM2077 HONORS ORGANIC CHEMISTRY SYLLABUS

CHEM2077 HONORS ORGANIC CHEMISTRY SYLLABUS CHEM2077 HONORS ORGANIC CHEMISTRY SYLLABUS 1. STRUCTURE AND BONDING a] Atomic structure and bonding b] Hybridization and MO Theory c] Drawing chemical structures 2. POLAR COVALENT BONDS: ACIDS AND BASES

More information

Course Syllabus. Department: Science & Technology. Date: April I. Course Prefix and Number: CHM 211. Course Name: Organic Chemistry I

Course Syllabus. Department: Science & Technology. Date: April I. Course Prefix and Number: CHM 211. Course Name: Organic Chemistry I Department: Science & Technology Date: April 2012 I. Course Prefix and Number: CHM 211 Course Name: Organic Chemistry I Course Syllabus Credit Hours and Contact Hours: 5 credit hours and 7 (3:3:1) contact

More information

Detailed Course Content

Detailed Course Content Detailed Course Content Chapter 1: Carbon Compounds and Chemical Bonds The Structural Theory of Organic Chemistry 4 Chemical Bonds: The Octet Rule 6 Lewis Structures 8 Formal Charge 11 Resonance 14 Quantum

More information

Alabama Department of Postsecondary Education

Alabama Department of Postsecondary Education Alabama Department of Postsecondary Education Representing Alabama s Public Two-Year College System Jefferson State Community College CHM 221 Organic Chemistry I I. CHM 221 Organic Chemistry I - Prerequisite

More information

JEFFERSON COLLEGE COURSE SYLLABUS CHM200 ORGANIC CHEMISTRY I. 5 Credit Hours. Prepared by: Richard A. Pierce. Revised by: Sean Birke October, 2013

JEFFERSON COLLEGE COURSE SYLLABUS CHM200 ORGANIC CHEMISTRY I. 5 Credit Hours. Prepared by: Richard A. Pierce. Revised by: Sean Birke October, 2013 JEFFERSON COLLEGE COURSE SYLLABUS CHM200 ORGANIC CHEMISTRY I 5 Credit Hours Prepared by: Richard A. Pierce Revised by: Sean Birke October, 2013 Ms. Linda Abernathy, Math, Science & Business Division Chair

More information

EASTERN ARIZONA COLLEGE General Chemistry II

EASTERN ARIZONA COLLEGE General Chemistry II EASTERN ARIZONA COLLEGE General Chemistry II Course Design 2013-2014 Course Information Division Science Course Number CHM 152 (SUN# CHM 1152) Title General Chemistry II Credits 4 Developed by Phil McBride,

More information

CHEM 261 HOME WORK Lecture Topics: MODULE 1: The Basics: Bonding and Molecular Structure Text Sections (N0 1.9, 9-11) Homework: Chapter 1:

CHEM 261 HOME WORK Lecture Topics: MODULE 1: The Basics: Bonding and Molecular Structure Text Sections (N0 1.9, 9-11) Homework: Chapter 1: CHEM 261 HOME WORK Lecture Topics: MODULE 1: The Basics: Bonding and Molecular Structure Atomic Structure - Valence Electrons Chemical Bonds: The Octet Rule - Ionic bond - Covalent bond How to write Lewis

More information

Carlson. Organic chemistry 1 lab manual. Butler Community College.

Carlson. Organic chemistry 1 lab manual. Butler Community College. Butler Community College Science, Technology, Engineering, and Math Division Robert Carlson Fall 2003 Textbook Update Fall 2016 COURSE OUTLINE Organic Chemistry I Course Description: CH240. Organic Chemistry

More information

JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II. 5 Credit Hours. Prepared by: Richard A. Pierce. Revised by: Sean Birke October, 2013

JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II. 5 Credit Hours. Prepared by: Richard A. Pierce. Revised by: Sean Birke October, 2013 JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II 5 Credit Hours Prepared by: Richard A. Pierce Revised by: Sean Birke October, 2013 Ms. Linda Abernathy, Math, Science & Business Division Chair

More information

Montgomery County Community College CHE 261 Organic Chemistry I

Montgomery County Community College CHE 261 Organic Chemistry I Montgomery County Community College CHE 261 Organic Chemistry I 4-3-3 COURSE DESCRIPTION: This course covers the nomenclature, structure, properties and reactions of many important classes of organic compounds.

More information

COURSE OUTLINE Last Revised and Approved: 12/10/2010 CHEM ORGANIC CHEMISTRY I Units Total Total Hrs Lab

COURSE OUTLINE Last Revised and Approved: 12/10/2010 CHEM ORGANIC CHEMISTRY I Units Total Total Hrs Lab CHEM 210 - ORGANIC CHEMISTRY I Units Lecture Total Hrs Lecture 3.00 Units Lab 2.00 Units Total 5.00 49.50 Total Hrs Lab 99.00 Total Course Hrs 148.50 COURSE DESCRIPTION This course is the first semester

More information

Prerequisites: CHEM 1312 and CHEM 1112, or CHEM 1412 General Chemistry II (Lecture and Laboratory)

Prerequisites: CHEM 1312 and CHEM 1112, or CHEM 1412 General Chemistry II (Lecture and Laboratory) Course Syllabus CHEM 2423 Organic Chemistry I Revision Date: 8/19/2013 Catalog Description: Fundamental principles of organic chemistry will be studied, including the structure, bonding, properties, and

More information

September 2011 BOTH THEORY AND LABORATORY PARTS OF THIS COURSE MUST BE TAKEN CONCURRENTLY IN ORDER TO RECEIVE CREDIT.

September 2011 BOTH THEORY AND LABORATORY PARTS OF THIS COURSE MUST BE TAKEN CONCURRENTLY IN ORDER TO RECEIVE CREDIT. FARMINGDALE STATE COLLEGE DEPARTMENT OF CHEMISTRY COURSE OUTLINE: COURSE TITLE: Dr. M. De Castro September 2011 Organic Chemistry I COURSE NUMBER: CHM 270 CREDITS: 5 CONTACT HOURS: Lecture: 3 Laboratory:

More information

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320 Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320 I. Isolated, cumulated, and conjugated dienes A diene is any compound with two or C=C's is a diene. Compounds containing more than two

More information

SYLLABUS. Departmental Syllabus. Organic Chemistry I CHEM Departmental Syllabus. Departmental Syllabus. Departmental Syllabus

SYLLABUS. Departmental Syllabus. Organic Chemistry I CHEM Departmental Syllabus. Departmental Syllabus. Departmental Syllabus DATE OF LAST REVIEW: 05/2018 CIP CODE: 24.0101 SYLLABUS SEMESTER: COURSE TITLE: COURSE NUMBER: Organic Chemistry I CHEM-0211 CREDIT HOURS: 3 INSTRUCTOR: OFFICE LOCATION: OFFICE HOURS: TELEPHONE: EMAIL:

More information

CHEMISTRY 231 GENERAL ORGANIC CHEMISTRY I FALL 2014 List of Topics / Examination Schedule

CHEMISTRY 231 GENERAL ORGANIC CHEMISTRY I FALL 2014 List of Topics / Examination Schedule Page 1 of 5 CHEMISTRY 231 FALL 2014 List of Topics / Examination Schedule Unit Starts Topic of Study 20 Aug 2014 STRUCTURE AND BONDING Suggested Reading: Chapter 1 29 Aug 2014 ALKANES & CYCLOALKANES Suggested

More information

Study Time: You should plan to spend about 2 hours studying for each hour of class lecture.

Study Time: You should plan to spend about 2 hours studying for each hour of class lecture. Mercyhurst College Organic Chemistry I ( Sec.1) Winter Term 2013 Chemistry 240 Dr. J. Williams (ex. 2386, 309 Zurn) Department of Chemistry and Biochemistry http://math.mercyhurst.edu/~jwilliams/ Lecture:

More information

Keynotes in Organic Chemistry

Keynotes in Organic Chemistry Keynotes in Organic Chemistry Second Edition ANDREW F. PARSONS Department of Chemistry, University of York, UK Wiley Contents Preface xi 1 Structure and bonding 1 1.1 Ionic versus covalent bonds 1 1.2

More information

COWLEY COLLEGE & Area Vocational Technical School

COWLEY COLLEGE & Area Vocational Technical School COWLEY COLLEGE & Area Vocational Technical School COURSE PROCEDURE FOR Student Level: This course is open to students on the college level in the sophomore year. Catalog Description: CHM4250 - ORGANIC

More information

4. Prerequisites Grade of C or better in Chemistry 201 & Chem. 203 or consent of the department chairperson

4. Prerequisites Grade of C or better in Chemistry 201 & Chem. 203 or consent of the department chairperson 1 Harry S Truman College Master Syllabus Chemistry 205 Organic Chemistry I Active IAI Code CHM 914 1. Title, Number, and Classification Organic Chemistry I 073-0205-1 2. Course Term 16 week Semester or

More information

CHEM ORGANIC CHEMISTRY

CHEM ORGANIC CHEMISTRY BRAZOSPORT COLLEGE LAKE JACKSON, TEXAS SYLLABUS CHEM 2423 - ORGANIC CHEMISTRY CATALOG DESCRIPTION: CHEM 2423 Organic Chemistry I. CIP 4005045203 A study of the nomenclature, classification and reactions

More information

Learning Guide for Chapter 17 - Dienes

Learning Guide for Chapter 17 - Dienes Learning Guide for Chapter 17 - Dienes I. Isolated, conjugated, and cumulated dienes II. Reactions involving allylic cations or radicals III. Diels-Alder Reactions IV. Aromaticity I. Isolated, Conjugated,

More information

DEPARTMENT: Chemistry

DEPARTMENT: Chemistry CODE: CHEM 203 TITLE: Organic Chemistry I INSTITUTE: STEM DEPARTMENT: Chemistry COURSE DESCRIPTION: Students will apply many concepts from general chemistry to a study of organic chemistry. They will be

More information

Syllabus for CHEM 241 Organic Chemistry I, 3CR, Great Basin College

Syllabus for CHEM 241 Organic Chemistry I, 3CR, Great Basin College Syllabus for CHEM 241 Organic Chemistry I, 3CR, Great Basin College Instructor: David Freistroffer Office: Lundberg 109 (in the fishbowl) Phone: 753-2018, but please use email for fastest possible response

More information

Course Outline For: Organic Chemistry I (CHM 270) Credits: 5 Contact Hours: Lecture: 3 Lab: 4

Course Outline For: Organic Chemistry I (CHM 270) Credits: 5 Contact Hours: Lecture: 3 Lab: 4 Course Outline For: Organic Chemistry I (CHM 270) Credits: 5 Contact Hours: Lecture: 3 Lab: 4 NOTE on Laboratory: Both Lecture and Laboratory must be taken simultaneously; separate grades will not be given

More information

CHE 171: Mechanistic Organic Chemistry I

CHE 171: Mechanistic Organic Chemistry I CHE 171: Mechanistic Organic Chemistry I Syllabus, Autumn Quarter 2003 Instructor: Dr. Matthew R. Dintzner Office hours: Mondays 9:00-11:30 AM, Tuesdays 10:00-12:30, or by appointment Office, Lab: O'Connell

More information

Cape Cod Community College

Cape Cod Community College Cape Cod Community College Departmental Syllabus Prepared by the Department of Natural Sciences & Applied Technology Date of Departmental Approval: February 3, 2014 Date Approved by Curriculum and Programs:

More information

PELLISSIPPI STATE TECHNICAL COMMUNITY COLLEGE MASTER SYLLABUS APPLIED ORGANIC CHEMISTRY W/ LAB CHT 2210

PELLISSIPPI STATE TECHNICAL COMMUNITY COLLEGE MASTER SYLLABUS APPLIED ORGANIC CHEMISTRY W/ LAB CHT 2210 PELLISSIPPI STATE TECHNICAL COMMUNITY COLLEGE MASTER SYLLABUS APPLIED ORGANIC CHEMISTRY W/ LAB CHT 2210 Class Hours: 3.0 Credit Hours: 4.0 Laboratory Hours: 3.0 Date Revised: Fall 2001 NOTE: This course

More information

August 10, Prospective Chemistry 5511 Students. SUBJECT: Course Syllabus for Chemistry 5511 Fall 2011

August 10, Prospective Chemistry 5511 Students. SUBJECT: Course Syllabus for Chemistry 5511 Fall 2011 TO: FROM: Prospective Chemistry 5511 Students Peter Gaspar August 10, 2011 SUBJECT: Course Syllabus for Chemistry 5511 Fall 2011 Chemistry 5511 Mechanistic Organic Chemistry is the first semester of a

More information

Homework - Review of Chem 2310

Homework - Review of Chem 2310 omework - Review of Chem 2310 Chapter 1 - Atoms and Molecules Name 1. What is organic chemistry? 2. Why is there an entire one year course devoted to the study of organic compounds? 3. Give 4 examples

More information

Course Syllabus. Department: Science & Technology. Date: April I. Course Prefix and Number: CHM 212. Course Name: Organic Chemistry II

Course Syllabus. Department: Science & Technology. Date: April I. Course Prefix and Number: CHM 212. Course Name: Organic Chemistry II Department: Science & Technology Date: April 2012 I. Course Prefix and Number: CHM 212 Course Name: Organic Chemistry II Course Syllabus Credit Hours and Contact Hours: 5 credit hours and 7 (3:3:1) contact

More information

Exam 1 (Monday, July 6, 2015)

Exam 1 (Monday, July 6, 2015) Chem 231 Summer 2015 Assigned Homework Problems Last updated: Friday, July 24, 2015 Problems Assigned from Essential Organic Chemistry, 2 nd Edition, Paula Yurkanis Bruice, Prentice Hall, New York, NY,

More information

Lecture Notes Chem 51B S. King I. Conjugation

Lecture Notes Chem 51B S. King I. Conjugation Lecture Notes Chem 51B S. King Chapter 16 Conjugation, Resonance, and Dienes I. Conjugation Conjugation occurs whenever p-orbitals can overlap on three or more adjacent atoms. Conjugated systems are more

More information

CHEMISTRY 263 HOME WORK

CHEMISTRY 263 HOME WORK Lecture Topics: CHEMISTRY 263 HOME WORK Module7: Hydrogenation of Alkenes Hydrogenation - syn and anti- addition - hydrogenation of alkynes - synthesis of cis-alkenes -synthesis of trans-alkenes Text sections:

More information

General Glossary. General Glossary

General Glossary. General Glossary General Glossary Absolute configuration The actual three-dimensional structure of a chiral molecule. Absolute configurations are specified verbally by the Cahn-Ingold-Prelog R,S convention and are represented

More information

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will 71. B SN2 stands for substitution nucleophilic bimolecular. This means that there is a bimolecular rate-determining step. Therefore, the reaction will follow second-order kinetics based on the collision

More information

Learning Guide for Chapter 11 - Alkenes I

Learning Guide for Chapter 11 - Alkenes I Learning Guide for Chapter 11 - Alkenes I I. Introduction to alkenes - p 1 bond structure, classifying alkenes, reactivity, physical properties, occurrences and uses, spectroscopy, stabilty II. Unsaturation

More information

Module9. Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy - Chemical shift - Integration of signal area

Module9. Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy - Chemical shift - Integration of signal area 1 CHEMISTRY 263 HOME WORK Lecture Topics: Module7. Hydrogenation of Alkenes The Function of the Catalyst - Syn and anti- addition Hydrogenation of Alkynes - Syn- addition of hydrogen: Synthesis of cis-alkenes

More information

Fundamentals of. Organic Chemistry. for. [Second Year B.Sc. (Main) Students of M.G. University, Kerala] III Semester

Fundamentals of. Organic Chemistry. for. [Second Year B.Sc. (Main) Students of M.G. University, Kerala] III Semester Fundamentals of Organic Chemistry for [Second Year B.Sc. (Main) Students of M.G. University, Kerala] III Semester (This Book is an outcome of Modern Organic Chemistry by M.K. Jain & S.C. Sharma duly recommended

More information

This syllabus is printed on both sides of each page in the hard-copy version.

This syllabus is printed on both sides of each page in the hard-copy version. TO: FROM: Prospective Chemistry 5511 Students Peter Gaspar August 13, 2010 SUBJECT: Course Syllabus for Chemistry 5511 Fall 2010 Chemistry 5511 Mechanistic Organic Chemistry is the first semester of a

More information

Homework for Chapter 17 Chem 2320

Homework for Chapter 17 Chem 2320 Homework for Chapter 17 Chem 2320 I. Cumulated, isolated, and conjugated dienes Name 1. Draw structures which fit the following descriptions. Use correct geometry! a conjugated diene with the formula C

More information

1. What are the respective hybridizations of the atoms numbered 1 to 4 in this compound?

1. What are the respective hybridizations of the atoms numbered 1 to 4 in this compound? CEM 331: Chapter 1/2: Structures (Atoms, Molecules, Bonding) 1. What are the respective hybridizations of the atoms numbered 1 to 4 in this compound? N C 2 C N C 2 C N 1 2 3 4 1: three sigma bonds and

More information

Chemistry PhD Qualifying Exam Paper 1 Syllabus

Chemistry PhD Qualifying Exam Paper 1 Syllabus Chemistry PhD Qualifying Exam Paper 1 Syllabus Preface This document comprises all topics relevant for Paper 1 of the Ph.D. Qualifying Exam in Chemistry at Eastern Mediterranean University, in accordance

More information

Spring Term 2012 Dr. Williams (309 Zurn, ex 2386)

Spring Term 2012 Dr. Williams (309 Zurn, ex 2386) Chemistry 242 Organic Chemistry II Spring Term 2012 Dr. Williams (309 Zurn, ex 2386) Web Page: http://math.mercyhurst.edu/~jwilliams/ jwilliams@mercyhurst.edu (or just visit Department web site and look

More information

Chapter 15: Conjugated Systems, Orbital Symmetry, and UV Spectroscopy

Chapter 15: Conjugated Systems, Orbital Symmetry, and UV Spectroscopy Chapter 15: Conjugated Systems, Orbital Symmetry, and UV Spectroscopy Conjugated unsaturated systems have a p orbital on a carbon adjacent to a double bond The p orbital can come from another double (e.g.

More information

CHEM*2700 ORGANIC CHEMISTRY I (Spring/Summer Semester 2009) Information Sheet and Course Outline

CHEM*2700 ORGANIC CHEMISTRY I (Spring/Summer Semester 2009) Information Sheet and Course Outline CHEM*2700 ORGANIC CHEMISTRY I (Spring/Summer Semester 2009) Information Sheet and Course Outline Instructor: Professor William Tam Office: MacN 332 Phone: 824-4120 (Ext.52268) E-mail: wtam@uoguelph.ca

More information

1. What are the respective hybridizations of the atoms numbered 1 to 4 in this compound?

1. What are the respective hybridizations of the atoms numbered 1 to 4 in this compound? EM 331: hapter 1/2: Structures (Atoms, Molecules, Bonding) 1. What are the respective hybridizations of the atoms numbered 1 to 4 in this compound? N 2 N 2 N 1 2 3 4 2. What hybrid orbitals are used to

More information

COWLEY COLLEGE & Area Vocational Technical School

COWLEY COLLEGE & Area Vocational Technical School COWLEY COLLEGE & Area Vocational Technical School COURSE PROCEDURE FOR ORGANIC CHEMISTRY II CHM 4251 5 Credit Hours Student Level: This course is open to students on the college level in the sophomore

More information

EASTERN ARIZONA COLLEGE Technical Math I

EASTERN ARIZONA COLLEGE Technical Math I EASTERN ARIZONA COLLEGE Technical Math I Course Design 2010-2011 Course Information Division Mathematics Course Number TEC 101 Title Technical Math I Credits 4 Developed by Ray Orr Lecture/Lab Ratio 4

More information

Chem 251 Fall Learning Objectives

Chem 251 Fall Learning Objectives Learning Objectives Chapter 8 (last semester) 1. Write an electron-pushing mechanism for an SN2 reaction between an alkyl halide and a nucleophile. 2. Describe the rate law and relative rate of reaction

More information

2/26/18. Practice Questions. Practice Questions B F. How many steps are there in this reaction?

2/26/18. Practice Questions. Practice Questions B F. How many steps are there in this reaction? Practice Questions Practice Questions D B F C E A G How many steps are there in this reaction? 1 Practice Questions D B F C E A G What is the highest-energy transitions state? Practice Questions D B F

More information

DEPARTMENT: Chemistry

DEPARTMENT: Chemistry CODE CHEM 204 TITLE: Organic Chemistry II INSTITUTE: STEM DEPARTMENT: Chemistry COURSE DESCRIPTION: A continuation of CHEM-203, students will extend their studies into topics including aromatic hydrocarbons,

More information

CHEMISTRY 341. Final Exam Tuesday, December 16, Problem 1 15 pts Problem 9 8 pts. Problem 2 5 pts Problem pts

CHEMISTRY 341. Final Exam Tuesday, December 16, Problem 1 15 pts Problem 9 8 pts. Problem 2 5 pts Problem pts CEMISTRY 341 Final Exam Tuesday, December 16, 1997 Name NAID Problem 1 15 pts Problem 9 8 pts Problem 2 5 pts Problem 10 21 pts Problem 3 26 pts Problem 11 15 pts Problem 4 10 pts Problem 12 6 pts Problem

More information

Conjugated Systems. With conjugated double bonds resonance structures can be drawn

Conjugated Systems. With conjugated double bonds resonance structures can be drawn Conjugated Systems Double bonds in conjugation behave differently than isolated double bonds With conjugated double bonds resonance structures can be drawn With isolated double bonds cannot draw resonance

More information

Organic Chemistry Curriculum Content Outline

Organic Chemistry Curriculum Content Outline Organic Chemistry 2014-15 Curriculum Content Outline CHEM 0203: Organic Structure and Reactivity 1. Structure & Bonding (Brief Review from General Chemistry) a. Ionic & Covalent Bonding b. Lewis Structures

More information

1. Provide a correct name for each compound below. (12 points)

1. Provide a correct name for each compound below. (12 points) Page 1 of 8 I. Nomenclature 1. Provide a correct name for each compound below. (12 points) II. Theory 1. UV spectroscopy measures the energy required to promote an electron from the molecular orbital to

More information

CHAPTER 9 THEORY OF RESONANCE BY, G.DEEPA

CHAPTER 9 THEORY OF RESONANCE BY, G.DEEPA CHAPTER 9 THEORY OF RESONANCE BY, G.DEEPA Conjugation in Alkadienes and Allylic Systems conjugation a series of overlapping p orbitals The Allyl Group allylic position is the next to a double bond 1 allyl

More information

Acid-Base -Bronsted-Lowry model: -Lewis model: -The more equilibrium lies to the right = More [H 3 O + ] = Higher K a = Lower pk a = Stronger acid

Acid-Base -Bronsted-Lowry model: -Lewis model: -The more equilibrium lies to the right = More [H 3 O + ] = Higher K a = Lower pk a = Stronger acid Revision Hybridisation -The valence electrons of a Carbon atom sit in 1s 2 2s 2 2p 2 orbitals that are different in energy. It has 2 x 2s electrons + 2 x 2p electrons are available to form 4 covalent bonds.

More information

Organic Chemistry I and II challenge exam

Organic Chemistry I and II challenge exam Organic Chemistry I and II challenge exam Dear student: Organic Chemistry I and II at LCSC covers the standard one year organic curriculum and students take the two-semester ACS exam as their spring final.

More information

The Final Learning Experience

The Final Learning Experience Chemistry 210 Organic Chemistry I Fall Semester 2000 Dr. Rainer Glaser Examination #5 Reactions of Alcohols and Related Reactions The Final Learning Experience Wednesday, December 20, 2000, 1:00-3:00 Name:

More information

Upon successful completion of this course, the student will be able to:

Upon successful completion of this course, the student will be able to: CHEM 244 PRINCIPLES OF ORGANIC CHEMISTRY I FOR CHEMICAL ENGINEERING STUDENTS, COLLEGE OF ENGINEERING PRE-REQUISITES COURSE; CHEM 101 CREDIT HOURS; 2 (2+0) Dr. Mohamed El-Newehy Chemistry Department, College

More information

CHEMISTRY MAJOR PANEL

CHEMISTRY MAJOR PANEL CHEMISTRY MAJOR PANEL Course Approval Criteria Updated Spring 17 5/17/17 An institutionally-approved representative syllabus in electronic format from a recent offering is required for the panel to review.

More information

EASTERN ARIZONA COLLEGE Fundamental Chemistry

EASTERN ARIZONA COLLEGE Fundamental Chemistry EASTERN ARIZONA COLLEGE Fundamental Chemistry Course Design 2018-2019 Course Information Division Science Course Number CHM 130 (SUN# CHM 1130) Title Fundamental Chemistry Credits 4 Developed by Joel Shelton

More information

Fundamentals of Organic Chemistry

Fundamentals of Organic Chemistry Fundamentals of Organic Chemistry CHEM 109 For Students of Health Colleges Credit hrs.: (2+1) King Saud University College of Science, Chemistry Department CHEM 109 CHAPTER 3. AROMATIC HYDROCARBONS Aromatic

More information

Calculate a rate given a species concentration change.

Calculate a rate given a species concentration change. Kinetics Define a rate for a given process. Change in concentration of a reagent with time. A rate is always positive, and is usually referred to with only magnitude (i.e. no sign) Reaction rates can be

More information

ORGANIC CHEMISTRY. Fifth Edition. Stanley H. Pine

ORGANIC CHEMISTRY. Fifth Edition. Stanley H. Pine ORGANIC CHEMISTRY Fifth Edition Stanley H. Pine Professor of Chemistry California State University, Los Angeles McGraw-Hill, Inc. New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London

More information

CHEM120 - ORGANIC CHEMISTRY WORKSHEET 1

CHEM120 - ORGANIC CHEMISTRY WORKSHEET 1 EM120 - RGANI EMISTRY WRKSEET 1 Some of the objectives To understand and know the hybridization concept Be able to distinguish different geometries, including basic bond lengths and angles within organic

More information

Organic Chemistry 112 A B C - Syllabus Addendum for Prospective Teachers

Organic Chemistry 112 A B C - Syllabus Addendum for Prospective Teachers Chapter Organic Chemistry 112 A B C - Syllabus Addendum for Prospective Teachers Ch 1-Structure and bonding Ch 2-Polar covalent bonds: Acids and bases McMurry, J. (2004) Organic Chemistry 6 th Edition

More information

Preparation of alkenes

Preparation of alkenes Lecture 11 אלקנים הכנה ותגובות של אלקנים: הידרוגנציה, סיפוח הידרוהלוגנים )כלל מארקובניקוב(, סיפוח הלוגנים והסטראוכימיה של תוצרי הסיפוח, הידרובורציה, אפוקסידציה, אוזונוליזה. 1 Preparation of alkenes 1.

More information

Exam 1 show all work!!

Exam 1 show all work!! Name: Exam 1 show all work!! September 25, 2009 Exam 1 is worth 10% of your grade (50 points). You are allowed to use one 3 x5 index card for notes, a pka table, the trends, tools, etc. handout, and a

More information

Final Exam. Your lab section and TA name: (if you are not in a lab section write no lab ) Instructions:

Final Exam. Your lab section and TA name: (if you are not in a lab section write no lab ) Instructions: CHEM 232 Final Exam May 10, 2014 RedID number: Signature: Your lab section and TA name: (if you are not in a lab section write no lab ) Instructions: 1. In fairness to all, do not open this test until

More information

Classes of Alkenes. Alkenes and Alkynes. Saturated compounds (alkanes): Have the maximum number of hydrogen atoms attached to each carbon atom.

Classes of Alkenes. Alkenes and Alkynes. Saturated compounds (alkanes): Have the maximum number of hydrogen atoms attached to each carbon atom. Alkenes and Alkynes Saturated compounds (alkanes): ave the maximum number of hydrogen atoms attached to each carbon atom. Unsaturated compounds: ave fewer hydrogen atoms attached to the carbon chain than

More information

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS)

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS) Reactions of Aromatic Compounds Reading: Wade chapter 17, sections 17-1- 17-15 Study Problems: 17-44, 17-46, 17-47, 17-48, 17-51, 17-52, 17-53, 17-59, 17-61 Key Concepts and Skills: Predict and propose

More information

2016 Pearson Education, Inc. Isolated and Conjugated Dienes

2016 Pearson Education, Inc. Isolated and Conjugated Dienes 2016 Pearson Education, Inc. Isolated and Conjugated Dienes 2016 Pearson Education, Inc. Reactions of Isolated Dienes 2016 Pearson Education, Inc. The Mechanism Double Bonds can have Different Reactivities

More information

CHAPTER 3 ALKENES, ALKYNES & CONJUGATE DIENES

CHAPTER 3 ALKENES, ALKYNES & CONJUGATE DIENES CHEM 244 PRINCIPLES OF ORGANIC CHEMISTRY I FOR CHEMICAL ENGINEERING STUDENTS, COLLEGE OF ENGINEERING PRE-REQUISITES COURSE; CHEM 101 CREDIT HOURS; 2 (2+0) Dr. Mohamed El-Newehy Chemistry Department, College

More information

CHEM2410 Organic Chemistry I - Honors

CHEM2410 Organic Chemistry I - Honors CHEM2410 Organic Chemistry I - Honors The University of Toledo Department of Chemistry and Biochemistry College of Natural Sciences and Mathematics CRN: 49264/49268 (Sect. 091/092) Instructor: Dr. Peter

More information

PELLISSIPPI STATE TECHNICAL COMMUNITY COLLEGE MASTER SYLLABUS ORGANIC CHEMISTRY I CHEM Class Hours: 3.0 Credit Hours: 4.0

PELLISSIPPI STATE TECHNICAL COMMUNITY COLLEGE MASTER SYLLABUS ORGANIC CHEMISTRY I CHEM Class Hours: 3.0 Credit Hours: 4.0 PELLISSIPPI STATE TECHNICAL COMMUNITY COLLEGE MASTER SYLLABUS ORGANIC CHEMISTRY I CHEM 2010 Class Hours: 3.0 Credit Hours: 4.0 Laboratory Hours: 1.0 Date Revised: Fall 2001 Catalog Course Description:

More information

Benzene and Aromatic Compounds

Benzene and Aromatic Compounds 1 Background Benzene and Aromatic Compounds Benzene (C 6 H 6 ) is the simplest aromatic hydrocarbon (or arene). Benzene has four degrees of unsaturation, making it a highly unsaturated hydrocarbon. Whereas

More information

EASTERN ARIZONA COLLEGE Intermediate Algebra

EASTERN ARIZONA COLLEGE Intermediate Algebra EASTERN ARIZONA COLLEGE Intermediate Algebra Course Design 2017-2018 Course Information Division Mathematics Course Number MAT 120 Title Intermediate Algebra Credits 4 Developed by Cliff Thompson Lecture/Lab

More information

REACTIONS OF AROMATIC COMPOUNDS

REACTIONS OF AROMATIC COMPOUNDS A STUDENT SHOULD BE ABLE TO: REACTIONS OF AROMATIC COMPOUNDS 1. Predict the product(s) of Electrophilic aromatic substitution (EAS): halogenation, sulfonation, nitration, Friedel- Crafts alkylation and

More information

1. Which of the following compounds is the weakest base?

1. Which of the following compounds is the weakest base? I. Multiple-choice Questions Fall 2018 1. Which of the following compounds is the weakest base? a. C3C2 b. C3C2 c. N3 d. C3 e. N2 2. Which of the following functional groups is indicated by a strong and

More information

Chapter 8: Chemistry of Alkynes (C n H 2n-2 )

Chapter 8: Chemistry of Alkynes (C n H 2n-2 ) hapter 8: hemistry of Alkynes ( n 2n-2 ) Bonding & hybridization Both are sp-hybridized Bond angles = 180 o 1 σ + 2 π bonds Linear around lassification R R R' σ bond energy: 88 kcal/mol π bond energy:

More information

EASTERN ARIZONA COLLEGE Fundamental Organic Chemistry

EASTERN ARIZONA COLLEGE Fundamental Organic Chemistry EASTERN ARIZONA COLLEGE Fundamental Organic Chemistry Course Design 2013-2014 Course Information Division Science Course Number CHM 230 (SUN# CHM 2230) Title Fundamental Organic Chemistry Credits 4 Developed

More information

CHEM*2700 ORGANIC CHEMISTRY I (Spring/Summer Semester 2010) Information Sheet and Course Outline

CHEM*2700 ORGANIC CHEMISTRY I (Spring/Summer Semester 2010) Information Sheet and Course Outline CHEM*2700 ORGANIC CHEMISTRY I (Spring/Summer Semester 2010) Information Sheet and Course Outline Instructor: Professor William Tam Office: MacN 332 Phone: 824-4120 (Ext.52268) E-mail: wtam@uoguelph.ca

More information

More Tutorial at

More Tutorial at 1. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question (50 pts). 1) Which of the following statements about propene, CH3CH CH2, is 1) correct? A) There

More information

About the GRE Chemistry Subject Test p. 1 About the GRE Chemistry Subject Test GRE Chemistry Topics Test Dates Testing Fee Test Format Testing Time

About the GRE Chemistry Subject Test p. 1 About the GRE Chemistry Subject Test GRE Chemistry Topics Test Dates Testing Fee Test Format Testing Time About the GRE Chemistry Subject Test p. 1 About the GRE Chemistry Subject Test GRE Chemistry Topics Test Dates Testing Fee Test Format Testing Time Scoring To Guess or Not to Guess On the Day of the Test

More information

Aromatic Compounds II

Aromatic Compounds II 2302272 Org Chem II Part I Lecture 2 Aromatic Compounds II Instructor: Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th Recommended Textbook: Chapter 17 in Organic Chemistry, 8 th Edition, L.

More information

Hyperlearning MCAT Instructor Qualifying Exam Organic Chemistry

Hyperlearning MCAT Instructor Qualifying Exam Organic Chemistry Hyperlearning MCAT Instructor Qualifying Exam Organic Chemistry 30 Questions (5 pages); Time limit = 45 minutes Use of books or notes is not permitted. 1. When analyzed with a polarimeter, which of the

More information

ST. JOSEPH S COLLEGE OF ARTS & SCIENCE (AUTONOMOUS) ST. JOSEPH S COLLEGE ROAD, CUDDALORE CH101T ORGANIC CHEMISTRY I (SEMESTER-I)

ST. JOSEPH S COLLEGE OF ARTS & SCIENCE (AUTONOMOUS) ST. JOSEPH S COLLEGE ROAD, CUDDALORE CH101T ORGANIC CHEMISTRY I (SEMESTER-I) UNIT I 1. The hybridization involved in the formation of acetylene is a) sp b) sp 2 c) sp 3 d) sp 3 d 2. The IUPAC name of is 1. 3-hexene b) 4-hexene c) 3-hexyne d) 4-hexyne 3. -------- is the type of

More information

(2) Read each statement carefully and pick the one that is incorrect in its information.

(2) Read each statement carefully and pick the one that is incorrect in its information. Organic Chemistry - Problem Drill 17: IR and Mass Spectra No. 1 of 10 1. Which statement about infrared spectroscopy is incorrect? (A) IR spectroscopy is a method of structure determination based on the

More information

Course Information. Instructor Information

Course Information. Instructor Information Jordan University of Science and Technology Department of Chemistry Course Syllabus Fall 2018/2019 Course Information Course Number: CHEM 108 Course Name: General and Organic Chemistry Credit Hours: 4

More information