Spring Term 2012 Dr. Williams (309 Zurn, ex 2386)

Size: px
Start display at page:

Download "Spring Term 2012 Dr. Williams (309 Zurn, ex 2386)"

Transcription

1 Chemistry 242 Organic Chemistry II Spring Term 2012 Dr. Williams (309 Zurn, ex 2386) Web Page: (or just visit Department web site and look for Dr. Williams!) Lecture: Monday, Wednesday, Friday 9:40-11:10 (Zurn 313) Required Material: Organic Chemistry: John McMurry (5th Ed. or later, Thomson, Brooks/Cole) ISBN: ) Virtual Textbook of Organic Chemistry Course Objectives: Upon successful completion of this course the student should be able to: 1. Use the IUPAC system of nomenclature and parts of the common naming system. 2. Interpret reactions using appropriate mechanisms. 3. Predict the products of chemical reactions relating to topics covered. 4. Write chemical reactions as demonstrated by the use of synthesis problems. 5. Use spectroscopy methods to aid in the interpretation of molecular structure as a result of lecture and laboratory study. 6. Be able to predict nmr spectra of simple 7. Be able to interpret nmr, ir and mass spectral data and draw possible structures corresponding to this interpretation. 8. Have an understanding of the theory of ftnmr, ftir and gcms. Content Outline & Competencies: I. Structure Determination by Spectroscopy A. Mass spectroscopy 1. Use mass spectroscopy data to interpret molecular structure. 2. Interpret mass spectral fragmentation patterns. 3. Use mass spectra to determine molecular weights and base peaks and to distinguish between hydrocarbons. 4. Write molecular formulas corresponding to a given molecular ion. B. Infrared spectroscopy 1. Identify the regions of the electromagnetic spectrum used for infrared spectroscopy. 2. Relate energy, frequency and wavelength for electromagnetic radiation to infrared spectroscopy. 3. Interpret infrared spectra relating to functional groups in 4. Interpret infrared spectra for hydrocarbons. C. Nuclear magnetic resonance spectroscopy 1. Describe how NMR signals are obtained. 2. Interpret chemical shift patterns relating to chemical structure. 3. Interpret 1H NMR peak areas using integration techniques in relationship to proton counting. 4. Use spin-spin splitting of 1H NMR signals to interpret molecular structure in 5. Relate and use the number of 1H NMR absorptions to proton equivalency in a molecule. 6. Relate and use chemical shifts in 1H NMR spectroscopy to determine chemical structure in organic molecules. 7. Use 1H NMR spectra to determine the chemical structure of a compound.

2 8. Interpret 13C NMR spectroscopy relating to functional groups in 9. State the uses of 1H NMR spectra. II. Benzene and Aromaticity 1. State sources of aromatic hydrocarbons. 2. Name by IUPAC and draw structures for aromatic compounds. 3. Recognize and be able to use the names and structures for toluene, phenol, aniline, acetophenone, benzaldehyde and benzoic acid. 4. Explain how Kekule accounted for the unusual properties of benzene. 5. Use thermodynamic data to show that benzene is more stable than the hypothetical compound 1,3,5-cyclohexatriene. 6. Compare the reactivity of benzene to cyclohexene. 7. List the four postulates of resonance theory. 8. Use molecular orbital (MO) theory to describe the bonding in benzene and other aromatic compounds. 9. Relate aromaticity to Huckel's rule and MO theory. 10. Predict aromaticity of heterocylic compounds. 11. Predict aromaticity of ions. 12. Describe the bonding in polycyclic aromatic hydrocarbons. 13. Identify the spectroscopic regions of the IR for aromatic compounds for use in structural determination of 14. Apply the theory of resonance to show the unusual stability of the allyl radical and other conjugated pi-bonded species. 15. Explain the unusual stability of the allyl radical and other conjugated pi-bonded species in terms of molecular orbital theory. 16. Compare and contrast kinetic and thermodynamic control of 1,2- and 1,4-addition reactions of conjugated dienes. III. Chemistry of Benzene: Electrophilic Aromatic Substitution 1. Draw and explain the general mechanism for electrophilic aromatic substitution. 2. Predict the products and/or write mechanisms for electrophilic aromatic substitution reactions studied. 3. Use the above listed reactions in synthesis. 4. Explain how substituents affect the reactivity of aromatic rings. 5. Discuss ortho-para and meta directors, giving some characteristics and examples of each. 6. Predict the orientation of incoming groups in disubstituted benzene rings. 7. Predict the orientation of incoming groups in trisubstituted benzene rings. 8. Recognize the conditions necessary for nucleophilic aromatic substitution to occur. 9. Draw and explain the addition-elimination mechanism and the elimination-addition mechanism in nucleophilic aromatic substitution reactions. 10. Use oxidation reactions of aromatic compounds. 11. Use reduction reactions of aromatic compounds. 12. Identify the difference in reactivity between the aromatic ring and a substituted side-chain in oxidation and radical bromination reactions. 13. Use the reactions learned for electrophilic aromatic substitution to work synthesis problems. IV. Alcohols and Thiols 1. Name by IUPAC and draw structures for alcohols. 2. Identify sources and uses of simple alcohols. 3. Compare the physical properties of alcohols to alkanes and alkyl halides. 4. Show how to use acid-base reactions to prepare alkoxide ions. 5. Show how alcohols are prepared from alkenes, aldehydes, ketones, esters and carboxylic acids. 6. Prepare alcohols from reduction of carbonyl groups.

3 7. Show how the Grignard reaction can be used to make primary, secondary or tertiary alcohols. 8. Describe the limitations of the use of the Grignard reaction in synthesis or organic compounds. 9. Show how alkenes, alkyl halides and tosylates can be prepared from alcohols. 10. Show how alcohols may be oxidized to carbonyl compounds. 11. Use the alcohol reactions studied in synthesis reactions. 12. Discuss the use of protecting groups in organic synthesis. 13. Identify the spectroscopic regions of the IR for use in structural determination of 14. Describe the similarities of thiols to alcohols. V. Ethers, Epoxides and Sulfides 1. Name by IUPAC and draw structures for ethers. 2. Compare the physical properties of ethers to alkanes of comparable molecular weights. 3. Describe the industrial preparation of ethers. 4. Prepare ethers via the Williamson ether synthesis. 5. Prepare ethers via alkoxymercuration-demercuration of alkenes. 6. Predict the products formed in an acid-induced cleavage of an ether. 7. Name cyclic ethers: epoxides. 8. Show by equations how epoxides are produced. 9. Show the mechanism and predict the product formed (with correct stereochemistry) in the acid-catalyzed and base-catalyzed ring opening reactions of epoxides. 10. Use the ether and epoxide reactions studied in synthesis. 11. Discuss the use of crown ethers in organic synthesis. 12. Identify the Spectroscopic regions of the IR for ethers and epoxides for use in structural determination of 13. Describe the similarities of sulfides to ethers. VI. Aldehydes and Ketones: Nucleophilic Addition Reactions 1. Compare the physical properties of aldehydes and ketones to alkanes and alcohols of comparable molecular weights. 2. Name by IUPAC and draw structures for aldehydes and ketones. 3. Recognize and use the following common names: formaldehyde, acetaldehyde and ketones. 4. Show the general mechanism for nucleophilic addition at the carbonyl group. 5. Show by equations the preparation of aldehydes and ketones. 6. Show by reactions how aldehydes and ketones react with oxidizing and reducing agents. 7. Predict the products of nucleophilic addition reactions with a variety of reagents studied for aldehydes and ketones. 8. Use the above listed reactions in synthesis. 9. Identify the spectroscopic regions of the IR for aldehydes and ketones for use in structural determination of VII. Carboxylic Acids 1. Name by IUPAC and draw structures for both mono and dicarboxylic acids. 2. Recognize and use the following common names: formic acid, acetic acid, benzoic acid and oxalic acid. 3. Discuss the structure and physical properties of carboxylic acids. 4. Discuss the acidity of carboxylic acids and the factors that affect the stability of the carboxylate anion. 5. Discuss substituent effects on acidity of benzoic acids and substituted benzoic acids. 6. Show by equations the preparation of carboxylic acids. 7. Predict the products of reactions of carboxylic acids. 8. Predict the products of reduction of carboxylic acids to primary alcohols. 9. Use the carboxylic reactions studied in synthesis. 10. Identify the spectroscopic regions of the IR for carboxylic acids for use in structural determination of

4 VIII. Carboxylic Acid Derivatives and Nucleophilic Acyl Substitution Reactions 1. Name by IUPAC convention and draw structures for acid halides, acid anhydrides, amides, esters and nitriles. 2. Recognize and use the following common names: acetyl chloride, acetic anhydride, acetamide and acetonitrile. 3. Show the general mechanism for nucleophilic acyl substitution. 4. Predict the products of carboxylic acid derivative reactions. 5. Predict the products of nucleophilic acyl substitution reactions of carboxylic acid derivatives studied and be able to use those reactions in synthesis problems. 6. Use the carboxylic acid derivative reactions studied in synthesis. 7. Identify the spectroscopic regions of the IR for carboxylic acid derivatives for use in structural determination of IX. Carbonyl Alpha-Substitution Reactions 1. Show keto-enol tautomerism in carbonyl compounds. 2. Show how tautomerism differs from resonance. 3. Illustrate the mechanism of alpha-substitution reactions. 4. Predict the products of carbonyl alpha-substitution reactions studied and be able to use those reactions in synthesis. 5. Describe the acidity of alpha-hydrogen atoms: enolate ion formation. 6. Predict the reactivity of enolate ions. X. Carbonyl Condensation Reactions 1. Show the general mechanism of carbonyl condensation reactions. 2. Predict the products of condensation reactions of aldehydes and ketones: the aldol reaction. 3. Describe the difference of carbonyl condensation reactions versus alpha-substitution reactions. 4. Identify aldol products. 5. Identify mixed aldol products. 6. Identify intramolecular aldol products. 7. Predict the products of reactions studied that are similar to the aldol condensation reaction. 8. Use the condensation reactions studied in synthesis. XI. Aliphatic Amines 1. Name by IUPAC and draw structures for amines. 2. Discuss structure and bonding in amines. 3. Relate physical properties of amines to structure. 4. Discuss basicity of amines in terms of their structure. 5. Compare the basicity of amines to amides. 6. State industrial sources and uses of alkylamines. 7. Show by equations reactions of amines. 8. Use reactions to synthesize amines. 9. Identify the spectroscopic regions of the IR for amines for use in structural determination of organic molecules. XII. Arylamines and Phenols 1. Explain why alkyl amines are more basic than arylamines. 2. Show how to prepare arylamines. 3. Predict the products of reactions of arylamines. 4. Use the replacement reactions of arenediazonium salts in synthesis.

5 5. Show how diazonium salts can be used in coupling reactions. 6. State industrial uses of phenols. 7. Explain the acidity of phenols in terms of their structure. 8. Show by reactions the preparation of phenols. 9. Predict the products of reactions of phenols. 10. Use reactions of phenols to solve synthesis problems. 11. Recognize the spectroscopic regions of the IR for arylamines and phenols for use in structural determination of Caveats: 1. Computer Literacy Expectations: Students will need basic word processing and Internet searching skills for the completion of some papers, exercises and projects. 2. Students entering physical science classes should be aware that they may be in close contact with potentially hazardous chemicals and equipment. Student must assume responsibility in conducting himself or herself in a manner to minimize such hazards. Methods of Evaluation of Competencies: Evaluation of student mastery of course competencies will be accomplished using the following methods: All exams will be taken in class (no take home exams will be given) Exam #1, #2, Final Exam 300 pts. Total. Bonus 4 %. Grading Scale: A = 93% 100% B+ = 89% 92.9%: B = 80% %: C+ = %: C = 70% %: D+ = 65% %: D = 60% 64.9%: F = %: Office Hours: TBA Class Attendance: I will take attendance for about ten to twenty classes, so each class is worth between 0.2% and 0.1% Notice: Bonus Points This is a % in that they are added to your total %. For example: A student attends all classes for a total of 4% Bonus. If the total from exams for this student where 87% the course grade would be calculated as 87% + 4% = 91%. So the final grade would be a B+. With no bonus points the grade would have been a B. Notes: 1. Missed exams count ZERO points, NO make-up exams. 2. If you have a question about your final grade you should see me as soon as possible. Exams and records are only kept for a period of 2 months after final grades are distributed. 3. If you are a student with a disability, and if you will be requesting accommodations, it is your responsibility to contact the Director of the Learning Differences Program. The Learning Differences Office will recommend any appropriate accommodations to your professor and his/her director. The professor and director will identify for you which accommodations will be arranged. Mercyhurst College provides a range of services to allow persons with disabilities to participate in educational programs and activities. If you desire support services contact the office of Learning Differences (814) The Learning Differences Office is located in room 314 Main.

6 Tentative Lecture Outline DATE TOPIC TEXT CHAPTER March 5,7,9 Organic I Review FTIR, FTNMR, MS Chapter 12,13 March 12,14,16 Conjugated Dienes and Ultraviolet Spectroscopy Chapter 14 Benzene and Aromaticity Chapter 15 March 19,21,23* Electrophilic Aromatic Substitution Chapter 16 Alcohols and Phenols Chapter 17 March 26,28,30 Ethers, Epoxides, and Sulfides Chapter 18 Aldehydes and Ketones Chapter 19 April 2,4 Carboxylic Acids and Nitriles Chapter 20 April 6-9 No Class Easter Break April 11,13* Carboxylic Acid Derivatives Chapter 21 April 16,18,20 Carbonyl Alpha Substitution Reactions Chapter 22 April 23,25,27 Carbonyl Condensation Reactions Chapter 23 April 30, May 2,4 Amines Chapter 24 May 7,9,11 Carbohydrates Chapter 25 See Final Exam Schedule for Time and Date of Final Exam *Tentative Exam Dates

JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II. 5 Credit Hours. Prepared by: Richard A. Pierce

JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II. 5 Credit Hours. Prepared by: Richard A. Pierce JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II 5 Credit Hours Prepared by: Richard A. Pierce Revised Date: January 2008 by Ryan H. Groeneman Arts & Science Education Dr. Mindy Selsor, Dean

More information

Study Time: You should plan to spend about 2 hours studying for each hour of class lecture.

Study Time: You should plan to spend about 2 hours studying for each hour of class lecture. Mercyhurst College Organic Chemistry I ( Sec.1) Winter Term 2013 Chemistry 240 Dr. J. Williams (ex. 2386, 309 Zurn) Department of Chemistry and Biochemistry http://math.mercyhurst.edu/~jwilliams/ Lecture:

More information

KOT 222 Organic Chemistry II

KOT 222 Organic Chemistry II KOT 222 Organic Chemistry II Course Objectives: 1) To introduce the chemistry of alcohols and ethers. 2) To study the chemistry of functional groups. 3) To learn the chemistry of aromatic compounds and

More information

JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II. 5 Credit Hours. Prepared by: Richard A. Pierce. Revised by: Sean Birke October, 2013

JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II. 5 Credit Hours. Prepared by: Richard A. Pierce. Revised by: Sean Birke October, 2013 JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II 5 Credit Hours Prepared by: Richard A. Pierce Revised by: Sean Birke October, 2013 Ms. Linda Abernathy, Math, Science & Business Division Chair

More information

DEPARTMENT: Chemistry

DEPARTMENT: Chemistry CODE CHEM 204 TITLE: Organic Chemistry II INSTITUTE: STEM DEPARTMENT: Chemistry COURSE DESCRIPTION: A continuation of CHEM-203, students will extend their studies into topics including aromatic hydrocarbons,

More information

CHEMISTRY 263 HOME WORK

CHEMISTRY 263 HOME WORK Lecture Topics: CHEMISTRY 263 HOME WORK Module7: Hydrogenation of Alkenes Hydrogenation - syn and anti- addition - hydrogenation of alkynes - synthesis of cis-alkenes -synthesis of trans-alkenes Text sections:

More information

Module9. Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy - Chemical shift - Integration of signal area

Module9. Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy - Chemical shift - Integration of signal area 1 CHEMISTRY 263 HOME WORK Lecture Topics: Module7. Hydrogenation of Alkenes The Function of the Catalyst - Syn and anti- addition Hydrogenation of Alkynes - Syn- addition of hydrogen: Synthesis of cis-alkenes

More information

Course Syllabus. Department: Science & Technology. Date: April I. Course Prefix and Number: CHM 212. Course Name: Organic Chemistry II

Course Syllabus. Department: Science & Technology. Date: April I. Course Prefix and Number: CHM 212. Course Name: Organic Chemistry II Department: Science & Technology Date: April 2012 I. Course Prefix and Number: CHM 212 Course Name: Organic Chemistry II Course Syllabus Credit Hours and Contact Hours: 5 credit hours and 7 (3:3:1) contact

More information

Keynotes in Organic Chemistry

Keynotes in Organic Chemistry Keynotes in Organic Chemistry Second Edition ANDREW F. PARSONS Department of Chemistry, University of York, UK Wiley Contents Preface xi 1 Structure and bonding 1 1.1 Ionic versus covalent bonds 1 1.2

More information

FARMINGDALE STATE COLLEGE DEPARTMENT OF CHEMISTRY. CONTACT HOURS: Lecture: 3 Laboratory: 4

FARMINGDALE STATE COLLEGE DEPARTMENT OF CHEMISTRY. CONTACT HOURS: Lecture: 3 Laboratory: 4 FARMINGDALE STATE COLLEGE DEPARTMENT OF CHEMISTRY COURSE OUTLINE: COURSE TITLE: Prepared by: Dr. M. DeCastro September 2011 Organic Chemistry II COURSE NUMBER: CHM 271 CREDITS: 5 CONTACT HOURS: Lecture:

More information

Cape Cod Community College

Cape Cod Community College Cape Cod Community College Departmental Syllabus Prepared by the Department of Natural Sciences & Applied Technology Date of Departmental Approval: February 3, 2014 Date Approved by Curriculum and Programs:

More information

ORGANIC CHEMISTRY. Fifth Edition. Stanley H. Pine

ORGANIC CHEMISTRY. Fifth Edition. Stanley H. Pine ORGANIC CHEMISTRY Fifth Edition Stanley H. Pine Professor of Chemistry California State University, Los Angeles McGraw-Hill, Inc. New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London

More information

Organic Chemistry 112 A B C - Syllabus Addendum for Prospective Teachers

Organic Chemistry 112 A B C - Syllabus Addendum for Prospective Teachers Chapter Organic Chemistry 112 A B C - Syllabus Addendum for Prospective Teachers Ch 1-Structure and bonding Ch 2-Polar covalent bonds: Acids and bases McMurry, J. (2004) Organic Chemistry 6 th Edition

More information

Sul Ross State University Syllabus for Organic Chemistry II: CHEM 3408 (Spring 2017)

Sul Ross State University Syllabus for Organic Chemistry II: CHEM 3408 (Spring 2017) Sul Ross State University Syllabus for Organic Chemistry II: CHEM 3408 (Spring 2017) Class: Organic Chemistry II Instructor: Dr. David J. Leaver Room: WSB 307 Office: WSB 318 Time: MWF 9:00-9:50am Office

More information

Amines Reading Study Problems Key Concepts and Skills Lecture Topics: Amines: structure and nomenclature

Amines Reading Study Problems Key Concepts and Skills Lecture Topics: Amines: structure and nomenclature Amines Reading: Wade chapter 19, sections 19-1-19-19 Study Problems: 19-37, 19-39, 19-40, 19-41, 19-44, 19-46, 19-47, 19-48, 19-51, 19-54 Key Concepts and Skills: Explain how the basicity of amines varies

More information

CHEM2077 HONORS ORGANIC CHEMISTRY SYLLABUS

CHEM2077 HONORS ORGANIC CHEMISTRY SYLLABUS CHEM2077 HONORS ORGANIC CHEMISTRY SYLLABUS 1. STRUCTURE AND BONDING a] Atomic structure and bonding b] Hybridization and MO Theory c] Drawing chemical structures 2. POLAR COVALENT BONDS: ACIDS AND BASES

More information

ORGANIC CHEMISTRY. Wiley STUDY GUIDE AND SOLUTIONS MANUAL TO ACCOMPANY ROBERT G. JOHNSON JON ANTILLA ELEVENTH EDITION. University of South Florida

ORGANIC CHEMISTRY. Wiley STUDY GUIDE AND SOLUTIONS MANUAL TO ACCOMPANY ROBERT G. JOHNSON JON ANTILLA ELEVENTH EDITION. University of South Florida STUDY GUIDE AND SOLUTIONS MANUAL TO ACCOMPANY ORGANIC CHEMISTRY ELEVENTH EDITION T. W. GRAHAM SOLOMONS University of South Florida CRAIG B. FRYHLE Pacific Lutheran University SCOTT A. SNYDER Columbia University

More information

Alabama Department of Postsecondary Education

Alabama Department of Postsecondary Education Date Adopted: July 1, 1998 Date Reviewed: December 1, 1999 Date Revised: 1999, 2007, 2011 Alabama Department of Postsecondary Education Representing Alabama s Public Two-Year College System Jefferson State

More information

Course Syllabus. Department: Science & Technology. Date: April I. Course Prefix and Number: CHM 211. Course Name: Organic Chemistry I

Course Syllabus. Department: Science & Technology. Date: April I. Course Prefix and Number: CHM 211. Course Name: Organic Chemistry I Department: Science & Technology Date: April 2012 I. Course Prefix and Number: CHM 211 Course Name: Organic Chemistry I Course Syllabus Credit Hours and Contact Hours: 5 credit hours and 7 (3:3:1) contact

More information

Required Materials For complete material(s) information, refer to

Required Materials For complete material(s) information, refer to Butler Community College Science, Technology, Engineering, and Math Division Robert Carlson Revised Fall 2017 Implemented Spring 2018 COURSE OUTLINE Organic Chemistry 1 Course Description CH 240. Organic

More information

CHE 325 ORGANIC CHEMISTRY II Spring 2017

CHE 325 ORGANIC CHEMISTRY II Spring 2017 Instructor: CHE 325 ORGANIC CHEMISTRY II Spring 2017 Professor James Kallmerten 4-014A Center for Science and Technology Phone: 3-2854 Email: jkallmer@syr.edu Office Hours: Monday 11 am -1 pm, Wednesday

More information

CHM 292 Final Exam Answer Key

CHM 292 Final Exam Answer Key CHM 292 Final Exam Answer Key 1. Predict the product(s) of the following reactions (5 points each; 35 points total). May 7, 2013 Acid catalyzed elimination to form the most highly substituted alkene possible

More information

COWLEY COLLEGE & Area Vocational Technical School

COWLEY COLLEGE & Area Vocational Technical School COWLEY COLLEGE & Area Vocational Technical School COURSE PROCEDURE FOR ORGANIC CHEMISTRY II CHM 4251 5 Credit Hours Student Level: This course is open to students on the college level in the sophomore

More information

CHEM*2700 ORGANIC CHEMISTRY I (Spring/Summer Semester 2009) Information Sheet and Course Outline

CHEM*2700 ORGANIC CHEMISTRY I (Spring/Summer Semester 2009) Information Sheet and Course Outline CHEM*2700 ORGANIC CHEMISTRY I (Spring/Summer Semester 2009) Information Sheet and Course Outline Instructor: Professor William Tam Office: MacN 332 Phone: 824-4120 (Ext.52268) E-mail: wtam@uoguelph.ca

More information

The lecture schedule is only a rough guide and will be likely changed as needed.

The lecture schedule is only a rough guide and will be likely changed as needed. CEHM 239 ORGANIC CHEMISTRY II Spring 2010 Instructor: Professor Hyun-Soon Chong Chemistry Division, BCPS Dept, IIT, LS 398, Chong@iit.edu, 312-567-3235 Course Hours: TR 1:50pm-3:05pm in LS 111 Office Hours:

More information

Completions Multiple Enrollment in same semester. 2. Mode of Instruction (Hours per Unit are defaulted) Hegis Code(s) (Provided by the Dean)

Completions Multiple Enrollment in same semester. 2. Mode of Instruction (Hours per Unit are defaulted) Hegis Code(s) (Provided by the Dean) CALIFORNIA STATE UNIVERSITY CHANNEL ISLANDS COURSE MODIFICATION PROPOSAL Courses must be submitted by November 2, 2009, to make the next catalog (2010--2011) production DATE (CHANGE DATE EACH TIME REVISED):

More information

Exam 1 (Monday, July 6, 2015)

Exam 1 (Monday, July 6, 2015) Chem 231 Summer 2015 Assigned Homework Problems Last updated: Friday, July 24, 2015 Problems Assigned from Essential Organic Chemistry, 2 nd Edition, Paula Yurkanis Bruice, Prentice Hall, New York, NY,

More information

Hunan University. CHEM32: Organic Chemistry

Hunan University. CHEM32: Organic Chemistry Academic Inquiries: Hunan University Email: iss@hnu.edu.cn Hunan University CHEM32: Organic Chemistry Professor: To be announced Total contact hours: 54 hours Credit: 4 Course Description Topics covered

More information

Chemistry 12B Organic Chemistry. Spring 2016

Chemistry 12B Organic Chemistry. Spring 2016 Chemistry 12B Organic Chemistry Spring 2016 Instructor: Nada Khouderchah E-mail: khouderchahnada@fhda.edu Office hours and location: Tuesday from 5:00-5:50 pm and Thursday from 7:20 8:20 pm in the faculty

More information

DEPARTMENT: Chemistry

DEPARTMENT: Chemistry CODE: CHEM 203 TITLE: Organic Chemistry I INSTITUTE: STEM DEPARTMENT: Chemistry COURSE DESCRIPTION: Students will apply many concepts from general chemistry to a study of organic chemistry. They will be

More information

COURSE UNIT DESCRIPTION. Type of the course unit. Mode of delivery Period of delivery Language of instruction Face to face Autumn English

COURSE UNIT DESCRIPTION. Type of the course unit. Mode of delivery Period of delivery Language of instruction Face to face Autumn English Course unit title Organic Chemistry I Lecturer(s) Dr. Rimantas Vaitkus COURSE UNIT DESCRIPTION Department Dept. Organic Chemistry, Vilnius University Cycle First Type of the course unit Mode of delivery

More information

Required Materials For complete material(s) information, refer to

Required Materials For complete material(s) information, refer to Butler Community College Science, Technology, Engineering, and Math Division Robert Carlson Revised Fall 2017 Implemented Spring 2018 COURSE OUTLINE Organic Chemistry 2 Course Description CH 245. Organic

More information

Chapter 20: Carboxylic Acids

Chapter 20: Carboxylic Acids 1 Chapter 20: Carboxylic Acids I. Introduction: Carboxylic acid structure: Classification of carboxylic acids: A carboxylic acid donates protons by the heterocyclic cleavage of the O-H bond, generating

More information

EASTERN ARIZONA COLLEGE General Organic Chemistry I

EASTERN ARIZONA COLLEGE General Organic Chemistry I EASTERN ARIZONA COLLEGE General Organic Chemistry I Course Design 2015-2016 Course Information Division Science Course Number CHM 235 (SUN# CHM 2235) Title General Organic Chemistry I Credits 4 Developed

More information

Organic Chemistry 1 CHM 2210 Exam 4 (December 10, 2001)

Organic Chemistry 1 CHM 2210 Exam 4 (December 10, 2001) Exam 4 (December 10, 2001) Name (print): Signature: Student ID Number: There are 12 multiple choice problems (4 points each) on this exam. Record the answers to the multiple choice questions on THIS PAGE.

More information

CHEM*2700 ORGANIC CHEMISTRY I (Spring/Summer Semester 2010) Information Sheet and Course Outline

CHEM*2700 ORGANIC CHEMISTRY I (Spring/Summer Semester 2010) Information Sheet and Course Outline CHEM*2700 ORGANIC CHEMISTRY I (Spring/Summer Semester 2010) Information Sheet and Course Outline Instructor: Professor William Tam Office: MacN 332 Phone: 824-4120 (Ext.52268) E-mail: wtam@uoguelph.ca

More information

ALCOHOLS AND PHENOLS; ETHERS AND EPOXIDES; THIOLS AND SULFIDES

ALCOHOLS AND PHENOLS; ETHERS AND EPOXIDES; THIOLS AND SULFIDES ALCOHOLS AND PHENOLS; ETHERS AND EPOXIDES; THIOLS AND SULFIDES A STUDENT SHOULD BE ABLE TO: 1. Give the IUPAC name when given the structure, and draw the structure given the name of open-chain and monocyclic

More information

Chapter 24. Amines. Based on McMurry s Organic Chemistry, 7 th edition

Chapter 24. Amines. Based on McMurry s Organic Chemistry, 7 th edition Chapter 24. Amines Based on McMurry s Organic Chemistry, 7 th edition Amines Organic Nitrogen Compounds Organic derivatives of ammonia, NH 3, Nitrogen atom with a lone pair of electrons, making amines

More information

A SURVEY OF ORGANIC CHEMISTRY CHEMISTRY 1315 TuTr 9:35-10:55 am, Boggs B6

A SURVEY OF ORGANIC CHEMISTRY CHEMISTRY 1315 TuTr 9:35-10:55 am, Boggs B6 GEORGIA INSTITUTE OF TECHNOLOGY School of Chemistry and Biochemistry Spring 2004 A SURVEY OF ORGANIC CHEMISTRY CHEMISTRY 1315 TuTr 9:35-10:55 am, Boggs B6 Instructor: Marcus Weck Office: Boggs 3-85 Phone:

More information

Background Information

Background Information ackground nformation ntroduction to Condensation eactions Condensation reactions occur between the α-carbon of one carbonyl-containing functional group and the carbonyl carbon of a second carbonyl-containing

More information

September [KV 804] Sub. Code: 3804

September [KV 804] Sub. Code: 3804 September 2009 [KV 804] Sub. Code: 3804 (Regulations 2008-2009) (Candidates admitted from 2008-2009 onwards) Paper IV PHARMACEUTICAL ORGANIC CHEMISTRY Time : Three hours Maximum : 70 marks Answer All questions

More information

COURSE OBJECTIVES / OUTCOMES / COMPETENCIES.

COURSE OBJECTIVES / OUTCOMES / COMPETENCIES. COURSE OBJECTIVES / OUTCOMES / COMPETENCIES. By the end of the course, students should be able to do the following: See Test1-4 Objectives/Competencies as listed in the syllabus and on the main course

More information

PELLISSIPPI STATE TECHNICAL COMMUNITY COLLEGE MASTER SYLLABUS APPLIED ORGANIC CHEMISTRY W/ LAB CHT 2210

PELLISSIPPI STATE TECHNICAL COMMUNITY COLLEGE MASTER SYLLABUS APPLIED ORGANIC CHEMISTRY W/ LAB CHT 2210 PELLISSIPPI STATE TECHNICAL COMMUNITY COLLEGE MASTER SYLLABUS APPLIED ORGANIC CHEMISTRY W/ LAB CHT 2210 Class Hours: 3.0 Credit Hours: 4.0 Laboratory Hours: 3.0 Date Revised: Fall 2001 NOTE: This course

More information

Chemistry 3720 Old Exams. Practice Exams & Keys

Chemistry 3720 Old Exams. Practice Exams & Keys Chemistry 3720 ld Exams Practice Exams & Keys 2015-17 Spring 2017 Page File 3 Spring 2017 Exam 1 10 Spring 2017 Exam 1 Key 16 Spring 2017 Exam 2 23 Spring 2017 Exam 2 Key 29 Spring 2017 Exam 3 36 Spring

More information

235 Organic II. Final Exam Review REACTIONS OF CONJUGATED DIENES 1,2 VS 1,4 ADDITION REACTIONS OF CONJUGATED DIENES

235 Organic II. Final Exam Review REACTIONS OF CONJUGATED DIENES 1,2 VS 1,4 ADDITION REACTIONS OF CONJUGATED DIENES b. the ompound 7 i 1 Spectral Data: singlet, 196.5 ppm singlet, 14.1 ppm singlet, 14.4 ppm doublet, 19.1 ppm doublet, 18.5 ppm 1 MR Mass Spectrum Absorbance Intensity Infrared Spectrum 65 91 9. Structure:

More information

Course Outline. TERM EFFECTIVE: Fall 2016 CURRICULUM APPROVAL DATE: 03/14/2016

Course Outline. TERM EFFECTIVE: Fall 2016 CURRICULUM APPROVAL DATE: 03/14/2016 5055 Santa Teresa Blvd Gilroy, CA 95023 Course Outline COURSE: CHEM 12B DIVISION: 10 ALSO LISTED AS: TERM EFFECTIVE: Fall 2016 CURRICULUM APPROVAL DATE: 03/14/2016 SHORT TITLE: ORGANIC CHEMISTRY LONG TITLE:

More information

CHEM*2700 ORGANIC CHEMISTRY I (Winter Semester 2007) Information Sheet and Course Outline-Revised

CHEM*2700 ORGANIC CHEMISTRY I (Winter Semester 2007) Information Sheet and Course Outline-Revised CHEM*2700 ORGANIC CHEMISTRY I (Winter Semester 2007) Information Sheet and Course Outline-Revised Instructor: Professor William Tam Office: MacN 332 Phone: 824-4120 (Ext.52268) E-mail: wtam@uoguelph.ca

More information

Prerequisites: CHEM 1312 and CHEM 1112, or CHEM 1412 General Chemistry II (Lecture and Laboratory)

Prerequisites: CHEM 1312 and CHEM 1112, or CHEM 1412 General Chemistry II (Lecture and Laboratory) Course Syllabus CHEM 2423 Organic Chemistry I Revision Date: 8/19/2013 Catalog Description: Fundamental principles of organic chemistry will be studied, including the structure, bonding, properties, and

More information

Alabama. Department of. Postsecondary Education

Alabama. Department of. Postsecondary Education Date Adopted: July 1, 1998 Date Reviewed: December 1, 1999 Date Revised: 1999, 2007, 2011, 2013 Alabama Department of Postsecondary Education Representing Alabama s Public Two-Year College System Jefferson

More information

TOK: The relationship between a reaction mechanism and the experimental evidence to support it could be discussed. See

TOK: The relationship between a reaction mechanism and the experimental evidence to support it could be discussed. See Option G: Further organic chemistry (15/22 hours) SL students study the core of these options and HL students study the whole option (the core and the extension material). TOK: The relationship between

More information

Alabama Department of Postsecondary Education

Alabama Department of Postsecondary Education Alabama Department of Postsecondary Education Representing Alabama s Public Two-Year College System Jefferson State Community College CHM 221 Organic Chemistry I I. CHM 221 Organic Chemistry I - Prerequisite

More information

COURSE: ORGANIC CHEMISTRY

COURSE: ORGANIC CHEMISTRY Página 1 de 7 GENERAL FEATURES* Type: Basic training, Mandatory, Elective Final degree project, External practices Duration: Annual Semester/s: 5 and 6 Number of credits ECTS: 12 Language/s: Spanish, Catalan,

More information

COURSE OUTLINE. School of Engineering Technology and Applied Science. Applied Biological and Environmental Science (ABES)

COURSE OUTLINE. School of Engineering Technology and Applied Science. Applied Biological and Environmental Science (ABES) COURSE OUTLINE SCHOOL: School of Engineering Technology and Applied Science DEPARTMENT: Applied Biological and Environmental Science (ABES) PROGRAM: COURSE TITLE: Biological Technician/Technologist, Environmental

More information

COURSE UNIT DESCRIPTION. Dept. Organic Chemistry, Vilnius University. Type of the course unit

COURSE UNIT DESCRIPTION. Dept. Organic Chemistry, Vilnius University. Type of the course unit Course unit title Organic Chemistry II Lecturer(s) Rimantas Vaitkus COURSE UNIT DESCRIPTION Department Dept. Organic Chemistry, Vilnius University Cycle First Type of the course unit Mode of delivery Period

More information

Ketones and Aldehydes Reading Study Problems Key Concepts and Skills Lecture Topics: Structure of Ketones and Aldehydes Structure:

Ketones and Aldehydes Reading Study Problems Key Concepts and Skills Lecture Topics: Structure of Ketones and Aldehydes Structure: Ketones and Aldehydes Reading: Wade chapter 18, sections 18-1- 18-21 Study Problems: 18-43, 18-44,18-50, 18-51, 18-52, 18-59, 18-60, 18-62, 18-64, 18-72. Key Concepts and Skills: Interpret the IR, NMR,

More information

MOLECULAR REPRESENTATIONS AND INFRARED SPECTROSCOPY

MOLECULAR REPRESENTATIONS AND INFRARED SPECTROSCOPY MOLEULAR REPRESENTATIONS AND INFRARED SPETROSOPY A STUDENT SOULD BE ABLE TO: 1. Given a Lewis (dash or dot), condensed, bond-line, or wedge formula of a compound draw the other representations. 2. Give

More information

Course Outline. TERM EFFECTIVE: Fall 2016 CURRICULUM APPROVAL DATE: 03/14/2016

Course Outline. TERM EFFECTIVE: Fall 2016 CURRICULUM APPROVAL DATE: 03/14/2016 5055 Santa Teresa Blvd Gilroy, CA 95023 Course Outline COURSE: CHEM 12A DIVISION: 10 ALSO LISTED AS: TERM EFFECTIVE: Fall 2016 CURRICULUM APPROVAL DATE: 03/14/2016 SHORT TITLE: ORGANIC CHEMISTRY LONG TITLE:

More information

Hyperlearning MCAT Instructor Qualifying Exam Organic Chemistry

Hyperlearning MCAT Instructor Qualifying Exam Organic Chemistry Hyperlearning MCAT Instructor Qualifying Exam Organic Chemistry 30 Questions (5 pages); Time limit = 45 minutes Use of books or notes is not permitted. 1. When analyzed with a polarimeter, which of the

More information

CHEM 261 HOME WORK Lecture Topics: MODULE 1: The Basics: Bonding and Molecular Structure Text Sections (N0 1.9, 9-11) Homework: Chapter 1:

CHEM 261 HOME WORK Lecture Topics: MODULE 1: The Basics: Bonding and Molecular Structure Text Sections (N0 1.9, 9-11) Homework: Chapter 1: CHEM 261 HOME WORK Lecture Topics: MODULE 1: The Basics: Bonding and Molecular Structure Atomic Structure - Valence Electrons Chemical Bonds: The Octet Rule - Ionic bond - Covalent bond How to write Lewis

More information

Montgomery County Community College CHE 261 Organic Chemistry I

Montgomery County Community College CHE 261 Organic Chemistry I Montgomery County Community College CHE 261 Organic Chemistry I 4-3-3 COURSE DESCRIPTION: This course covers the nomenclature, structure, properties and reactions of many important classes of organic compounds.

More information

SYLLABUS. Departmental Syllabus. Organic Chemistry I CHEM Departmental Syllabus. Departmental Syllabus. Departmental Syllabus

SYLLABUS. Departmental Syllabus. Organic Chemistry I CHEM Departmental Syllabus. Departmental Syllabus. Departmental Syllabus DATE OF LAST REVIEW: 05/2018 CIP CODE: 24.0101 SYLLABUS SEMESTER: COURSE TITLE: COURSE NUMBER: Organic Chemistry I CHEM-0211 CREDIT HOURS: 3 INSTRUCTOR: OFFICE LOCATION: OFFICE HOURS: TELEPHONE: EMAIL:

More information

Carboxylic Acids and Nitriles

Carboxylic Acids and Nitriles Carboxylic Acids and Nitriles Why this Chapter? Carboxylic acids present in many industrial processes and most biological processes They are the starting materials from which other acyl derivatives are

More information

JEFFERSON COLLEGE COURSE SYLLABUS CHM200 ORGANIC CHEMISTRY I. 5 Credit Hours. Prepared by: Richard A. Pierce

JEFFERSON COLLEGE COURSE SYLLABUS CHM200 ORGANIC CHEMISTRY I. 5 Credit Hours. Prepared by: Richard A. Pierce JEFFERSON COLLEGE COURSE SYLLABUS CHM200 ORGANIC CHEMISTRY I 5 Credit Hours Prepared by: Richard A. Pierce Revised Date: January 2008 by Ryan H. Groeneman Arts & Science Education Dr. Mindy Selsor, Dean

More information

The Final Learning Experience

The Final Learning Experience Chemistry 210 Organic Chemistry I Fall Semester 2000 Dr. Rainer Glaser Examination #5 Reactions of Alcohols and Related Reactions The Final Learning Experience Wednesday, December 20, 2000, 1:00-3:00 Name:

More information

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320 Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320 I. Isolated, cumulated, and conjugated dienes A diene is any compound with two or C=C's is a diene. Compounds containing more than two

More information

Alkyl phenyl ketones are usually named by adding the acyl group as prefix to phenone.

Alkyl phenyl ketones are usually named by adding the acyl group as prefix to phenone. Aldehydes, Ketones and Carboxylic Acids Nomenclature of aldehydes and ketones Aldehydes: Often called by their common names instead of IUPAC names. Ketones: Derived by naming two alkyl or aryl groups bonded

More information

Chemistry 2030 Introduction to Organic Chemistry Fall Semester 2012 Dr. Rainer Glaser

Chemistry 2030 Introduction to Organic Chemistry Fall Semester 2012 Dr. Rainer Glaser Chemistry 2030 Introduction to Organic Chemistry Fall Semester 2012 Dr. Rainer Glaser Examination #4 Carbonyl Compounds and Amines. Thursday, November 15, 2012, 8:25 9:15 am Name: Question 1. Aldehydes

More information

CHEM ORGANIC CHEMISTRY

CHEM ORGANIC CHEMISTRY BRAZOSPORT COLLEGE LAKE JACKSON, TEXAS SYLLABUS CHEM 2423 - ORGANIC CHEMISTRY CATALOG DESCRIPTION: CHEM 2423 Organic Chemistry I. CIP 4005045203 A study of the nomenclature, classification and reactions

More information

CHEM 12B Organic Chemistry 5 Unit(s)

CHEM 12B Organic Chemistry 5 Unit(s) I. Catalog Information Credit- Degree applicable Effective Quarter: Fall 2016 CHEM 12B Organic Chemistry 5 Unit(s) Prerequisite: CHEM 12A with a grade of C or better. Advisory: EWRT 1A or EWRT 1AH or ESL

More information

Objective 14. Develop synthesis strategies for organic synthesis.

Objective 14. Develop synthesis strategies for organic synthesis. Objective 14. Develop synthesis strategies for organic synthesis. Skills: Draw structure ID structural features and reactive sites (alpha C, beta C, LG, etc.) ID Nu - and E + use curved arrows to show

More information

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will 71. B SN2 stands for substitution nucleophilic bimolecular. This means that there is a bimolecular rate-determining step. Therefore, the reaction will follow second-order kinetics based on the collision

More information

Key ideas: In EAS, pi bond is Nu and undergoes addition.

Key ideas: In EAS, pi bond is Nu and undergoes addition. Objective 7. Apply addition and elimination concepts to predict electrophilic aromatic substitution reactions (EAS) of benzene and monosubstituted benzenes. Skills: Draw structure ID structural features

More information

Chapter 12: Carbonyl Compounds II

Chapter 12: Carbonyl Compounds II Chapter 12: Carbonyl Compounds II Learning bjectives: 1. Recognize and assign names to aldehydes and ketones. 2. Write the mechanism for nucleophilic addition and nucleophilic addition-elimination reactions

More information

Aromatic Compounds II

Aromatic Compounds II 2302272 Org Chem II Part I Lecture 2 Aromatic Compounds II Instructor: Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th Recommended Textbook: Chapter 17 in Organic Chemistry, 8 th Edition, L.

More information

Detailed Course Content

Detailed Course Content Detailed Course Content Chapter 1: Carbon Compounds and Chemical Bonds The Structural Theory of Organic Chemistry 4 Chemical Bonds: The Octet Rule 6 Lewis Structures 8 Formal Charge 11 Resonance 14 Quantum

More information

COURSE OBJECTIVES / OUTCOMES / COMPETENCIES.

COURSE OBJECTIVES / OUTCOMES / COMPETENCIES. COURSE OBJECTIVES / OUTCOMES / COMPETENCIES. By the end of the course, students should be able to do the following: See Test1-4 Objectives/Competencies as listed in the syllabus and on the main course

More information

MCAT Organic Chemistry Problem Drill 10: Aldehydes and Ketones

MCAT Organic Chemistry Problem Drill 10: Aldehydes and Ketones MCAT rganic Chemistry Problem Drill 10: Aldehydes and Ketones Question No. 1 of 10 Question 1. Which of the following is not a physical property of aldehydes and ketones? Question #01 (A) Hydrogen bonding

More information

COWLEY COLLEGE & Area Vocational Technical School

COWLEY COLLEGE & Area Vocational Technical School COWLEY COLLEGE & Area Vocational Technical School COURSE PROCEDURE FOR Student Level: This course is open to students on the college level in the sophomore year. Catalog Description: CHM4250 - ORGANIC

More information

About the GRE Chemistry Subject Test p. 1 About the GRE Chemistry Subject Test GRE Chemistry Topics Test Dates Testing Fee Test Format Testing Time

About the GRE Chemistry Subject Test p. 1 About the GRE Chemistry Subject Test GRE Chemistry Topics Test Dates Testing Fee Test Format Testing Time About the GRE Chemistry Subject Test p. 1 About the GRE Chemistry Subject Test GRE Chemistry Topics Test Dates Testing Fee Test Format Testing Time Scoring To Guess or Not to Guess On the Day of the Test

More information

DAMIETTA UNIVERSITY. Energy Diagram of One-Step Exothermic Reaction

DAMIETTA UNIVERSITY. Energy Diagram of One-Step Exothermic Reaction DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURE 5 Dr Ali El-Agamey 1 Energy Diagram of One-Step Exothermic Reaction The vertical axis in this graph represents the potential energy. The transition

More information

Alpha Substitution and Condensations of Enols and Enolate Ions. Alpha Substitution

Alpha Substitution and Condensations of Enols and Enolate Ions. Alpha Substitution Alpha Substitution and ondensations of Enols and Enolate Ions hap 23 W: 27, 28, 30, 31, 37, 39, 42-44, 47, 51, 54-56 Alpha Substitution Replacement of a hydrogen on the carbon adjacent to the carbonyl,

More information

ORGANIC - CLUTCH CH ALCOHOLS, ETHERS, EPOXIDES AND THIOLS

ORGANIC - CLUTCH CH ALCOHOLS, ETHERS, EPOXIDES AND THIOLS !! www.clutchprep.com CONCEPT: ALCOHOL NOMENCLATURE Glycols: Alcohols with two hydroxyls are called ; with three hydroxyls are called Always give most priority to the OH group. EXAMPLE: Provide the correct

More information

CH 320/328 N Summer II 2018

CH 320/328 N Summer II 2018 CH 320/328 N Summer II 2018 HW 1 Multiple Choice Identify the choice that best completes the statement or answers the question. There is only one correct response for each question. (5 pts each) 1. Which

More information

Georgia Gwinnett College CHEM 2212 Organic Chemistry II Course Syllabus Summer MTWR, 9-11am, A1640 (class); MTW, pm, A1290 (lab)

Georgia Gwinnett College CHEM 2212 Organic Chemistry II Course Syllabus Summer MTWR, 9-11am, A1640 (class); MTW, pm, A1290 (lab) Georgia Gwinnett College CHEM 2212 Organic Chemistry II Course Syllabus Summer 2008 Class Meetings: Instructor: Office: E-Mail: Phone Number: Wiki page: MTWR, 9-11am, A1640 (class); MTW, 1.15-4pm, A1290

More information

EMA 3011 Fundamental Principles of Materials, Section 9765 Spring, 2014

EMA 3011 Fundamental Principles of Materials, Section 9765 Spring, 2014 EMA 3011 Fundamental Principles of Materials, Section 9765 Spring, 2014 1. Catalog Description: The fundamental principles of structure, reactivity and energies describing materials systems will be covered,

More information

UNIT 4 REVISION CHECKLIST CHEM 4 AS Chemistry

UNIT 4 REVISION CHECKLIST CHEM 4 AS Chemistry UNIT 4 REVISION CHECKLIST CHEM 4 AS Chemistry Topic 4.1 Kinetics a) Define the terms: rate of a reaction, rate constant, order of reaction and overall order of reaction b) Deduce the orders of reaction

More information

Chapter 1 Reactions of Organic Compounds. Reactions Involving Hydrocarbons

Chapter 1 Reactions of Organic Compounds. Reactions Involving Hydrocarbons Chapter 1 Reactions of Organic Compounds Reactions Involving Hydrocarbons Reactions of Alkanes Single bonds (C-C) are strong and very hard to break, therefore these compounds are relatively unreactive

More information

Organic Chemistry I Lesson Objectives, Lesson Problems, Course Outline Spring 2008

Organic Chemistry I Lesson Objectives, Lesson Problems, Course Outline Spring 2008 Organic Chemistry I Lesson Objectives, Lesson Problems, Course Outline Spring 2008 Lesson Date Assignment Lesson Objective Description Lesson Problems 4 14-Jan Chapter 1 Quiz Describe how bond polarity

More information

Final Exam Professor R. Hoenigman

Final Exam Professor R. Hoenigman I pledge to uphold the CU onor Code: CEM 3311-200 Fall 2006 Final Exam Professor. oenigman Average Score = 145 igh Score = 235 Low Score = 27 Signature Name (printed) Last four digits of your student ID

More information

JEFFERSON COLLEGE COURSE SYLLABUS CHM200 ORGANIC CHEMISTRY I. 5 Credit Hours. Prepared by: Richard A. Pierce. Revised by: Sean Birke October, 2013

JEFFERSON COLLEGE COURSE SYLLABUS CHM200 ORGANIC CHEMISTRY I. 5 Credit Hours. Prepared by: Richard A. Pierce. Revised by: Sean Birke October, 2013 JEFFERSON COLLEGE COURSE SYLLABUS CHM200 ORGANIC CHEMISTRY I 5 Credit Hours Prepared by: Richard A. Pierce Revised by: Sean Birke October, 2013 Ms. Linda Abernathy, Math, Science & Business Division Chair

More information

ORGANIC - CLUTCH CH ALDEHYDES AND KETONES: NUCLEOPHILIC ADDITION

ORGANIC - CLUTCH CH ALDEHYDES AND KETONES: NUCLEOPHILIC ADDITION !! www.clutchprep.com CONCEPT: ALDEHYDE NOMENCLATURE Replace the suffix of the alkane -e with the suffix On the parent chain, the carbonyl is always terminal, and receive a location As substituents, they

More information

Chapter 22: Amines. Organic derivatives of ammonia, NH 3. Nitrogen atom have a lone pair of electrons, making the amine both basic and nucleophilic

Chapter 22: Amines. Organic derivatives of ammonia, NH 3. Nitrogen atom have a lone pair of electrons, making the amine both basic and nucleophilic hapter 22: Amines. rganic derivatives of ammonia, 3. itrogen atom have a lone pair of electrons, making the amine both basic and nucleophilic 22.1: Amines omenclature. (please read) sp 3 Amines are classified

More information

Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group

Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group Nomenclature of Aldehydes and Ketones Aldehydes are named by replacing the -e of the corresponding parent alkane with -al

More information

SYSTEMWIDE CHEM 2425 FINAL EXAM. Department Of Physical Sciences

SYSTEMWIDE CHEM 2425 FINAL EXAM. Department Of Physical Sciences SYSTEMWIDE CHEM 2425 FINAL EXAM Department f Physical Sciences Morphine NAME: RGANIC CHEM 2425 FINAL EXAM DIRECTINS- A periodic table is attached at the end of this exam. Please answer all questions in

More information

Chemistry of Benzene: Electrophilic Aromatic Substitution

Chemistry of Benzene: Electrophilic Aromatic Substitution Chemistry of Benzene: Electrophilic Aromatic Substitution Why this Chapter? Continuation of coverage of aromatic compounds in preceding chapter focus shift to understanding reactions Examine relationship

More information

CHEM 203. Midterm Exam 1 October 31, 2008 ANSWERS. This a closed-notes, closed-book exam. You may use your set of molecular models

CHEM 203. Midterm Exam 1 October 31, 2008 ANSWERS. This a closed-notes, closed-book exam. You may use your set of molecular models CEM 203 Midterm Exam 1 ctober 31, 2008 Your name: ANSWERS This a closed-notes, closed-book exam You may use your set of molecular models This exam contains 8 pages Time: 1h 30 min 1. / 15 2. / 16 3. /

More information

Chapter 17: Alcohols and Phenols. Based on McMurry s Organic Chemistry, 7 th edition

Chapter 17: Alcohols and Phenols. Based on McMurry s Organic Chemistry, 7 th edition Chapter 17: Alcohols and Phenols Based on McMurry s Organic Chemistry, 7 th edition Alcohols and Phenols Alcohols contain an OH group connected to a a saturated C (sp 3 ) They are important solvents and

More information

ALCOHOLS AND PHENOLS

ALCOHOLS AND PHENOLS ALCOHOLS AND PHENOLS ALCOHOLS AND PHENOLS Alcohols contain an OH group connected to a a saturated C (sp3) They are important solvents and synthesis intermediates Phenols contain an OH group connected to

More information

1/4/2011. Chapter 18 Aldehydes and Ketones Reaction at the -carbon of carbonyl compounds

1/4/2011. Chapter 18 Aldehydes and Ketones Reaction at the -carbon of carbonyl compounds Chapter 18 Aldehydes and Ketones Reaction at the -carbon of carbonyl compounds The Acidity of the Hydrogens of Carbonyl Compounds: Enolate Anions Hydrogens on carbons to carbonyls are unusually acidic

More information

Dr. Mohamed El-Newehy

Dr. Mohamed El-Newehy By Dr. Mohamed El-Newehy Chemistry Department, College of Science, King Saud University http://fac.ksu.edu.sa/melnewehy Carboxylic acids and Their Derivatives 1 Structure of Carboxylic Acids -The functional

More information