Full wwpdb X-ray Structure Validation Report i

Size: px
Start display at page:

Download "Full wwpdb X-ray Structure Validation Report i"

Transcription

1 Full wwpdb X-ray Structure Validation Report i Mar 14, :38 pm GMT PDB ID : 4Z5R Title : Rontalizumab Fab bound to Interferon-a2 Authors : Eigenbrot, C.; Maurer, B.; Bosanac, I. Deposited on : Resolution : 3.00 Å(reported) This is a Full wwpdb X-ray Structure Validation Report for a publicly released PDB entry. We welcome your comments at validation@mail.wwpdb.org A user guide is available at with specific help available everywhere you see the i symbol. The following versions of software and data (see references i ) were used in the production of this report: MolProbity : 4.02b-467 Mogul : (157068), CSD as539be (2018) Xtriage (Phenix) : 1.13 EDS : trunk31020 Percentile statistics : v01 (using entries in the PDB archive December 27th 2017) Refmac : CCP4 : 7.0 (Gargrove) Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996) Validation Pipeline (wwpdb-vp) : trunk31020

2 Page 2 Full wwpdb X-ray Structure Validation Report 4Z5R 1 Overall quality at a glance i The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION The reported resolution of this entry is 3.00 Å. Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based. Metric Whole archive Similar resolution (#Entries) (#Entries, resolution range(å)) R free ( ) Clashscore ( ) Ramachandran outliers ( ) Sidechain outliers ( ) RSRZ outliers ( ) The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar. Mol Chain Length Quality of chain 1 D E F G H I 165

3 Page 3 Full wwpdb X-ray Structure Validation Report 4Z5R Mol Chain Length Quality of chain 1 N X A J L P R T V Y B K M Q S U W Z 225

4 Page 4 Full wwpdb X-ray Structure Validation Report 4Z5R 2 Entry composition i There are 4 unique types of molecules in this entry. The entry contains atoms, of which 0 are hydrogens and 0 are deuteriums. In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms. Molecule 1 is a protein called Interferon alpha-2. Mol Chain Residues Atoms ZeroOcc AltConf Trace 1 D E F G H I X N Molecule 2 is a protein called anti-ifn-a antibody rontalizumab light chain. Mol Chain Residues Atoms ZeroOcc AltConf Trace 2 J L V P R T

5 Page 5 Full wwpdb X-ray Structure Validation Report 4Z5R Mol Chain Residues Atoms ZeroOcc AltConf Trace 2 Y A Molecule 3 is a protein called anti-ifn-a antibody rontalizumab heavy chain modules VH and CH1 (Fab). Mol Chain Residues Atoms ZeroOcc AltConf Trace 3 K M W Q S U Z B Molecule 4 is SULFATE ION (three-letter code: SO4) (formula: O 4 S).

6 Page 6 Full wwpdb X-ray Structure Validation Report 4Z5R Mol Chain Residues Atoms ZeroOcc AltConf 4 J 1 Total O S J 1 Total O S L 1 Total O S F 1 Total O S V 1 Total O S V 1 Total O S G 1 Total O S P 1 Total O S

7 Page 7 Full wwpdb X-ray Structure Validation Report 4Z5R 3 Residue-property plots i These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometryand electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey. Molecule 1: Interferon alpha-2 Chain D: E141 R144 A145 E146 R149 N156 ARG L9 G10 S11 R12 R13 K23 R33 E42 N45 Q46 F47 Q48 K49 A50 E51 T52 I53 P54 M59 I60 Q61 D82 Y89 E96 I100 Q101 G102 V103 M111 K112 S115 Q124 L128 Molecule 1: Interferon alpha-2 Chain E: E146 R149 N156 ARG L9 G10 S11 R12 R13 R33 E42 N45 Q46 F47 Q48 I53 P54 M59 I60 Q61 D82 L92 G102 V103 M111 K112 S115 V119 Y122 F123 Q124 L128 E141 R144 A145 Molecule 1: Interferon alpha-2 Chain F: L110 M111 K112 E113 D114 S115 R120 Q124 R125 L128 E141 R144 A145 E146 R149 N156 ARG L9 G10 S11 R12 R13 K23 L30 K31 D32 R33 H34 D35 E42 F43 G44 ASN F47 Q48 K49 A50 I53 P54 M59 I60 Q61 N65 S68 D82 Y89 E96 I100 Q101 G102 V103 Molecule 1: Interferon alpha-2 Chain G: L9 G10 S11 R12 R13 K31 D32 R33 H34 D35 E42 N45 PHE A50 I53 P54 M59 I60 Q61 N65 D82 E96 I100 Q101 G102 V103 G104 V105 MET E113 D114 S115 V119

8 Page 8 Full wwpdb X-ray Structure Validation Report 4Z5R Y122 R125 E132 E141 R144 R149 N156 ARG Molecule 1: Interferon alpha-2 Chain H: R149 N156 ARG L9 G10 S11 R12 R13 K31 E42 N45 PHE Q48 K49 A50 I53 P54 M59 I60 Q61 D82 E96 I100 V103 M111 K112 E113 D114 S115 R125 E141 R144 A145 E146 Molecule 1: Interferon alpha-2 Chain I: E141 R144 A145 E146 I147 M148 R149 N156 ARG L9 G10 S11 R12 R13 F27 L30 R33 E42 F43 G44 N45 PHE A50 I53 P54 M59 I60 Q61 D82 Y89 L92 E96 I100 V103 M111 K112 S115 Molecule 1: Interferon alpha-2 Chain X: M111 D114 S115 Q124 K134 E141 R144 A145 E146 I147 M148 R149 N156 ARG L9 G10 S11 R12 R13 A19 R22 K23 L30 R33 E42 F43 ASN PHE Q48 K49 A50 E51 T52 I53 P54 M59 I60 Q61 S68 D82 Y89 L92 E96 I100 V103 Molecule 1: Interferon alpha-2 Chain N: S115 Q124 L128 E141 R144 A145 E146 I147 M148 R149 L157 Q158 E159 S160 L161 ARG L9 G10 S11 R12 R13 R22 S28 C29 L30 R33 E42 F43 G44 N45 Q46 F47 Q48 K49 A50 I53 P54 M59 I60 Q61 N65 D82 E96 I100 Q101 G102 M111 K112 E113 D114 Molecule 2: anti-ifn-a antibody rontalizumab light chain Chain J: D1 I2 Q3 M4 R24 V27B S27C T27D S28 S29 K39 E81 Q100 K126 L135 R142 V146 Q147 W148 K149 A153 V163 S168 S182 S202 E213

9 Page 9 Full wwpdb X-ray Structure Validation Report 4Z5R Molecule 2: anti-ifn-a antibody rontalizumab light chain Chain L: D1 I2 Q3 M4 L11 R24 V27B S27C T27D S28 S29 K39 E81 Q100 K107 R108 E123 Q124 G128 Q147 W148 L154 Q155 S159 S171 E195 V196 T197 N210 E213 Molecule 2: anti-ifn-a antibody rontalizumab light chain Chain V: D1 I2 Q3 M4 L11 S12 A13 S14 R24 A25 S26 V27B S27C T27D S28 S29 K39 E81 Q100 S114 E123 T129 K149 L154 D167 D170 Y186 Y192 F209 E213 Molecule 2: anti-ifn-a antibody rontalizumab light chain Chain P: D1 I2 Q3 M4 T5 Q6 L11 S14 R24 V27B S27C T27D S28 S29 K39 E81 Q100 S114 R142 K149 N152 A153 L154 V163 S182 D185 T197 E213 Molecule 2: anti-ifn-a antibody rontalizumab light chain Chain R: V191 Y192 A193 C194 E195 V196 T197 V205 S208 F209 N210 R211 G212 E213 D1 I2 Q3 M4 S14 R24 V27B S27C T27D S28 S29 K39 V58 P59 S60 R61 E81 Q100 F118 P119 D122 E123 A130 S131 V132 V133 C134 L135 Y140 P141 K145 V146 Q147 W148 S156 S159 S177 T178 L179 Y186 E187 K188 H189 K190 Molecule 2: anti-ifn-a antibody rontalizumab light chain Chain T: D1 I2 Q3 M4 R24 V27B S27C T27D S28 S29 K39 E81 I94 Q100 E123 L136 R142 K145 L154 Q160 E161 D167 S171 S176 S182 D185 Y186 Y192 V196 T197 F209 N210 E213 Molecule 2: anti-ifn-a antibody rontalizumab light chain Chain Y: PHE ASN ARG ALA TRP ASN ALA ASN TYR ALA TYR TYR ALA D1 I2 Q3 M4 S12 A13 S14 R24 V27B S27C T27D S28 S29 Y30 I94 Q100 I106 ARG ALA ALA PHE ILE PHE ALA ASN ASN PHE TYR ARG

10 Page 10 Full wwpdb X-ray Structure Validation Report 4Z5R Molecule 2: anti-ifn-a antibody rontalizumab light chain Chain A: L175 S176 S177 T178 L179 T180 L181 A184 D185 Y186 E187 K188 H189 K190 V191 Y192 A193 C194 E195 V196 T197 L201 S202 S203 P204 V205 T206 K207 S208 F209 E213 D1 I2 Q3 M4 L11 S14 R24 V27B S27C T27D S28 S29 Y30 K39 L54 E81 Q100 F116 I117 F118 P119 P120 S121 D122 E123 Q124 L125 T129 A130 S131 V132 V133 C134 L135 R142 E143 V146 Q147 W148 K149 V150 D151 N152 E161 S162 V163 Molecule 3: anti-ifn-a antibody rontalizumab heavy chain modules VH and CH1 (Fab) Chain K: E1 V12 T24 Y27 I51 T57 R76 R83 W95 F99 S113 T116 P119 S120 S128 G133 L138 Y145 V150 A158 T183 S187 C196 P213 Molecule 3: anti-ifn-a antibody rontalizumab heavy chain modules VH and CH1 (Fab) Chain M: E1 E6 V12 Q13 T24 Y27 I51 T57 R76 R83 W95 F99 S113 T116 F122 S128 G133 L141 D144 E148 P149 A158 P167 L178 T183 C196 H200 S203 P213 Molecule 3: anti-ifn-a antibody rontalizumab heavy chain modules VH and CH1 (Fab) Chain W: P213 E1 V12 Q13 T24 Y27 I33 I51 I56 T57 R66 R76 R83 D86 W95 F99 S113 A114 S115 T116 P119 S128 G133 V150 T151 L178 T183 S187 T191 C196 K201 P202 S203 N204 T205 Molecule 3: anti-ifn-a antibody rontalizumab heavy chain modules VH and CH1 (Fab) Chain Q: E1 L11 V12 Q13 T24 Y27 I33 Y54 D55 I56 R76 R83 W95 F99 S113 T116 K117 G118 P119 S127 S128 G133 L141 Y145 F146 P147 P167 L178 S179 T183 C196 K201 P202 P213 Molecule 3: anti-ifn-a antibody rontalizumab heavy chain modules VH and CH1 (Fab)

11 Page 11 Full wwpdb X-ray Structure Validation Report 4Z5R Chain S: H200 K201 D208 E212 P213 E1 V12 Q13 T24 Y27 I51 Y54 D55 I56 T57 K64 R76 R83 W95 F99 S113 F122 P123 P126 S127 S128 G133 G134 T135 A136 A137 S161 L178 V182 S187 T191 Q192 T193 Y194 N197 V198 N199 Molecule 3: anti-ifn-a antibody rontalizumab heavy chain modules VH and CH1 (Fab) Chain U: V181 V182 T183 S186 T191 Q192 T193 Y194 I195 C196 N197 K201 P202 S203 N204 D208 V211 E212 P213 E1 V12 Q13 T24 Y27 I51 T57 N58 T68 R76 N82A R83 A84 E85 W95 F99 S113 T116 P123 L124 A125 P126 S127 S128 G133 A136 A137 L138 V150 S156 G157 A158 L159 T160 Q171 L178 Molecule 3: anti-ifn-a antibody rontalizumab heavy chain modules VH and CH1 (Fab) Chain Z: TRP ASN ALA PHE ALA TYR TYR ILE ASN ASN ASN E1 V12 Q13 T24 Y27 I51 T57 N58 R76 N82A R83 W95 F99 S113 ALA PHE ALA ALA ALA TYR PHE Molecule 3: anti-ifn-a antibody rontalizumab heavy chain modules VH and CH1 (Fab) Chain B: K210 V211 E212 P213 E1 V12 Q13 L18 T24 Y27 I51 T57 R76 R83 W95 F99 S113 P119 F122 P123 L124 A125 P126 S127 S128 G133 G134 A137 L138 G139 Y145 N155 S177 T191 Q192 T193 Y194 K201 D208 K209

12 Page 12 Full wwpdb X-ray Structure Validation Report 4Z5R 4 Data and refinement statistics i Property Value Source Space group P Depositor Cell constants 90.83Å Å 98.14Å a, b, c, α, β, γ Depositor Resolution (Å) Depositor EDS % Data completeness (in resolution range) 94.8 ( ) 94.9 ( ) Depositor EDS R merge (Not available) Depositor R sym 0.10 Depositor < I/σ(I) > (at 3.01Å) Xtriage Refinement program REFMAC Depositor 0.223, Depositor R, R free 0.215, DCC R free test set 2285 reflections (2.24%) wwpdb-vp Wilson B-factor (Å 2 ) 65.6 Xtriage Anisotropy Xtriage Bulk solvent k sol (e/å 3 ), B sol (Å 2 ) 0.32, 36.3 EDS L-test for twinning 2 < L > = 0.50, < L 2 > = 0.33 Xtriage Estimated twinning fraction No twinning to report. Xtriage F o,f c correlation 0.93 EDS Total number of atoms wwpdb-vp Average B, all atoms (Å 2 ) 75.0 wwpdb-vp Xtriage s analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 14.73% of the height of the origin peak. No significant pseudotranslation is detected. 1 Intensities estimated from amplitudes. 2 Theoretical values of < L >, < L 2 > for acentric reflections are 0.5, respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

13 Page 13 Full wwpdb X-ray Structure Validation Report 4Z5R 5 Model quality i 5.1 Standard geometry i Bond lengths and bond angles in the following residue types are not validated in this section: SO4 The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with Z > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles). Mol Chain Bond lengths Bond angles RMSZ # Z >5 RMSZ # Z >5 1 D / /1594 (0.3%) 1 E / /1594 (0.3%) 1 F / /1579 (0.4%) 1 G / /1534 (0.3%) 1 H / /1563 (0.3%) 1 I /1147 (0.1%) /1540 (0.3%) 1 N / /1638 (0.4%) 1 X / /1547 (0.3%) 2 A / /2317 (0.0%) 2 J / /2317 (0.0%) 2 L / /2317 (0.0%) 2 P / /2317 (0.0%) 2 R / /2317 (0.0%) 2 T /1707 (0.1%) /2317 (0.0%) 2 V / /2317 (0.0%) 2 Y / /1169 (0.1%) 3 B / /2270 (0.3%) 3 K / /2270 (0.1%) 3 M /1664 (0.1%) /2270 (0.1%) 3 Q /1664 (0.1%) /2270 (0.1%) 3 S / /2270 (0.1%) 3 U / /2270 (0.2%) 3 W /1664 (0.1%) /2270 (0.2%) 3 Z / /1295 (0.4%) All All /34788 (0.0%) /47162 (0.2%) Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand.a planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

14 Page 14 Full wwpdb X-ray Structure Validation Report 4Z5R Mol Chain #Chirality outliers #Planarity outliers 1 D E F G H I N X Q Z 0 1 All All 0 12 All (5) bond length outliers are listed below: Mol Chain Res Type Atoms Z Observed(Å) Ideal(Å) 1 I 45 ASN C-O W 13 CD-OE Q 13 CD-OE M 13 CD-OE T 27(B) CB-CG All (81) bond angle outliers are listed below: Mol Chain Res Type Atoms Z Observed( o ) Ideal( o ) 1 G 13 ARG NE-CZ-NH D 13 ARG NE-CZ-NH E 13 ARG NE-CZ-NH I 13 ARG NE-CZ-NH N 13 ARG NE-CZ-NH F 13 ARG NE-CZ-NH X 13 ARG NE-CZ-NH H 13 ARG NE-CZ-NH B 83 ARG NE-CZ-NH M 83 ARG NE-CZ-NH K 83 ARG NE-CZ-NH U 83 ARG NE-CZ-NH W 83 ARG NE-CZ-NH S 83 ARG NE-CZ-NH Q 83 ARG NE-CZ-NH B 83 ARG NE-CZ-NH E 13 ARG NE-CZ-NH G 13 ARG NE-CZ-NH M 83 ARG NE-CZ-NH

15 Page 15 Full wwpdb X-ray Structure Validation Report 4Z5R Mol Chain Res Type Atoms Z Observed( o ) Ideal( o ) 3 K 83 ARG NE-CZ-NH N 13 ARG NE-CZ-NH U 83 ARG NE-CZ-NH Q 83 ARG NE-CZ-NH W 83 ARG NE-CZ-NH S 83 ARG NE-CZ-NH D 13 ARG NE-CZ-NH I 13 ARG NE-CZ-NH H 13 ARG NE-CZ-NH F 13 ARG NE-CZ-NH X 13 ARG NE-CZ-NH Z 13 CA-CB-CG B 13 CA-CB-CG U 13 CA-CB-CG E 13 ARG CG-CD-NE I 13 ARG CG-CD-NE Y 27(B) CG1-CB-CG Z 83 ARG CD-NE-CZ D 13 ARG CG-CD-NE G 13 ARG CG-CD-NE N 13 ARG CG-CD-NE F 13 ARG CG-CD-NE J 27(B) CG1-CB-CG X 13 ARG CG-CD-NE R 27(B) CG1-CB-CG H 13 ARG CG-CD-NE L 27(B) CG1-CB-CG V 27(B) CG1-CB-CG P 27(B) CG1-CB-CG A 27(B) CG1-CB-CG Z 83 ARG NE-CZ-NH T 27(B) CG1-CB-CG N 13 ARG CD-NE-CZ H 13 ARG CD-NE-CZ F 13 ARG CD-NE-CZ G 13 ARG CD-NE-CZ X 13 ARG CD-NE-CZ U 13 CB-CG-CD I 13 ARG CD-NE-CZ D 13 ARG CD-NE-CZ E 13 ARG CD-NE-CZ Z 83 ARG NE-CZ-NH

16 Page 16 Full wwpdb X-ray Structure Validation Report 4Z5R Mol Chain Res Type Atoms Z Observed( o ) Ideal( o ) 3 B 13 CB-CG-CD Z 13 CB-CG-CD N 45 ASN N-CA-C G 33 ARG NE-CZ-NH N 33 ARG NE-CZ-NH B 83 ARG CD-NE-CZ Q 83 ARG CD-NE-CZ S 83 ARG CD-NE-CZ W 83 ARG CD-NE-CZ N 33 ARG NE-CZ-NH U 83 ARG CD-NE-CZ K 83 ARG CD-NE-CZ M 83 ARG CD-NE-CZ I 33 ARG NE-CZ-NH B 13 CG-CD-NE W 13 CG-CD-OE F 33 ARG NE-CZ-NH E 33 ARG NE-CZ-NH D 33 ARG NE-CZ-NH F 33 ARG NE-CZ-NH There are no chirality outliers. All (12) planarity outliers are listed below: Mol Chain Res Type Group 1 D 13 ARG Sidechain 1 E 13 ARG Sidechain 1 F 13 ARG Sidechain 1 G 13 ARG Sidechain 1 H 13 ARG Sidechain 1 I 13 ARG Sidechain 1 N 13 ARG Sidechain 1 N 44 Peptide 1 N 49 Peptide 3 Q 83 ARG Sidechain 1 X 13 ARG Sidechain 3 Z 83 ARG Sidechain

17 Page 17 Full wwpdb X-ray Structure Validation Report 4Z5R 5.2 Too-close contacts i In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes. Mol Chain Non-H H(model) H(added) Clashes Symm-Clashes 1 D E F G H I N X A J L P R T V Y B K M Q S U W Z F G J L P V All All The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 3. All (235) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

18 Page 18 Full wwpdb X-ray Structure Validation Report 4Z5R Atom-1 Atom-2 Interatomic Clash distance (Å) overlap (Å) 2:V:39::NZ 4:V:302:SO4:O :G:125:ARG:CZ 3:Q:56:ILE:HD :B:27:TYR:O 3:B:76:ARG:NH :Y:27(D)::HG22 2:Y:29::H :Q:27:TYR:O 3:Q:76:ARG:NH :K:27:TYR:O 3:K:76:ARG:NH :Z:27:TYR:O 3:Z:76:ARG:NH :M:27:TYR:O 3:M:76:ARG:NH :A:27(D)::HG22 2:A:29::H :J:27(D)::HG22 2:J:29::H :S:27:TYR:O 3:S:76:ARG:NH :P:27(D)::HG22 2:P:29::H :W:27:TYR:O 3:W:76:ARG:NH :U:27:TYR:O 3:U:76:ARG:NH :T:27(D)::HG22 2:T:29::H :M:158:ALA:HA 1:G:31::HE :R:27(D)::HG22 2:R:29::H :L:27(D)::HG22 2:L:29::H :V:27(D)::HG22 2:V:29::H :K:158:ALA:HA 1:F:31::HE :R:60::OG 3:U:68::OG :X:148:MET:HG2 2:Y:27(D)::HG :R:58::O 3:U:82(A):ASN:ND :V:167::HB3 2:V:170::OD :X:148:MET:HG2 2:Y:27(D)::CG :D:23::O 3:W:187::OG :E:45:ASN:OD1 1:E:46::N :G:141::OE1 1:G:144:ARG:NH :F:125:ARG:CZ 3:W:56:ILE:HD :F:68::HB2 1:X:89:TYR:OH :Z:13::NE2 1:N:28::O :J:149::HA 2:J:153:ALA:O :R:186:TYR:O 2:R:192:TYR:OH :T:186:TYR:O 2:T:192:TYR:OH :D:49::O 1:D:50:ALA:HB :E:141::OE1 1:E:144:ARG:NH :F:89:TYR:OH 1:X:68::HB :N:141::OE1 1:N:144:ARG:NH :E:45:ASN:O 1:E:47:PHE:N :G:125:ARG:HD2 3:Q:54:TYR:CE :Z:13::HE22 1:N:28::C :X:141::OE1 1:X:144:ARG:NH

19 Page 19 Full wwpdb X-ray Structure Validation Report 4Z5R Atom-1 Atom-2 Interatomic Clash distance (Å) overlap (Å) 3:Z:82(A):ASN:OD1 2:A:54::HD :V:209:PHE:HB2 2:V:213::OE :I:148:MET:HG2 2:T:27(D)::HG :I:141::OE1 1:I:144:ARG:NH :H:125:ARG:CZ 3:S:56:ILE:HD :R:60::HG 3:U:68::HG :Z:13::NE2 1:N:28::C :Z:13::NE2 1:N:28::HA :Z:13::CD 1:N:28::HA :H:125:ARG:HD2 3:S:54:TYR:CE :F:141::OE1 1:F:144:ARG:NH :T:176::O 2:T:176::OG :K:187::OG 1:F:23::O :F:120:ARG:HB3 1:X:100:ILE:HD :J:142:ARG:HD2 2:J:163::HG :K:95:TRP:HB2 3:K:99:PHE:O :I:148:MET:HG2 2:T:27(D)::CG :U:24::OG1 3:U:76:ARG:NH :H:141::OE1 1:H:144:ARG:NH :Z:13::OE1 1:N:28::HA :F:102::O 1:F:103::C :D:49::O 1:D:50:ALA:CB :Q:95:TRP:HB2 3:Q:99:PHE:O :M:122:PHE:HB2 3:M:141::HB :R:60::HB2 3:U:68::HB :Q:24::OG1 3:Q:76:ARG:NH :R:159::HB2 2:R:179::HA :D:141::OE1 1:D:144:ARG:NH :V:186:TYR:O 2:V:192:TYR:OH :M:178::HD23 3:M:178::C :R:61:ARG:HA 3:U:68::HG :M:95:TRP:HB2 3:M:99:PHE:O :Q:119::HB3 3:Q:145:TYR:HB :R:60::CB 3:U:68::OG :X:49::O 1:X:51::N :S:24::OG1 3:S:76:ARG:NH :U:201::N 3:U:202::CD :W:24::OG1 3:W:76:ARG:NH :I:96::O 1:I:100:ILE:HG :G:125:ARG:HD2 3:Q:54:TYR:CD :F:49::O 1:F:50:ALA:CB

20 Page 20 Full wwpdb X-ray Structure Validation Report 4Z5R Atom-1 Atom-2 Interatomic Clash distance (Å) overlap (Å) 2:T:160::HE22 3:U:171::HA :F:65:ASN:O 1:X:89:TYR:OH :H:31::HE2 3:U:13::HG :Y:94:ILE:HD13 3:Z:58:ASN:HB :L:108:ARG:HD2 2:L:171::HB :D:45:ASN:OD1 1:D:46::N :Z:24::OG1 3:Z:76:ARG:NH :A:163::HG22 2:A:175::HD :U:95:TRP:HB2 3:U:99:PHE:O :B:24::OG1 3:B:76:ARG:NH :S:197:ASN:ND2 3:S:208::OD :F:111:MET:HB2 1:F:114::HB :T:192:TYR:HB2 2:T:209:PHE:CE :W:119::HD2 3:W:205::HG :X:144:ARG:NH1 2:Y:29::OG :Q:141::HD12 3:Q:178::O :F:100:ILE:HG21 1:X:124::HE :Z:82(A):ASN:HD21 2:A:54::HD :X:96::O 1:X:100:ILE:HG :X:146::OE1 1:X:149:ARG:NH :I:146::OE1 1:I:149:ARG:NH :T:161::HA 2:T:176::O :F:89:TYR:OH 1:X:68::CB :M:24::OG1 3:M:76:ARG:NH :G:35::HB3 3:Q:33:ILE:HD :B:95:TRP:HB2 3:B:99:PHE:O :S:95:TRP:HB2 3:S:99:PHE:O :T:136::HD12 2:T:136::N :M:148::OE2 3:M:149::HA :W:95:TRP:HB2 3:W:99:PHE:O :F:68::CB 1:X:89:TYR:OH :K:95:TRP:CD1 3:K:95:TRP:C :L:210:ASN:O 2:L:213::HB :T:167::O 2:T:171::HA :F:103::HG12 1:F:103::O :H:146::OE1 1:H:149:ARG:NH :N:96::O 1:N:100:ILE:HG :U:95:TRP:CD1 3:U:95:TRP:C :V:24:ARG:CG 3:S:187::HB :K:24::OG1 3:K:76:ARG:NH :W:203::O 3:W:204:ASN:C

21 Page 21 Full wwpdb X-ray Structure Validation Report 4Z5R Atom-1 Atom-2 Interatomic Clash distance (Å) overlap (Å) 1:H:96::O 1:H:100:ILE:HG :H:125:ARG:HD2 3:S:54:TYR:CZ :X:22:ARG:HD2 2:Y:30:TYR:OH :X:53:ILE:N 1:X:54::HD :Z:95:TRP:HB2 3:Z:99:PHE:O :G:96::O 1:G:100:ILE:HG :K:51:ILE:HG13 3:K:57::HG :L:148:TRP:HB2 2:L:155::HB :D:47:PHE:HD1 1:D:51::OE :M:51:ILE:HG13 3:M:57::HG :T:136::HD21 2:T:196::HG :E:146::OE1 1:E:149:ARG:NH :R:60::HB2 3:U:68::CB :S:95:TRP:CD1 3:S:95:TRP:C :H:31::HE2 3:U:13::CG :I:42::HG2 1:I:115::HA :F:35::HB3 3:W:33:ILE:HD :W:95:TRP:C 3:W:95:TRP:CD :X:42::HG2 1:X:115::HA :G:119::O 1:G:122:TYR:HB :K:196::O 3:K:196::SG :N:53:ILE:N 1:N:54::HD :F:146::OE1 1:F:149:ARG:NH :Z:95:TRP:C 3:Z:95:TRP:CD :F:96::O 1:F:100:ILE:HG :E:53:ILE:N 1:E:54::HD :L:123::HG3 2:L:124::N :Q:11::HB2 3:Q:147::HG :D:146::OE1 1:D:149:ARG:NH :L:39::HE2 2:L:81::O :B:119::HB3 3:B:145:TYR:HB :D:42::HG2 1:D:115::HA :E:124::O 1:E:128::HG :F:48::O 1:F:49::C :P:6::N 2:P:100::OE :P:39::HE2 2:P:81::O :Q:95:TRP:CD1 3:Q:95:TRP:C :W:51:ILE:HG13 3:W:57::HG :I:43:PHE:O 1:I:44::C :G:42::HG2 1:G:115::HA :N:146::OE1 1:N:149:ARG:NH

22 Page 22 Full wwpdb X-ray Structure Validation Report 4Z5R Atom-1 Atom-2 Interatomic Clash distance (Å) overlap (Å) 2:V:26::HB3 3:S:191::HG :B:51:ILE:HG13 3:B:57::HG :V:39::HE2 2:V:81::O :X:49::C 1:X:51::H :Z:13::HE22 1:N:28::HA :M:95:TRP:CD1 3:M:95:TRP:C :P:11::HD23 2:P:11::C :T:182::OG 2:T:185::HB :H:42::HG2 1:H:115::HA :F:124::O 1:F:128::HG :V:11::C 2:V:11::HD :V:167::CB 2:V:170::OD :U:85::HB3 1:X:134::HE :H:53:ILE:N 1:H:54::HD :L:147::HB3 2:L:195::HB :M:200::ND1 3:M:203::OG :I:30::O 1:I:33:ARG:HG :I:53:ILE:N 1:I:54::HD :N:42::HG2 1:N:115::HA :S:51:ILE:HG13 3:S:57::HG :P:24:ARG:HB2 2:P:24:ARG:HE :S:198::HG12 3:S:199:ASN:N :U:51:ILE:HG13 3:U:57::HG :X:111:MET:HB2 1:X:114::HB :P:149::HG2 2:P:154::HD :B:95:TRP:CD1 3:B:95:TRP:C :G:53:ILE:N 1:G:54::HD :V:149::HE2 2:V:154::CD :X:148:MET:CG 2:Y:27(D)::CG :Z:51:ILE:HG13 3:Z:57::HG :D:53:ILE:N 1:D:54::HD :Z:13::NE2 1:N:28::CA :A:24:ARG:HE 2:A:24:ARG:HB :F:53:ILE:N 1:F:54::HD :L:11::C 2:L:11::HD :J:146::HG12 2:J:147::N :P:149::HA 2:P:153:ALA:O :Q:201::N 3:Q:202::CD :Z:13::HE22 1:N:28::CA :A:209:PHE:C 2:A:209:PHE:CD :F:42::HG2 1:F:115::HA

23 Page 23 Full wwpdb X-ray Structure Validation Report 4Z5R Atom-1 Atom-2 Interatomic Clash distance (Å) overlap (Å) 2:P:182::OG 2:P:185::HB :T:94:ILE:HD13 3:U:58:ASN:HB :N:22:ARG:HD2 2:A:30:TYR:OH :E:119::O 1:E:122:TYR:HB :X:19:ALA:HA 1:X:148:MET:HE :D:96::O 1:D:100:ILE:HG :K:119::HB3 3:K:145:TYR:HB :N:46::O 1:N:48::N :N:30::O 1:N:33:ARG:HG :T:24:ARG:HE 2:T:24:ARG:HB :E:42::HG2 1:E:115::HA :F:49::O 1:F:50:ALA:HB :R:140:TYR:CG 2:R:141::HA :T:145::HB3 2:T:197::HB :T:39::HE2 2:T:81::O :X:148:MET:CG 2:Y:27(D)::HG :A:39::HE2 2:A:81::O :P:142:ARG:HD2 2:P:163::HG :W:66:ARG:NH2 3:W:86::OD :R:39::HE2 2:R:81::O :A:11::HD23 2:A:11::C :N:124::O 1:N:128::HG :F:30::O 1:F:33:ARG:HG :D:124::O 1:D:128::HG :J:39::HE2 2:J:81::O :Q:127::O 3:Q:128::CB :A:142:ARG:HD2 2:A:163::HG :S:178::HD23 3:S:178::C :X:30::O 1:X:33:ARG:HG All (5) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied. Atom-1 Atom-2 Interatomic Clash distance (Å) overlap (Å) 3:S:13::NE2 1:I:27:PHE:CB[1_655] :J:202::OG 1:G:132::OE2[1_556] :D:89:TYR:OH 1:N:65:ASN:O[2_645] :G:65:ASN:O 1:I:89:TYR:OH[1_554] :X:23::O 3:B:113::CB[1_455]

24 Page 24 Full wwpdb X-ray Structure Validation Report 4Z5R 5.3 Torsion angles i Protein backbone i In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution. The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues. Mol Chain Analysed Favoured Allowed Outliers Percentiles 1 D 137/165 (83%) 131 (96%) 4 (3%) 2 (2%) E 137/165 (83%) 131 (96%) 3 (2%) 3 (2%) F 134/165 (81%) 127 (95%) 4 (3%) 3 (2%) G 131/165 (79%) 126 (96%) 4 (3%) 1 (1%) H 133/165 (81%) 128 (96%) 4 (3%) 1 (1%) I 131/165 (79%) 126 (96%) 5 (4%) N 141/165 (86%) 129 (92%) 8 (6%) 4 (3%) X 131/165 (79%) 126 (96%) 5 (4%) A 215/218 (99%) 200 (93%) 14 (6%) 1 (0%) J 215/218 (99%) 207 (96%) 8 (4%) L 215/218 (99%) 204 (95%) 10 (5%) 1 (0%) P 215/218 (99%) 207 (96%) 8 (4%) R 215/218 (99%) 203 (94%) 11 (5%) 1 (0%) T 215/218 (99%) 207 (96%) 8 (4%) V 215/218 (99%) 207 (96%) 8 (4%) Y 108/218 (50%) 103 (95%) 5 (5%) B 209/225 (93%) 198 (95%) 9 (4%) 2 (1%) K 209/225 (93%) 201 (96%) 8 (4%) M 209/225 (93%) 199 (95%) 9 (4%) 1 (0%) Q 209/225 (93%) 200 (96%) 8 (4%) 1 (0%) S 209/225 (93%) 198 (95%) 11 (5%) U 209/225 (93%) 198 (95%) 10 (5%) 1 (0%) W 209/225 (93%) 200 (96%) 8 (4%) 1 (0%) Z 115/225 (51%) 112 (97%) 3 (3%) All All 4266/4864 (88%) 4068 (95%) 175 (4%) 23 (0%) 31 71

25 Page 25 Full wwpdb X-ray Structure Validation Report 4Z5R All (23) Ramachandran outliers are listed below: Mol Chain Res Type 1 E 46 3 U 204 ASN 1 N 47 PHE 1 N 48 1 D 50 ALA 1 E 48 2 L M F 50 ALA 1 G R N B F D 46 1 F 48 3 W 204 ASN 2 A Q 54 TYR 1 H 50 ALA 1 N 50 ALA 1 E B Protein sidechains i In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution. The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues. Mol Chain Analysed Rotameric Outliers Percentiles 1 D 129/152 (85%) 121 (94%) 8 (6%) E 129/152 (85%) 120 (93%) 9 (7%) F 128/152 (84%) 120 (94%) 8 (6%) G 124/152 (82%) 116 (94%) 8 (6%) H 127/152 (84%) 119 (94%) 8 (6%) I 125/152 (82%) 115 (92%) 10 (8%) 13 43

26 Page 26 Full wwpdb X-ray Structure Validation Report 4Z5R Mol Chain Analysed Rotameric Outliers Percentiles 1 N 133/152 (88%) 121 (91%) 12 (9%) X 126/152 (83%) 117 (93%) 9 (7%) A 192/193 (100%) 187 (97%) 5 (3%) J 192/193 (100%) 182 (95%) 10 (5%) L 192/193 (100%) 182 (95%) 10 (5%) P 192/193 (100%) 181 (94%) 11 (6%) R 192/193 (100%) 185 (96%) 7 (4%) T 192/193 (100%) 183 (95%) 9 (5%) V 192/193 (100%) 183 (95%) 9 (5%) Y 96/193 (50%) 90 (94%) 6 (6%) B 181/193 (94%) 175 (97%) 6 (3%) K 181/193 (94%) 172 (95%) 9 (5%) M 181/193 (94%) 172 (95%) 9 (5%) Q 181/193 (94%) 170 (94%) 11 (6%) S 181/193 (94%) 173 (96%) 8 (4%) U 181/193 (94%) 171 (94%) 10 (6%) W 181/193 (94%) 169 (93%) 12 (7%) Z 99/193 (51%) 94 (95%) 5 (5%) All All 3827/4304 (89%) 3618 (94%) 209 (6%) All (209) residues with a non-rotameric sidechain are listed below: Mol Chain Res Type 1 D 11 1 D 42 1 D 59 MET 1 D 61 1 D 82 1 D D 144 ARG 1 D 149 ARG 2 J 3 2 J 4 MET 2 J 24 ARG 2 J J 126

27 Page 27 Full wwpdb X-ray Structure Validation Report 4Z5R Mol Chain Res Type 2 J J 142 ARG 2 J J J K 12 3 K 95 TRP 3 K K K K K K K E 11 1 E 42 1 E 59 MET 1 E 61 1 E 82 1 E 92 1 E E 144 ARG 1 E 149 ARG 2 L 3 2 L 4 MET 2 L 24 ARG 2 L L L 108 ARG 2 L L L L M 6 3 M 12 3 M 95 TRP 3 M M M M M M 196

28 Page 28 Full wwpdb X-ray Structure Validation Report 4Z5R Mol Chain Res Type 1 F 11 1 F 42 1 F 59 MET 1 F 61 1 F 82 1 F F 144 ARG 1 F 149 ARG 2 V 3 2 V 4 MET 2 V 12 2 V 14 2 V 24 ARG 2 V V V V W 12 3 W 95 TRP 3 W W W W W W W W W W G 9 1 G 11 1 G 42 1 G 59 MET 1 G 61 1 G 82 1 G 144 ARG 1 G 149 ARG 2 P 3 2 P 4 MET 2 P 14 2 P 24 ARG 2 P 29

29 Page 29 Full wwpdb X-ray Structure Validation Report 4Z5R Mol Chain Res Type 2 P P P 142 ARG 2 P 152 ASN 2 P P Q 12 3 Q 95 TRP 3 Q Q Q Q Q Q Q Q Q H 11 1 H 42 1 H 59 MET 1 H 61 1 H 82 1 H H 144 ARG 1 H 149 ARG 2 R 3 2 R 4 MET 2 R 14 2 R 24 ARG 2 R R R S 12 3 S 95 TRP 3 S S S S S S I 11 1 I 42

30 Page 30 Full wwpdb X-ray Structure Validation Report 4Z5R Mol Chain Res Type 1 I 59 MET 1 I 61 1 I 82 1 I 92 1 I I I 144 ARG 1 I 149 ARG 2 T 3 2 T 4 MET 2 T 24 ARG 2 T T T 142 ARG 2 T T T U 12 3 U 13 3 U 95 TRP 3 U U U U U U U X 11 1 X 42 1 X 59 MET 1 X 61 1 X 82 1 X 92 1 X 144 ARG 1 X 148 MET 1 X 149 ARG 2 Y 3 2 Y 4 MET 2 Y 12 2 Y 14 2 Y 24 ARG 2 Y 100

31 Page 31 Full wwpdb X-ray Structure Validation Report 4Z5R Mol Chain Res Type 3 Z 12 3 Z 13 3 Z 83 ARG 3 Z 95 TRP 3 Z N 9 1 N 11 1 N 42 1 N 49 1 N 59 MET 1 N 61 1 N 82 1 N 144 ARG 1 N 148 MET 1 N 149 ARG 1 N N A 3 2 A 4 MET 2 A 14 2 A 24 ARG 2 A B 12 3 B 13 3 B 95 TRP 3 B B 155 ASN 3 B 201 Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (10) such sidechains are listed below: Mol Chain Res Type 2 J L L 152 ASN 2 L V Q 199 ASN 2 R X Y 79 1 N 158

32 Page 32 Full wwpdb X-ray Structure Validation Report 4Z5R RNA i There are no RNA molecules in this entry. 5.4 Non-standard residues in protein, DNA, RNA chains i There are no non-standard protein/dna/rna residues in this entry. 5.5 Carbohydrates i There are no carbohydrates in this entry. 5.6 Ligand geometry i 8 ligands are modelled in this entry. In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with Z > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles). Mol Type Chain Res Link Bond lengths Bond angles Counts RMSZ # Z > 2 Counts RMSZ # Z > 2 4 SO4 F 201-4,4, ,6, SO4 G 501-4,4, ,6, SO4 J 301-4,4, ,6, SO4 J 302-4,4, ,6, SO4 L 301-4,4, ,6, SO4 P 301-4,4, ,6, SO4 V 301-4,4, ,6, SO4 V 302-4,4, ,6, In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. - means no outliers of that kind were identified. Mol Type Chain Res Link Chirals Torsions Rings 4 SO4 F /0/0/0 0/0/0/0 4 SO4 G /0/0/0 0/0/0/0

33 Page 33 Full wwpdb X-ray Structure Validation Report 4Z5R Mol Type Chain Res Link Chirals Torsions Rings 4 SO4 J /0/0/0 0/0/0/0 4 SO4 J /0/0/0 0/0/0/0 4 SO4 L /0/0/0 0/0/0/0 4 SO4 P /0/0/0 0/0/0/0 4 SO4 V /0/0/0 0/0/0/0 4 SO4 V /0/0/0 0/0/0/0 There are no bond length outliers. There are no bond angle outliers. There are no chirality outliers. There are no torsion outliers. There are no ring outliers. 1 monomer is involved in 1 short contact: Mol Chain Res Type Clashes Symm-Clashes 4 V 302 SO Other polymers i There are no such residues in this entry. 5.8 Polymer linkage issues i There are no chain breaks in this entry.

34 Page 34 Full wwpdb X-ray Structure Validation Report 4Z5R 6 Fit of model and data i 6.1 Protein, DNA and RNA chains i In the following table, the column labelled #RSRZ> 2 contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95 th percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled Q< 0.9 lists the number of (and percentage) of residues with an average occupancy less than 0.9. Mol Chain Analysed <RSRZ> #RSRZ>2 OWAB(Å 2 ) Q<0.9 1 D 141/165 (85%) (2%) , 70, 120, E 141/165 (85%) (1%) , 71, 122, F 140/165 (84%) (2%) , 70, 121, G 137/165 (83%) (1%) , 61, 103, (0%) 1 H 139/165 (84%) (2%) , 80, 121, I 137/165 (83%) (2%) , 74, 104, N 145/165 (87%) (4%) , 83, 144, X 137/165 (83%) (2%) , 82, 115, A 217/218 (99%) (21%) , 96, 158, (1%) 2 J 217/218 (99%) , 54, 74, (0%) 2 L 217/218 (99%) , 52, 71, P 217/218 (99%) , 53, 73, R 217/218 (99%) (12%) , 84, 136, T 217/218 (99%) (0%) , 86, 110, V 217/218 (99%) , 57, 78, Y 110/218 (50%) , 80, 102, B 213/225 (94%) (9%) , 100, 159, K 213/225 (94%) , 54, 79, M 213/225 (94%) (0%) , 57, 84, Q 213/225 (94%) (0%) , 54, 81, S 213/225 (94%) (5%) , 85, 136, U 213/225 (94%) (10%) , 85, 134, W 213/225 (94%) (0%) , 58, 85, Z 117/225 (52%) , 82, 105, 116 0

35 Page 35 Full wwpdb X-ray Structure Validation Report 4Z5R Mol Chain Analysed <RSRZ> #RSRZ>2 OWAB(Å 2 ) Q<0.9 All All 4354/4864 (89%) (3%) , 71, 131, (0%) All (163) RSRZ outliers are listed below: Mol Chain Res Type RSRZ 3 B A A U R A A 209 PHE N A R S D B E 47 PHE A A A U F 111 MET B A B F A B I 45 ASN R 193 ALA A 192 TYR R 192 TYR H 45 ASN A F 47 PHE A 148 TRP A D A R

36 Page 36 Full wwpdb X-ray Structure Validation Report 4Z5R Mol Chain Res Type RSRZ 3 U 194 TYR D 47 PHE U U A X N 47 PHE A N B H D U G A A 130 ALA U R B U U 197 ASN B I A R 209 PHE B 125 ALA U A Q F A U A B 122 PHE U B B A U A S B 194 TYR 2.8

37 Page 37 Full wwpdb X-ray Structure Validation Report 4Z5R Mol Chain Res Type RSRZ 3 S B A A 116 PHE N A A 184 ALA S B A 186 TYR R R S 137 ALA R 118 PHE R A 118 PHE S U 158 ALA U 137 ALA R H E S 194 TYR M U A A A S S X N 45 ASN A R R R S B A H B A 152 ASN 2.4

38 Page 38 Full wwpdb X-ray Structure Validation Report 4Z5R Mol Chain Res Type RSRZ 2 R N R I T 210 ASN U U R 186 TYR X 111 MET S 122 PHE U R U 136 ALA R A A R G 45 ASN R B 137 ALA A U 125 ALA A R 148 TRP U A B I 111 MET R A A A N R 130 ALA R 210 ASN B R R A 117 ILE A S W

39 Page 39 Full wwpdb X-ray Structure Validation Report 4Z5R 6.2 Non-standard residues in protein, DNA, RNA chains i There are no non-standard protein/dna/rna residues in this entry. 6.3 Carbohydrates i There are no carbohydrates in this entry. 6.4 Ligands i In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95 th percentile and maximum values of B factors of atoms in the group. The column labelled Q< 0.9 lists the number of atoms with occupancy less than 0.9. Mol Type Chain Res Atoms RSCC RSR B-factors(Å 2 ) Q<0.9 4 SO4 J 302 5/ ,86,93, SO4 P 301 5/ ,70,78, SO4 J 301 5/ ,76,85, SO4 F 201 5/ ,97,109, SO4 V 301 5/ ,74,85, SO4 G 501 5/ ,86,97, SO4 L 301 5/ ,69,81, SO4 V 302 5/ ,80,93, Other polymers i There are no such residues in this entry.

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 13, 2018 04:03 pm GMT PDB ID : 5NMJ Title : Chicken GRIFIN (crystallisation ph: 6.5) Authors : Ruiz, F.M.; Romero, A. Deposited on : 2017-04-06 Resolution

More information

wwpdb X-ray Structure Validation Summary Report

wwpdb X-ray Structure Validation Summary Report wwpdb X-ray Structure Validation Summary Report io Jan 31, 2016 06:45 PM GMT PDB ID : 1CBS Title : CRYSTAL STRUCTURE OF CELLULAR RETINOIC-ACID-BINDING PROTEINS I AND II IN COMPLEX WITH ALL-TRANS-RETINOIC

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 8, 2018 08:34 pm GMT PDB ID : 1RUT Title : Complex of LMO4 LIM domains 1 and 2 with the ldb1 LID domain Authors : Deane, J.E.; Ryan, D.P.; Maher, M.J.;

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 8, 2018 06:13 pm GMT PDB ID : 5G5C Title : Structure of the Pyrococcus furiosus Esterase Pf2001 with space group C2221 Authors : Varejao, N.; Reverter,

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Jan 28, 2019 11:10 AM EST PDB ID : 6A5H Title : The structure of [4+2] and [6+4] cyclase in the biosynthetic pathway of unidentified natural product Authors

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 14, 2018 02:00 pm GMT PDB ID : 3RRQ Title : Crystal structure of the extracellular domain of human PD-1 Authors : Lazar-Molnar, E.; Ramagopal, U.A.; Nathenson,

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 8, 2018 10:24 pm GMT PDB ID : 1A30 Title : HIV-1 PROTEASE COMPLEXED WITH A TRIPEPTIDE INHIBITOR Authors : Louis, J.M.; Dyda, F.; Nashed, N.T.; Kimmel,

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Jan 17, 2019 09:42 AM EST PDB ID : 6D3Z Title : Protease SFTI complex Authors : Law, R.H.P.; Wu, G. Deposited on : 2018-04-17 Resolution : 2.00 Å(reported)

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Jan 14, 2019 11:10 AM EST PDB ID : 6GYW Title : Crystal structure of DacA from Staphylococcus aureus Authors : Tosi, T.; Freemont, P.S.; Grundling, A. Deposited

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 10, 2018 01:44 am GMT PDB ID : 1MWP Title : N-TERMINAL DOMAIN OF THE AMYLOID PRECURSOR PROTEIN Authors : Rossjohn, J.; Cappai, R.; Feil, S.C.; Henry,

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Feb 17, 2018 01:16 am GMT PDB ID : 1IFT Title : RICIN A-CHAIN (RECOMBINANT) Authors : Weston, S.A.; Tucker, A.D.; Thatcher, D.R.; Derbyshire, D.J.; Pauptit,

More information

Full wwpdb/emdatabank EM Map/Model Validation Report i

Full wwpdb/emdatabank EM Map/Model Validation Report i Full wwpdb/emdatabank EM Map/Model Validation Report i Sep 25, 2018 07:01 PM EDT PDB ID : 6C0V EMDB ID: : EMD-7325 Title : Molecular structure of human P-glycoprotein in the ATP-bound, outwardfacing conformation

More information

Full wwpdb NMR Structure Validation Report i

Full wwpdb NMR Structure Validation Report i Full wwpdb NMR Structure Validation Report i Feb 17, 2018 06:22 am GMT PDB ID : 141D Title : SOLUTION STRUCTURE OF A CONSERVED DNA SEQUENCE FROM THE HIV-1 GENOME: RESTRAINED MOLECULAR DYNAMICS SIMU- LATION

More information

Full wwpdb/emdatabank EM Map/Model Validation Report i

Full wwpdb/emdatabank EM Map/Model Validation Report i Full wwpdb/emdatabank EM Map/Model Validation Report i Feb 20, 2018 02:57 pm GMT PDB ID : 3ZYS EMDB ID: : EMD-1949 Title : Human dynamin 1 deltaprd polymer stabilized with GMPPCP Authors : Chappie, J.S.;

More information

Full wwpdb/emdatabank EM Map/Model Validation Report io

Full wwpdb/emdatabank EM Map/Model Validation Report io Full wwpdb/emdatabank EM Map/Model Validation Report io Apr 11, 218 7:1 PM EDT PDB ID : 6CV EMDB ID: : EMD-7631 Title : Cryo-electron microscopy structure of infectious bronchitis coronavirus spike protein

More information

Full wwpdb/emdatabank EM Map/Model Validation Report i

Full wwpdb/emdatabank EM Map/Model Validation Report i Full wwpdb/emdatabank EM Map/Model Validation Report i Oct 9, 2018 11:26 AM EDT PDB ID : 5MLC EMDB ID: : EMD-3525 Title : Cryo-EM structure of the spinach chloroplast ribosome reveals the location of plastid-specific

More information

Full wwpdb/emdatabank EM Map/Model Validation Report io

Full wwpdb/emdatabank EM Map/Model Validation Report io Full wwpdb/emdatabank EM Map/Model Validation Report io Apr 9, 218 2:5 PM EDT PDB ID : 6AUI EMDB ID: : EMD-76 Title : Human ribonucleotide reductase large subunit (alpha) with datp and CDP Authors : Brignole,

More information

1.b What are current best practices for selecting an initial target ligand atomic model(s) for structure refinement from X-ray diffraction data?!

1.b What are current best practices for selecting an initial target ligand atomic model(s) for structure refinement from X-ray diffraction data?! 1.b What are current best practices for selecting an initial target ligand atomic model(s) for structure refinement from X-ray diffraction data?! Visual analysis: Identification of ligand density from

More information

Protein Data Bank Contents Guide: Atomic Coordinate Entry Format Description. Version Document Published by the wwpdb

Protein Data Bank Contents Guide: Atomic Coordinate Entry Format Description. Version Document Published by the wwpdb Protein Data Bank Contents Guide: Atomic Coordinate Entry Format Description Version 3.30 Document Published by the wwpdb This format complies with the PDB Exchange Dictionary (PDBx) http://mmcif.pdb.org/dictionaries/mmcif_pdbx.dic/index/index.html.

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 10, 2018 12:51 am GMT PDB ID : 1G59 Title : GLUTAMYL-TRNA SYNTHETASE COMPLEXED WITH TRNA(GLU). Authors : Sekine, S.; Nureki, O.; Shimada, A.; Vassylyev,

More information

FW 1 CDR 1 FW 2 CDR 2

FW 1 CDR 1 FW 2 CDR 2 Supplementary Figure 1 Supplementary Figure 1: Interface of the E9:Fas structure. The two interfaces formed by V H and V L of E9 with Fas are shown in stereo. The Fas receptor is represented as a surface

More information

Ramachandran Plot. 4ysz Phi (degrees) Plot statistics

Ramachandran Plot. 4ysz Phi (degrees) Plot statistics B Ramachandran Plot ~b b 135 b ~b ~l l Psi (degrees) 5-5 a A ~a L - -135 SER HIS (F) 59 (G) SER (B) ~b b LYS ASP ASP 315 13 13 (A) (F) (B) LYS ALA ALA 315 173 (E) 173 (E)(A) ~p p ~b - -135 - -5 5 135 (degrees)

More information

Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08 Å resolution: comparison with the Azotobacter vinelandii MoFe protein

Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08 Å resolution: comparison with the Azotobacter vinelandii MoFe protein Acta Cryst. (2015). D71, 274-282, doi:10.1107/s1399004714025243 Supporting information Volume 71 (2015) Supporting information for article: Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08

More information

Helpful resources for all X ray lectures Crystallization http://www.hamptonresearch.com under tech support: crystal growth 101 literature Spacegroup tables http://img.chem.ucl.ac.uk/sgp/mainmenu.htm Crystallography

More information

Protein Data Bank Contents Guide: Atomic Coordinate Entry Format Description. Version 3.0, December 1, 2006 Updated to Version 3.

Protein Data Bank Contents Guide: Atomic Coordinate Entry Format Description. Version 3.0, December 1, 2006 Updated to Version 3. Protein Data Bank Contents Guide: Atomic Coordinate Entry Format Description Version 3.0, December 1, 2006 Updated to Version 3.01 March 30, 2007 1. Introduction The Protein Data Bank (PDB) is an archive

More information

Garib N Murshudov MRC-LMB, Cambridge

Garib N Murshudov MRC-LMB, Cambridge Garib N Murshudov MRC-LMB, Cambridge Contents Introduction AceDRG: two functions Validation of entries in the DB and derived data Generation of new ligand description Jligand for link description Conclusions

More information

Manipulating Ligands Using Coot. Paul Emsley May 2013

Manipulating Ligands Using Coot. Paul Emsley May 2013 Manipulating Ligands Using Coot Paul Emsley May 2013 Ligand and Density... Ligand and Density... Ligand and Density... Protein-ligand complex models are often a result of subjective interpretation Scoring

More information

Electronic Supplementary Information (ESI) for Chem. Commun. Unveiling the three- dimensional structure of the green pigment of nitrite- cured meat

Electronic Supplementary Information (ESI) for Chem. Commun. Unveiling the three- dimensional structure of the green pigment of nitrite- cured meat Electronic Supplementary Information (ESI) for Chem. Commun. Unveiling the three- dimensional structure of the green pigment of nitrite- cured meat Jun Yi* and George B. Richter- Addo* Department of Chemistry

More information

Multivariate Analyses of Quality Metrics for Crystal Structures in the PDB Archive

Multivariate Analyses of Quality Metrics for Crystal Structures in the PDB Archive Article Multivariate Analyses of Quality Metrics for Crystal Structures in the PDB Archive Graphical Abstract Authors Chenghua Shao, Huanwang Yang, John D. Westbrook, Jasmine Y. Young, Christine Zardecki,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:1.138/nature1737 Supplementary Table 1 variant Description FSEC - 2B12 a FSEC - 6A1 a K d (leucine) c Leucine uptake e K (wild-type like) K (Y18F) K (TS) K (TSY) K288A mutant, lipid facing side chain

More information

Table 1. Crystallographic data collection, phasing and refinement statistics. Native Hg soaked Mn soaked 1 Mn soaked 2

Table 1. Crystallographic data collection, phasing and refinement statistics. Native Hg soaked Mn soaked 1 Mn soaked 2 Table 1. Crystallographic data collection, phasing and refinement statistics Native Hg soaked Mn soaked 1 Mn soaked 2 Data collection Space group P2 1 2 1 2 1 P2 1 2 1 2 1 P2 1 2 1 2 1 P2 1 2 1 2 1 Cell

More information

HOMOLOGY MODELING. The sequence alignment and template structure are then used to produce a structural model of the target.

HOMOLOGY MODELING. The sequence alignment and template structure are then used to produce a structural model of the target. HOMOLOGY MODELING Homology modeling, also known as comparative modeling of protein refers to constructing an atomic-resolution model of the "target" protein from its amino acid sequence and an experimental

More information

Report of protein analysis

Report of protein analysis Report of protein analysis By the WHAT IF program 2010-09-19 1 Introduction what check is the name of the validation option in what if. It doesn t matter whether you use the what check program or the what

More information

Problem Set 1

Problem Set 1 2006 7.012 Problem Set 1 Due before 5 PM on FRIDAY, September 15, 2006. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. For each of the following parts, pick

More information

April, The energy functions include:

April, The energy functions include: REDUX A collection of Python scripts for torsion angle Monte Carlo protein molecular simulations and analysis The program is based on unified residue peptide model and is designed for more efficient exploration

More information

Physiochemical Properties of Residues

Physiochemical Properties of Residues Physiochemical Properties of Residues Various Sources C N Cα R Slide 1 Conformational Propensities Conformational Propensity is the frequency in which a residue adopts a given conformation (in a polypeptide)

More information

Conformational Geometry of Peptides and Proteins:

Conformational Geometry of Peptides and Proteins: Conformational Geometry of Peptides and Proteins: Before discussing secondary structure, it is important to appreciate the conformational plasticity of proteins. Each residue in a polypeptide has three

More information

Q1 current best prac2ce

Q1 current best prac2ce Group- A Q1 current best prac2ce Star2ng from some common molecular representa2on with bond orders, configura2on on chiral centers (e.g. ChemDraw, SMILES) NEW! PDB should become resource for refinement

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11054 Supplementary Fig. 1 Sequence alignment of Na v Rh with NaChBac, Na v Ab, and eukaryotic Na v and Ca v homologs. Secondary structural elements of Na v Rh are indicated above the

More information

Viewing and Analyzing Proteins, Ligands and their Complexes 2

Viewing and Analyzing Proteins, Ligands and their Complexes 2 2 Viewing and Analyzing Proteins, Ligands and their Complexes 2 Overview Viewing the accessible surface Analyzing the properties of proteins containing thousands of atoms is best accomplished by representing

More information

The structure of Aquifex aeolicus FtsH in the ADP-bound state reveals a C2-symmetric hexamer

The structure of Aquifex aeolicus FtsH in the ADP-bound state reveals a C2-symmetric hexamer Volume 71 (2015) Supporting information for article: The structure of Aquifex aeolicus FtsH in the ADP-bound state reveals a C2-symmetric hexamer Marina Vostrukhina, Alexander Popov, Elena Brunstein, Martin

More information

Protein structure analysis. Risto Laakso 10th January 2005

Protein structure analysis. Risto Laakso 10th January 2005 Protein structure analysis Risto Laakso risto.laakso@hut.fi 10th January 2005 1 1 Summary Various methods of protein structure analysis were examined. Two proteins, 1HLB (Sea cucumber hemoglobin) and 1HLM

More information

IgE binds asymmetrically to its B cell receptor CD23

IgE binds asymmetrically to its B cell receptor CD23 Supplementary Information IgE binds asymmetrically to its B cell receptor CD23 Balvinder Dhaliwal 1*, Marie O. Y. Pang 2, Anthony H. Keeble 2,3, Louisa K. James 2,4, Hannah J. Gould 2, James M. McDonnell

More information

Figure 1. Molecules geometries of 5021 and Each neutral group in CHARMM topology was grouped in dash circle.

Figure 1. Molecules geometries of 5021 and Each neutral group in CHARMM topology was grouped in dash circle. Project I Chemistry 8021, Spring 2005/2/23 This document was turned in by a student as a homework paper. 1. Methods First, the cartesian coordinates of 5021 and 8021 molecules (Fig. 1) are generated, in

More information

Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets

Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets Supporting information Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets Wan-Na Chen, Christoph Nitsche, Kala Bharath Pilla, Bim Graham, Thomas

More information

Nature Structural and Molecular Biology: doi: /nsmb Supplementary Figure 1. Experimental approach for enhancement of unbiased Fo Fc maps.

Nature Structural and Molecular Biology: doi: /nsmb Supplementary Figure 1. Experimental approach for enhancement of unbiased Fo Fc maps. Supplementary Figure 1 Experimental approach for enhancement of unbiased Fo Fc maps. a, c, Unbiased Fo-Fc maps of the Tth 70S post-catalysis complex at 2.55 Å resolution with (a) or without (c) bulk solvent

More information

Stabilizing the CH2 domain of an Antibody by Engineering in an Enhanced Aromatic Sequon

Stabilizing the CH2 domain of an Antibody by Engineering in an Enhanced Aromatic Sequon Stabilizing the CH2 domain of an Antibody by Engineering in an Enhanced Aromatic Sequon Wentao Chen,, Leopold Kong, Stephen Connelly, Julia M. Dendle,, Yu Liu,, Ian A. Wilson,#, Evan T. Powers, *, Jeffery

More information

Introduction to Comparative Protein Modeling. Chapter 4 Part I

Introduction to Comparative Protein Modeling. Chapter 4 Part I Introduction to Comparative Protein Modeling Chapter 4 Part I 1 Information on Proteins Each modeling study depends on the quality of the known experimental data. Basis of the model Search in the literature

More information

Supplementary Figure 3 a. Structural comparison between the two determined structures for the IL 23:MA12 complex. The overall RMSD between the two

Supplementary Figure 3 a. Structural comparison between the two determined structures for the IL 23:MA12 complex. The overall RMSD between the two Supplementary Figure 1. Biopanningg and clone enrichment of Alphabody binders against human IL 23. Positive clones in i phage ELISA with optical density (OD) 3 times higher than background are shown for

More information

Supplementary figure 1. Comparison of unbound ogm-csf and ogm-csf as captured in the GIF:GM-CSF complex. Alignment of two copies of unbound ovine

Supplementary figure 1. Comparison of unbound ogm-csf and ogm-csf as captured in the GIF:GM-CSF complex. Alignment of two copies of unbound ovine Supplementary figure 1. Comparison of unbound and as captured in the GIF:GM-CSF complex. Alignment of two copies of unbound ovine GM-CSF (slate) with bound GM-CSF in the GIF:GM-CSF complex (GIF: green,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Results DNA binding property of the SRA domain was examined by an electrophoresis mobility shift assay (EMSA) using synthesized 12-bp oligonucleotide duplexes containing unmodified, hemi-methylated,

More information

Modelling Macromolecules with Coot

Modelling Macromolecules with Coot Modelling Macromolecules with Coot Overview Real Space Refinement A Sample of Tools Tools for Cryo-EM Tools for Ligands [Carbohydrates] Paul Emsley MRC Laboratory of Molecular Biology Acknowldegments,

More information

Report of protein analysis

Report of protein analysis Report of protein analysis By the WHAT IF program 2010-09-19 1 Introduction what check is the name of the validation option in what if. It doesn t matter whether you use the what check program or the what

More information

Structure and evolution of the spliceosomal peptidyl-prolyl cistrans isomerase Cwc27

Structure and evolution of the spliceosomal peptidyl-prolyl cistrans isomerase Cwc27 Acta Cryst. (2014). D70, doi:10.1107/s1399004714021695 Supporting information Volume 70 (2014) Supporting information for article: Structure and evolution of the spliceosomal peptidyl-prolyl cistrans isomerase

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Table of Contents Page Supplementary Table 1. Diffraction data collection statistics 2 Supplementary Table 2. Crystallographic refinement statistics 3 Supplementary Fig. 1. casic1mfc packing in the R3

More information

Protein structure. Protein structure. Amino acid residue. Cell communication channel. Bioinformatics Methods

Protein structure. Protein structure. Amino acid residue. Cell communication channel. Bioinformatics Methods Cell communication channel Bioinformatics Methods Iosif Vaisman Email: ivaisman@gmu.edu SEQUENCE STRUCTURE DNA Sequence Protein Sequence Protein Structure Protein structure ATGAAATTTGGAAACTTCCTTCTCACTTATCAGCCACCT...

More information

A New Generation of Crystallographic Validation Tools for the Protein Data Bank

A New Generation of Crystallographic Validation Tools for the Protein Data Bank Ways & Means A New Generation of Crystallographic Validation Tools for the Protein Data Bank Randy J. Read, 1, * Paul D. Adams, 2 W. Bryan Arendall, III, 3 Axel T. Brunger, 4 Paul Emsley, 5 Robbie P. Joosten,

More information

Sequential resonance assignments in (small) proteins: homonuclear method 2º structure determination

Sequential resonance assignments in (small) proteins: homonuclear method 2º structure determination Lecture 9 M230 Feigon Sequential resonance assignments in (small) proteins: homonuclear method 2º structure determination Reading resources v Roberts NMR of Macromolecules, Chap 4 by Christina Redfield

More information

LS1a Fall 2014 Problem Set #2 Due Monday 10/6 at 6 pm in the drop boxes on the Science Center 2 nd Floor

LS1a Fall 2014 Problem Set #2 Due Monday 10/6 at 6 pm in the drop boxes on the Science Center 2 nd Floor LS1a Fall 2014 Problem Set #2 Due Monday 10/6 at 6 pm in the drop boxes on the Science Center 2 nd Floor Note: Adequate space is given for each answer. Questions that require a brief explanation should

More information

Chapter 24. Stereochemistry and Validation of Macromolecular Structures. Alexander Wlodawer. Abstract. 1 Introduction

Chapter 24. Stereochemistry and Validation of Macromolecular Structures. Alexander Wlodawer. Abstract. 1 Introduction Chapter 24 Stereochemistry and Validation of Macromolecular Structures Abstract Macromolecular structure is governed by the strict rules of stereochemistry. Several approaches to the validation of the

More information

A new generation of crystallographic validation tools for the Protein Data Bank

A new generation of crystallographic validation tools for the Protein Data Bank A new generation of crystallographic validation tools for the Protein Data Bank Randy J. Read 1,*, Paul D. Adams 2, W. Bryan Arendall III 3, Axel T. Brunger 4, Paul Emsley 5, Robbie P. Joosten 6,7, Gerard

More information

Model Mélange. Physical Models of Peptides and Proteins

Model Mélange. Physical Models of Peptides and Proteins Model Mélange Physical Models of Peptides and Proteins In the Model Mélange activity, you will visit four different stations each featuring a variety of different physical models of peptides or proteins.

More information

DOCKING TUTORIAL. A. The docking Workflow

DOCKING TUTORIAL. A. The docking Workflow 2 nd Strasbourg Summer School on Chemoinformatics VVF Obernai, France, 20-24 June 2010 E. Kellenberger DOCKING TUTORIAL A. The docking Workflow 1. Ligand preparation It consists in the standardization

More information

Molecular Modeling lecture 2

Molecular Modeling lecture 2 Molecular Modeling 2018 -- lecture 2 Topics 1. Secondary structure 3. Sequence similarity and homology 2. Secondary structure prediction 4. Where do protein structures come from? X-ray crystallography

More information

NMR, X-ray Diffraction, Protein Structure, and RasMol

NMR, X-ray Diffraction, Protein Structure, and RasMol NMR, X-ray Diffraction, Protein Structure, and RasMol Introduction So far we have been mostly concerned with the proteins themselves. The techniques (NMR or X-ray diffraction) used to determine a structure

More information

Protein Struktur (optional, flexible)

Protein Struktur (optional, flexible) Protein Struktur (optional, flexible) 22/10/2009 [ 1 ] Andrew Torda, Wintersemester 2009 / 2010, AST nur für Informatiker, Mathematiker,.. 26 kt, 3 ov 2009 Proteins - who cares? 22/10/2009 [ 2 ] Most important

More information

Secondary Structure. Bioch/BIMS 503 Lecture 2. Structure and Function of Proteins. Further Reading. Φ, Ψ angles alone determine protein structure

Secondary Structure. Bioch/BIMS 503 Lecture 2. Structure and Function of Proteins. Further Reading. Φ, Ψ angles alone determine protein structure Bioch/BIMS 503 Lecture 2 Structure and Function of Proteins August 28, 2008 Robert Nakamoto rkn3c@virginia.edu 2-0279 Secondary Structure Φ Ψ angles determine protein structure Φ Ψ angles are restricted

More information

Protein Structures: Experiments and Modeling. Patrice Koehl

Protein Structures: Experiments and Modeling. Patrice Koehl Protein Structures: Experiments and Modeling Patrice Koehl Structural Bioinformatics: Proteins Proteins: Sources of Structure Information Proteins: Homology Modeling Proteins: Ab initio prediction Proteins:

More information

Automated identification of functional dynamic contact networks from X-ray crystallography

Automated identification of functional dynamic contact networks from X-ray crystallography 1 Automated identification of functional dynamic contact networks from X-ray crystallography Henry van den Bedem, Gira Bhabha, Kun Yang, Peter E. Wright and James S. Fraser Supplementary Figure 1 Supplementary

More information

Supporting Information. UV-induced ligand exchange in MHC class I protein crystals

Supporting Information. UV-induced ligand exchange in MHC class I protein crystals Supporting Information for the article entitled UV-induced ligand exchange in MHC class I protein crystals by Patrick H.N. Celie 1, Mireille Toebes 2, Boris Rodenko 3, Huib Ovaa 3, Anastassis Perrakis

More information

Housekeeping. Housekeeping. Molecules of Life: Biopolymers

Housekeeping. Housekeeping. Molecules of Life: Biopolymers Molecules of Life: Biopolymers Dr. Dale Hancock D.Hancock@mmb.usyd.edu.au Room 377 Biochemistry building Housekeeping Answers to the practise calculations and a narration are on WebT. Access these through

More information

Chapter 4: Amino Acids

Chapter 4: Amino Acids Chapter 4: Amino Acids All peptides and polypeptides are polymers of alpha-amino acids. lipid polysaccharide enzyme 1940s 1980s. Lipids membrane 1960s. Polysaccharide Are energy metabolites and many of

More information

Analyzing Molecular Conformations Using the Cambridge Structural Database. Jason Cole Cambridge Crystallographic Data Centre

Analyzing Molecular Conformations Using the Cambridge Structural Database. Jason Cole Cambridge Crystallographic Data Centre Analyzing Molecular Conformations Using the Cambridge Structural Database Jason Cole Cambridge Crystallographic Data Centre 1 The Cambridge Structural Database (CSD) 905,284* USOPEZ a natural product intermediate,

More information

Efficient Perception of Proteins and Nucleic Acids from Atomic Connectivity. Roger Sayle, Ph.D. NextMove Software, Cambridge, UK

Efficient Perception of Proteins and Nucleic Acids from Atomic Connectivity. Roger Sayle, Ph.D. NextMove Software, Cambridge, UK Efficient Perception of Proteins and Nucleic Acids from Atomic Connectivity Roger Sayle, Ph.D. NextMove Software, Cambridge, UK motivation Chemical Structure Normalization/Tautomers. IMI Open PHACTS suggest

More information

Rotamers in the CHARMM19 Force Field

Rotamers in the CHARMM19 Force Field Appendix A Rotamers in the CHARMM19 Force Field The people may be made to follow a path of action, but they may not be made to understand it. Confucius (551 BC - 479 BC) ( ) V r 1 (j),r 2 (j),r 3 (j),...,r

More information

Properties of amino acids in proteins

Properties of amino acids in proteins Properties of amino acids in proteins one of the primary roles of DNA (but not the only one!) is to code for proteins A typical bacterium builds thousands types of proteins, all from ~20 amino acids repeated

More information

Supplementary Information

Supplementary Information 1 Supplementary Information Figure S1 The V=0.5 Harker section of an anomalous difference Patterson map calculated using diffraction data from the NNQQNY crystal at 1.3 Å resolution. The position of the

More information

Resonance assignments in proteins. Christina Redfield

Resonance assignments in proteins. Christina Redfield Resonance assignments in proteins Christina Redfield 1. Introduction The assignment of resonances in the complex NMR spectrum of a protein is the first step in any study of protein structure, function

More information

Direct Method. Very few protein diffraction data meet the 2nd condition

Direct Method. Very few protein diffraction data meet the 2nd condition Direct Method Two conditions: -atoms in the structure are equal-weighted -resolution of data are higher than the distance between the atoms in the structure Very few protein diffraction data meet the 2nd

More information

Supplementary Materials for

Supplementary Materials for www.advances.sciencemag.org/cgi/content/full/1/7/e1500263/dc1 Supplementary Materials for Newton s cradle proton relay with amide imidic acid tautomerization in inverting cellulase visualized by neutron

More information

Identifying Interaction Hot Spots with SuperStar

Identifying Interaction Hot Spots with SuperStar Identifying Interaction Hot Spots with SuperStar Version 1.0 November 2017 Table of Contents Identifying Interaction Hot Spots with SuperStar... 2 Case Study... 3 Introduction... 3 Generate SuperStar Maps

More information

Coot Updates. Paul Emsley Sept 2016

Coot Updates. Paul Emsley Sept 2016 Coot Updates Paul Emsley Sept 2016 Coot 0.8.4 Released Patterson from intensities Fill-partial-residue uses Backrub-rotamers Sequence dialog is now dynamically updated Outliers Only in Ramachanran Plot

More information

X-ray Crystallography I. James Fraser Macromolecluar Interactions BP204

X-ray Crystallography I. James Fraser Macromolecluar Interactions BP204 X-ray Crystallography I James Fraser Macromolecluar Interactions BP204 Key take-aways 1. X-ray crystallography results from an ensemble of Billions and Billions of molecules in the crystal 2. Models in

More information

*Corresponding Author *K. F.: *T. H.:

*Corresponding Author *K. F.:   *T. H.: Theoretical Analysis of Activity Cliffs among Benzofuranone Class Pim1 Inhibitors Using the Fragment Molecular Orbital Method with Molecular Mechanics Poisson-Boltzmann Surface Area (FMO+MM-PBSA) Approach

More information

Coot, pyrogen & CCP4 SRS. Paul Emsley MRC Laboratory of Molecular Biology, Cambridge, UK June 2015

Coot, pyrogen & CCP4 SRS. Paul Emsley MRC Laboratory of Molecular Biology, Cambridge, UK June 2015 Coot, pyrogen & CCP4 SRS Paul Emsley MRC Laboratory of Molecular Biology, Cambridge, UK June 2015 Coot Updates JED-Flip (as it's currently known) added Torsion-spec-dependent rotation of ligand fragment

More information

Other Methods for Generating Ions 1. MALDI matrix assisted laser desorption ionization MS 2. Spray ionization techniques 3. Fast atom bombardment 4.

Other Methods for Generating Ions 1. MALDI matrix assisted laser desorption ionization MS 2. Spray ionization techniques 3. Fast atom bombardment 4. Other Methods for Generating Ions 1. MALDI matrix assisted laser desorption ionization MS 2. Spray ionization techniques 3. Fast atom bombardment 4. Field Desorption 5. MS MS techniques Matrix assisted

More information

Validation of Experimental Crystal Structures

Validation of Experimental Crystal Structures Validation of Experimental Crystal Structures Aim This use case focuses on the subject of validating crystal structures using tools to analyse both molecular geometry and intermolecular packing. Introduction

More information

Macromolecular Crystallography Part II

Macromolecular Crystallography Part II Molecular Biology Course 2010 Macromolecular Crystallography Part II University of Göttingen Dept. of Structural Chemistry November 2010 http://shelx.uni-ac.gwdg.de tg@shelx.uni-ac.gwdg.de Crystallography

More information

C H E M I S T R Y N A T I O N A L Q U A L I F Y I N G E X A M I N A T I O N SOLUTIONS GUIDE

C H E M I S T R Y N A T I O N A L Q U A L I F Y I N G E X A M I N A T I O N SOLUTIONS GUIDE C H E M I S T R Y 2 0 0 0 A T I A L Q U A L I F Y I G E X A M I A T I SLUTIS GUIDE Answers are a guide only and do not represent a preferred method of solving problems. Section A 1B, 2A, 3C, 4C, 5D, 6D,

More information

Table S1. Overview of used PDZK1 constructs and their binding affinities to peptides. Related to figure 1.

Table S1. Overview of used PDZK1 constructs and their binding affinities to peptides. Related to figure 1. Table S1. Overview of used PDZK1 constructs and their binding affinities to peptides. Related to figure 1. PDZK1 constru cts Amino acids MW [kda] KD [μm] PEPT2-CT- FITC KD [μm] NHE3-CT- FITC KD [μm] PDZK1-CT-

More information

G L. Achieving high quality protein-ligand X-ray structures for drug design. Oliver Smart Global Phasing Ltd

G L. Achieving high quality protein-ligand X-ray structures for drug design. Oliver Smart Global Phasing Ltd Achieving high quality protein-ligand X-ray structures for drug design Oliver Smart Global Phasing Ltd G L Structural Basis of Pharmacology: Deeper Understanding of Drug Discovery through Crystallography

More information

Biological Macromolecules

Biological Macromolecules Introduction for Chem 493 Chemistry of Biological Macromolecules Dr. L. Luyt January 2008 Dr. L. Luyt Chem 493-2008 1 Biological macromolecules are the molecules of life allow for organization serve a

More information

NMR parameters intensity chemical shift coupling constants 1D 1 H spectra of nucleic acids and proteins

NMR parameters intensity chemical shift coupling constants 1D 1 H spectra of nucleic acids and proteins Lecture #2 M230 NMR parameters intensity chemical shift coupling constants Juli Feigon 1D 1 H spectra of nucleic acids and proteins NMR Parameters A. Intensity (area) 1D NMR spectrum: integrated intensity

More information

Secondary and sidechain structures

Secondary and sidechain structures Lecture 2 Secondary and sidechain structures James Chou BCMP201 Spring 2008 Images from Petsko & Ringe, Protein Structure and Function. Branden & Tooze, Introduction to Protein Structure. Richardson, J.

More information

NH 2. Biochemistry I, Fall Term Sept 9, Lecture 5: Amino Acids & Peptides Assigned reading in Campbell: Chapter

NH 2. Biochemistry I, Fall Term Sept 9, Lecture 5: Amino Acids & Peptides Assigned reading in Campbell: Chapter Biochemistry I, Fall Term Sept 9, 2005 Lecture 5: Amino Acids & Peptides Assigned reading in Campbell: Chapter 3.1-3.4. Key Terms: ptical Activity, Chirality Peptide bond Condensation reaction ydrolysis

More information

Molecular Modeling Lecture 11 side chain modeling rotamers rotamer explorer buried cavities.

Molecular Modeling Lecture 11 side chain modeling rotamers rotamer explorer buried cavities. Molecular Modeling 218 Lecture 11 side chain modeling rotamers rotamer explorer buried cavities. Sidechain Rotamers Discrete approximation of the continuous space of backbone angles. Sidechain conformations

More information

Molecular Structure Prediction by Global Optimization

Molecular Structure Prediction by Global Optimization Molecular Structure Prediction by Global Optimization K.A. DILL Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA 94118 A.T. PHILLIPS Computer Science

More information

1. What is an ångstrom unit, and why is it used to describe molecular structures?

1. What is an ångstrom unit, and why is it used to describe molecular structures? 1. What is an ångstrom unit, and why is it used to describe molecular structures? The ångstrom unit is a unit of distance suitable for measuring atomic scale objects. 1 ångstrom (Å) = 1 10-10 m. The diameter

More information

Experimental and Computational Mutagenesis to Investigate the. Positioning of a General Base within an Enzyme Active Site

Experimental and Computational Mutagenesis to Investigate the. Positioning of a General Base within an Enzyme Active Site Experimental and Computational Mutagenesis to Investigate the Positioning of a General Base within an Enzyme Active Site Jason P. Schwans, Philip Hanoian, Benjamin J. Lengerich, Fanny Sunden, Ana Gonzalez

More information

PDBe TUTORIAL. PDBePISA (Protein Interfaces, Surfaces and Assemblies)

PDBe TUTORIAL. PDBePISA (Protein Interfaces, Surfaces and Assemblies) PDBe TUTORIAL PDBePISA (Protein Interfaces, Surfaces and Assemblies) http://pdbe.org/pisa/ This tutorial introduces the PDBePISA (PISA for short) service, which is a webbased interactive tool offered by

More information