Full wwpdb/emdatabank EM Map/Model Validation Report io

Size: px
Start display at page:

Download "Full wwpdb/emdatabank EM Map/Model Validation Report io"

Transcription

1 Full wwpdb/emdatabank EM Map/Model Validation Report io Apr 11, 218 7:1 PM EDT PDB ID : 6CV EMDB ID: : EMD-7631 Title : Cryo-electron microscopy structure of infectious bronchitis coronavirus spike protein Authors : Shang, J.; Zheng, Y.; Yang, Y.; Liu, C.; Geng, Q.; Luo, C.; Zhang, W.; Li, F. Deposited on : Resolution : 3.93 Å(reported) This is a Full wwpdb/emdatabank EM Map/Model Validation Report for a publicly released PDB/EMDB entry. We welcome your comments at validation@mail.wwpdb.org A user guide is available at with specic help available everywhere you see the io symbol. MolProbity : 4.2b-467 Mogul : (15768), CSD as539be (218) Percentile statistics : v1 (using entries in the PDB archive December 27th 217) Ideal geometry (proteins) : Engh & Huber (21) Ideal geometry (DNA, RNA) : Parkinson et. al. (1996) Validation Pipeline (wwpdb-vp) : rb-23121

2 Page 2 Full wwpdb/emdatabank EM Map/Model Validation Report 6CV 1 Overall quality at a glance io The following experimental techniques were used to determine the structure: ELECTRON MICROSCOPY The reported resolution of this entry is 3.93 Å. Percentile scores (ranging between -1) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based. Metric Whole archive EM structures (#Entries) (#Entries) Clashscore Ramachandran outliers Sidechain outliers The table below summarises the geometric issues observed across the polymeric chains. The red, orange, yellow and green segments on the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and types of geometric quality criteria. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% Mol Chain Length Quality of chain 1 A B C 115

3 Page 3 Full wwpdb/emdatabank EM Map/Model Validation Report 6CV 2 Entry composition io There are 2 unique types of molecules in this entry. The entry contains atoms, of which are hydrogens and are deuteriums. In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms. ˆ Molecule 1 is a protein called Spike glycoprotein. Mol Chain Residues Atoms AltConf Trace 1 A 993 S B 993 S C 993 S There are 153 discrepancies between the modelled and reference sequences: Chain Residue Modelled Actual Comment Reference A 126 conict UNP F4MIW6 A 823 conict UNP F4MIW6 A 829 conict UNP F4MIW6 A 849 VAL conict UNP F4MIW6 A 177 VAL - insertion UNP F4MIW6 A insertion UNP F4MIW6 A insertion UNP F4MIW6 A 18 - insertion UNP F4MIW6 A 181 GLN expression tag UNP F4MIW6 A 182 expression tag UNP F4MIW6 A insertion UNP F4MIW6 A 184 expression tag UNP F4MIW6 A insertion UNP F4MIW6 A insertion UNP F4MIW6 A 187 expression tag UNP F4MIW6 A 188 expression tag UNP F4MIW6 A 189 expression tag UNP F4MIW6 A 19 expression tag UNP F4MIW6 A expression tag UNP F4MIW6 A expression tag UNP F4MIW6 A expression tag UNP F4MIW6 A 194 TYR - expression tag UNP F4MIW6 A expression tag UNP F4MIW6 A expression tag UNP F4MIW6

4 Page 4 Full wwpdb/emdatabank EM Map/Model Validation Report 6CV Chain Residue Modelled Actual Comment Reference A expression tag UNP F4MIW6 A expression tag UNP F4MIW6 A expression tag UNP F4MIW6 A 11 - expression tag UNP F4MIW6 A 111 ALA - expression tag UNP F4MIW6 A 112 ARG - expression tag UNP F4MIW6 A expression tag UNP F4MIW6 A expression tag UNP F4MIW6 A expression tag UNP F4MIW6 A expression tag UNP F4MIW6 A expression tag UNP F4MIW6 A expression tag UNP F4MIW6 A expression tag UNP F4MIW6 A expression tag UNP F4MIW6 A expression tag UNP F4MIW6 A expression tag UNP F4MIW6 A expression tag UNP F4MIW6 A expression tag UNP F4MIW6 A expression tag UNP F4MIW6 A expression tag UNP F4MIW6 A expression tag UNP F4MIW6 A expression tag UNP F4MIW6 A expression tag UNP F4MIW6 A expression tag UNP F4MIW6 A expression tag UNP F4MIW6 A expression tag UNP F4MIW6 A expression tag UNP F4MIW6 B 126 conict UNP F4MIW6 B 823 conict UNP F4MIW6 B 829 conict UNP F4MIW6 B 849 VAL conict UNP F4MIW6 B 177 VAL - insertion UNP F4MIW6 B insertion UNP F4MIW6 B insertion UNP F4MIW6 B 18 - insertion UNP F4MIW6 B 181 GLN expression tag UNP F4MIW6 B 182 expression tag UNP F4MIW6 B insertion UNP F4MIW6 B 184 expression tag UNP F4MIW6 B insertion UNP F4MIW6 B insertion UNP F4MIW6 B 187 expression tag UNP F4MIW6

5 Page 5 Full wwpdb/emdatabank EM Map/Model Validation Report 6CV Chain Residue Modelled Actual Comment Reference B 188 expression tag UNP F4MIW6 B 189 expression tag UNP F4MIW6 B 19 expression tag UNP F4MIW6 B expression tag UNP F4MIW6 B expression tag UNP F4MIW6 B expression tag UNP F4MIW6 B 194 TYR - expression tag UNP F4MIW6 B expression tag UNP F4MIW6 B expression tag UNP F4MIW6 B expression tag UNP F4MIW6 B expression tag UNP F4MIW6 B expression tag UNP F4MIW6 B 11 - expression tag UNP F4MIW6 B 111 ALA - expression tag UNP F4MIW6 B 112 ARG - expression tag UNP F4MIW6 B expression tag UNP F4MIW6 B expression tag UNP F4MIW6 B expression tag UNP F4MIW6 B expression tag UNP F4MIW6 B expression tag UNP F4MIW6 B expression tag UNP F4MIW6 B expression tag UNP F4MIW6 B expression tag UNP F4MIW6 B expression tag UNP F4MIW6 B expression tag UNP F4MIW6 B expression tag UNP F4MIW6 B expression tag UNP F4MIW6 B expression tag UNP F4MIW6 B expression tag UNP F4MIW6 B expression tag UNP F4MIW6 B expression tag UNP F4MIW6 B expression tag UNP F4MIW6 B expression tag UNP F4MIW6 B expression tag UNP F4MIW6 B expression tag UNP F4MIW6 B expression tag UNP F4MIW6 C 126 conict UNP F4MIW6 C 823 conict UNP F4MIW6 C 829 conict UNP F4MIW6 C 849 VAL conict UNP F4MIW6 C 177 VAL - insertion UNP F4MIW6 C insertion UNP F4MIW6

6 Page 6 Full wwpdb/emdatabank EM Map/Model Validation Report 6CV Chain Residue Modelled Actual Comment Reference C insertion UNP F4MIW6 C 18 - insertion UNP F4MIW6 C 181 GLN expression tag UNP F4MIW6 C 182 expression tag UNP F4MIW6 C insertion UNP F4MIW6 C 184 expression tag UNP F4MIW6 C insertion UNP F4MIW6 C insertion UNP F4MIW6 C 187 expression tag UNP F4MIW6 C 188 expression tag UNP F4MIW6 C 189 expression tag UNP F4MIW6 C 19 expression tag UNP F4MIW6 C expression tag UNP F4MIW6 C expression tag UNP F4MIW6 C expression tag UNP F4MIW6 C 194 TYR - expression tag UNP F4MIW6 C expression tag UNP F4MIW6 C expression tag UNP F4MIW6 C expression tag UNP F4MIW6 C expression tag UNP F4MIW6 C expression tag UNP F4MIW6 C 11 - expression tag UNP F4MIW6 C 111 ALA - expression tag UNP F4MIW6 C 112 ARG - expression tag UNP F4MIW6 C expression tag UNP F4MIW6 C expression tag UNP F4MIW6 C expression tag UNP F4MIW6 C expression tag UNP F4MIW6 C expression tag UNP F4MIW6 C expression tag UNP F4MIW6 C expression tag UNP F4MIW6 C expression tag UNP F4MIW6 C expression tag UNP F4MIW6 C expression tag UNP F4MIW6 C expression tag UNP F4MIW6 C expression tag UNP F4MIW6 C expression tag UNP F4MIW6 C expression tag UNP F4MIW6 C expression tag UNP F4MIW6 C expression tag UNP F4MIW6 C expression tag UNP F4MIW6 C expression tag UNP F4MIW6

7 Page 7 Full wwpdb/emdatabank EM Map/Model Validation Report 6CV Chain Residue Modelled Actual Comment Reference C expression tag UNP F4MIW6 C expression tag UNP F4MIW6 C expression tag UNP F4MIW6 ˆ Molecule 2 is N-ACETYL-D-COSAMINE (three-letter code: NAG) (formula: C 8 H 15 NO 6 ). Mol Chain Residues Atoms AltConf

8 Page 8 Full wwpdb/emdatabank EM Map/Model Validation Report 6CV Mol Chain Residues Atoms AltConf

9 Page 9 Full wwpdb/emdatabank EM Map/Model Validation Report 6CV Mol Chain Residues Atoms AltConf

10 Page 1 Full wwpdb/emdatabank EM Map/Model Validation Report 6CV Mol Chain Residues Atoms AltConf

11 Page 11 Full wwpdb/emdatabank EM Map/Model Validation Report 6CV Mol Chain Residues Atoms AltConf

12 Page 12 Full wwpdb/emdatabank EM Map/Model Validation Report 6CV 3 Residue-property plots io These plots are drawn for all protein, RNA and DNA chains in the entry. The rst graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are colorcoded according to the number of geometric quality criteria for which they contain at least one outlier: green =, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey. Molecule 1: Spike glycoprotein Chain A: VAL GLN TYR ALA ARG V113 N114 K115 T119 V122 PHE PHE TRP TRP THR PRO PHE PHE TYR THR VAL PRO ARG GLN VAL GLN I85 Q856 V866 R89 Q894 R895 Q9 Q99 R912 C916 G917 R92 L923 T924 I925 A929 G932 I933 V934 H937 F938 S939 Y94 T941 K957 Q963 V967 P968 R972 F975 I984 D988 I995 D999 I1 V11 T61 R62 M63 C632 I635 N64 E646 E649 K658 P659 L667 L68 P684 V71 VAL PRO THR A711 Y712 K713 L72 K724 L738 Q747 I763 I769 P77 L775 R778 I784 A83 T833 N261 T265 N276 N283 N33 F331 L34 W341 F342 L345 I349 A35 Y351 G352 P353 V399 K43 R48 T449 L458 A459 D46 A461 G462 L463 Y485 F498 V56 G57 I58 S517 N522 I526 R537 Y551 G56 L57 ALA Y21 Y28 Y29 A33 F34 R35 A46 V5 I7 A1 H11 T17 T18 V19 K116 T123 V133 K137 K156 S157 N162 N163 L164 V167 N17 V174 V188 V2 E23 F21 V211 A215 Q216 L229 N247 Molecule 1: Spike glycoprotein Chain B: K115 T119 V122 PHE PHE TRP TRP THR PRO PHE PHE TYR THR VAL PRO ARG GLN VAL GLN VAL T833 I85 Q856 V866 R895 Q9 Q99 R912 C916 G917 R92 L923 T924 I925 A929 G932 I933 V934 H937 F938 S939 Y94 T941 K957 Q963 V967 P968 R972 F975 I984 D988 I995 D999 I1 V11 V113 N114 T61 R62 M63 C632 I635 N64 E646 E649 K658 P659 L667 L68 P684 V71 VAL PRO THR A711 Y712 K713 L72 K724 L738 P739 P74 Q747 I763 I769 P77 L775 R778 I784 A83 N247 N276 N283 N33 F331 F342 L345 I349 A35 Y351 G352 P353 V399 K43 R48 T449 D46 A461 G462 L463 Y485 C491 E492 F498 V56 G57 I58 S517 N522 I526 K527 I528 R537 Y551 G56 L57 ALA Y21 Y28 Y29 A33 F34 R35 A46 V5 I7 A1 H11 T17 T18 V19 K116 T123 V133 K137 Y143 K156 S157 N162 N163 L164 V167 N17 V174 V188 V2 E23 F21 V211 A215 Q216 L229

13 Page 13 Full wwpdb/emdatabank EM Map/Model Validation Report 6CV GLN TYR ALA ARG Molecule 1: Spike glycoprotein Chain C: ALA Y21 Y28 Y29 A33 F34 R35 A46 V5 I7 A1 H11 T17 T18 V19 V133 K137 Y143 K156 S157 N162 N163 L164 V167 N17 V174 V188 V2 E23 F21 V211 A215 Q216 L229 N247 N276 N283 N33 F331 L34 W341 F342 L345 I349 A35 Y351 G352 P353 V399 K43 T449 D46 A461 G462 L463 Y485 F498 V56 G57 I58 S517 N522 I526 K527 I528 R537 Y551 G56 L57 T61 R62 M63 D64 I635 N64 E646 E649 P659 L667 I677 L68 P684 V71 VAL PRO THR A711 Y712 K713 L72 K724 L738 P739 P74 Q747 I763 I769 P77 L775 R778 I784 Q822 N826 A83 T833 I85 Q856 V866 H888 V891 R895 Q9 Q99 R912 C916 G917 R92 L923 T924 I925 A929 G932 I933 V934 H937 F938 S939 Y94 T941 K957 Q963 V967 P968 R972 F975 I984 D988 R993 A994 I995 D999 I1 V11 V113 N114 K115 T119 V122 PHE PHE TRP TRP THR PRO PHE PHE TYR THR VAL PRO ARG GLN VAL GLN VAL GLN TYR ALA ARG

14 Page 14 Full wwpdb/emdatabank EM Map/Model Validation Report 6CV 4 Experimental information io Property Value Source Reconstruction method SINGLE PARTICLE Depositor Imposed symmetry POINT, C3 Depositor Number of particles used Depositor Resolution determination method FSC.143 CUT-OFF Depositor CTF correction method NONE Depositor Microscope FEI TITAN KRIOS Depositor Voltage (kv) 3 Depositor Electron dose (e /Å 2 ) Depositor Minimum defocus (nm) Not provided Depositor Maximum defocus (nm) Not provided Depositor Magnication Not provided Depositor Image detector GATAN K2 SUMMIT (4k x 4k) Depositor

15 Page 15 Full wwpdb/emdatabank EM Map/Model Validation Report 6CV 5 Model quality io 5.1 Standard geometry io Bond lengths and bond angles in the following residue types are not validated in this section: NAG The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with Z > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles). Mol Chain Bond lengths Bond angles RMSZ # Z >2 RMSZ # Z >2 1 A.35 / / B.35 / / C.35 / /1639 All All.35 / /31917 There are no bond length outliers. There are no bond angle outliers. There are no chirality outliers. There are no planarity outliers. 5.2 Too-close contacts io In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes. Mol Chain Non-H H(model) H(added) Clashes Symm-Clashes 1 A B C A B C All All The all-atom clashscore is dened as the number of clashes found per 1 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 5.

16 Page 16 Full wwpdb/emdatabank EM Map/Model Validation Report 6CV All (25) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude. Atom-1 Atom-2 Interatomic Clash distance (Å) overlap (Å) 1:C:28:TYR:HD2 1:C:29:TYR:N :A:28:TYR:HD2 1:A:29:TYR:N :B:28:TYR:HD2 1:B:29:TYR:N :A:763::HG21 1:A:769::HD :B:763::HG21 1:B:769::CD :C:763::HG21 1:C:769::CD :B:763::CG2 1:B:769::HD :C:763::CG2 1:C:769::HD :C:763::HG21 1:C:769::HD :A:763::HG21 1:A:769::CD :B:763::HG21 1:B:769::HD :A:28:TYR:CD2 1:A:29:TYR:N :B:21:TYR:HB2 1:B:28:TYR:HB :B:763::CG2 1:B:769::CD :C:21:TYR:HB2 1:C:28:TYR:HB :C:28:TYR:CD2 1:C:29:TYR:N :A:21:TYR:HB2 1:A:28:TYR:HB :B:28:TYR:CD2 1:B:29:TYR:N :C:763::CG2 1:C:769::CD :A:769::HG22 2:C:125:NAG:C :A:763::CG2 1:A:769::HD :C:163::O 1:C:164::HB :A:125:NAG:C8 1:B:769::HG :A:763::CG2 1:A:769::CD :A:21:TYR:CD2 1:A:28:TYR:HB :B:125:NAG:C8 1:C:769::HG :C:21:TYR:CD2 1:C:28:TYR:HB :B:21:TYR:CD2 1:B:28:TYR:HB :C:763::HB 1:C:769::HD :A:769::HG22 2:C:125:NAG:H :B:763::HB 1:B:769::HD :B:912:ARG:HH22 1:C:9:GLN:HE :A:461:ALA:HB3 1:B:35:ARG:HH :A:35:ARG:HH22 1:C:461:ALA:HB :B:349::HG22 1:B:399:VAL:HG :C:349::HG22 1:C:399:VAL:HG :A:9:GLN:HE21 1:C:912:ARG:HH :A:912:ARG:HH22 1:B:9:GLN:HE :B:461:ALA:HB3 1:C:35:ARG:HH :C:7::O 1:C:11::NE

17 Page 17 Full wwpdb/emdatabank EM Map/Model Validation Report 6CV Atom-1 Atom-2 Interatomic Clash distance (Å) overlap (Å) 1:A:349::HG22 1:A:399:VAL:HG :A:125:NAG:H83 1:B:769::HG :A:7::O 1:A:11::NE :B:7::O 1:B:11::NE :C:283::HD21 1:C:353:PRO:HD :C:649::OE2 1:C:895:ARG:NH :B:649::OE2 1:B:895:ARG:NH :C:61:THR:HG22 1:C:932::HA :B:92:ARG:NH1 1:B:988::OD :A:283::HD21 1:A:353:PRO:HD :B:283::HD21 1:B:353:PRO:HD :B:61:THR:HG22 1:B:932::HA :B:125:NAG:H83 1:C:769::HG :A:92:ARG:NH1 1:A:988::OD :A:649::OE2 1:A:895:ARG:NH :A:61:THR:HG22 1:A:932::HA :C:92:ARG:NH1 1:C:988::OD :C:21:PHE:HB3 1:C:215:ALA:HA :B:763::CB 1:B:769::HD :C:763::CB 1:C:769::HD :B:21:PHE:HB3 1:B:215:ALA:HA :A:229::HB2 1:A:498:PHE:HZ :B:769::N 1:B:77:PRO:HD :C:769::N 1:C:77:PRO:HD :A:33:ALA:HB1 1:C:463::HD :A:21:PHE:HB3 1:A:215:ALA:HA :B:463::HD23 1:C:33:ALA:HB :B:5:VAL:HG23 1:B:2:VAL:HG :B:229::HB2 1:B:498:PHE:HZ :C:229::HB2 1:C:498:PHE:HZ :A:18:THR:HG21 2:A:1227:NAG:H :B:917::O 1:B:939::OG :C:211:VAL:H 1:C:216:GLN:HE :A:769::N 1:A:77:PRO:HD :A:917::O 1:A:939::OG :C:763::CG2 1:C:769::HD :B:21:TYR:CD2 1:B:28:TYR:CB :C:5:VAL:HG23 1:C:2:VAL:HG :A:5:VAL:HG23 1:A:2:VAL:HG :A:21:TYR:CD2 1:A:28:TYR:CB :A:463::HD23 1:B:33:ALA:HB

18 Page 18 Full wwpdb/emdatabank EM Map/Model Validation Report 6CV Atom-1 Atom-2 Interatomic Clash distance (Å) overlap (Å) 1:C:917::O 1:C:939::OG :A:211:VAL:H 1:A:216:GLN:HE :C:18:THR:HG21 2:C:1227:NAG:H :B:211:VAL:H 1:B:216:GLN:HE :B:972:ARG:NH2 1:B:999::OD :A:46::OD1 1:A:46::N :A:972:ARG:NH2 1:A:999::OD :C:21:TYR:CD2 1:C:28:TYR:CB :A:156::HB2 1:A:17::HD :B:46::N 1:B:46::OD :B:156::HB2 1:B:17::HD :C:156::HB2 1:C:17::HD :C:62:ARG:HH22 1:C:747:GLN:HB :C:972:ARG:NH2 1:C:999::OD :B:763::CG2 1:B:769::HD :C:58::HB 1:C:526::HD :B:713::NZ 1:B:724::O :C:713::NZ 1:C:724::O :A:58::HB 1:A:526::HD :A:62:ARG:HH22 1:A:747:GLN:HB :B:58::HB 1:B:526::HD :A:713::NZ 1:A:724::O :C:72::HD22 1:C:724::HD :C:276::OD1 1:C:351:TYR:OH :C:916:CYS:HB2 1:C:937::CE :B:17:THR:HG22 1:B:137::HG :B:83:ALA:HA 1:B:833:THR:HG :A:769::CG2 2:C:125:NAG:H :C:157::H 1:C:17::HB :A:916:CYS:HB2 1:A:937::CE :C:17:THR:HG22 1:C:137::HG :B:551:TYR:HE1 1:C:738::HD :C:62:ARG:HH12 1:C:747:GLN:HG :B:62:ARG:HH22 1:B:747:GLN:HB :A:157::H 1:A:17::HB :B:62:ARG:HH12 1:B:747:GLN:HG :B:916:CYS:HB2 1:B:937::CE :A:72::HD22 1:A:724::HD :A:62:ARG:HH12 1:A:747:GLN:HG :A:968:PRO:HD3 1:A:975:PHE:HE :B:667::HD13 1:B:684:PRO:HG

19 Page 19 Full wwpdb/emdatabank EM Map/Model Validation Report 6CV Atom-1 Atom-2 Interatomic Clash distance (Å) overlap (Å) 1:B:72::HD22 1:B:724::HD :C:83:ALA:HA 1:C:833:THR:HG :A:17:THR:HG22 1:A:137::HG :A:667::HD13 1:A:684:PRO:HG :A:83:ALA:HA 1:A:833:THR:HG :B:157::H 1:B:17::HB :B:85::HD11 1:B:866:VAL:HG :C:667::HD13 1:C:684:PRO:HG :C:968:PRO:HD3 1:C:975:PHE:HE :A:778:ARG:HH11 1:A:99:GLN:HB :C:46::OD1 1:C:46::N :A:85::HD11 1:A:866:VAL:HG :A:957::HB3 1:A:963:GLN:HE :A:125:NAG:H83 1:B:769::CG :A:738::HD22 1:C:551:TYR:HE :B:48:ARG:NH1 1:C:143:TYR:OH :B:778:ARG:HH11 1:B:99:GLN:HB :A:763::HB 1:A:769::HD :B:968:PRO:HD3 1:B:975:PHE:HE :C:85::HD11 1:C:866:VAL:HG :C:778:ARG:HH11 1:C:99:GLN:HB :B:957::HB3 1:B:963:GLN:HE :C:763::CB 1:C:769::CD :A:331:PHE:HE1 1:A:43::HD :B:331:PHE:HE1 1:B:43::HD :B:61:THR:HG23 1:B:62:ARG:HG :A:522::ND2 1:B:711:ALA:O :A:163::O 1:A:164::CB :A:763::CG2 1:A:769::HD :C:957::HB3 1:C:963:GLN:HE :A:247::OD1 1:A:247::N :A:61:THR:HG23 1:A:62:ARG:HG :B:113:VAL:HG12 1:B:115::H :C:63:MET:HE2 1:C:646::HG :B:164::HD12 1:B:164::HA :C:528::H 1:C:528::HG :C:61:THR:HG23 1:C:62:ARG:HG :B:163::O 1:B:164::CB :B:247::OD1 1:B:247::N :C:331:PHE:HE1 1:C:43::HD :B:276::OD1 1:B:351:TYR:OH

20 Page 2 Full wwpdb/emdatabank EM Map/Model Validation Report 6CV Atom-1 Atom-2 Interatomic Clash distance (Å) overlap (Å) 1:A:113:VAL:HG12 1:A:115::H :A:775::HD23 1:A:923::HD :C:247::OD1 1:C:247::N :B:929:ALA:HB2 1:B:934:VAL:HG :A:856:GLN:HG2 1:C:34::HD :C:929:ALA:HB2 1:C:934:VAL:HG :B:763::CB 1:B:769::CD :B:995::O 1:B:119:THR:OG :C:113:VAL:HG12 1:C:115::H :C:133:VAL:HG11 1:C:174:VAL:HB :A:33::ND2 1:B:856:GLN:OE :B:46:ALA:HA 1:B:23::HA :C:19:VAL:HG11 1:C:167:VAL:HG :A:133:VAL:HG11 1:A:174:VAL:HB :A:63:MET:HE2 1:A:646::HG :B:63:MET:HE2 1:B:646::HG :B:133:VAL:HG11 1:B:174:VAL:HB :A:711:ALA:O 1:C:522::ND :C:56:VAL:HG13 1:C:56::HA :A:929:ALA:HB2 1:A:934:VAL:HG :B:57::HD12 1:B:941:THR:HG :B:775::HD23 1:B:923::HD :C:995::O 1:C:119:THR:OG :A:517::O 1:A:537:ARG:NH :B:739:PRO:HA 1:B:74:PRO:HD :A:19:VAL:HG11 1:A:167:VAL:HG :C:517::O 1:C:537:ARG:NH :B:517::O 1:B:537:ARG:NH :A:46:ALA:HA 1:A:23::HA :A:995::O 1:A:119:THR:OG :A:551:TYR:HE1 1:B:738::HD :B:528::HG13 1:B:528::H :C:775::HD23 1:C:923::HD :B:522::ND2 1:C:711:ALA:O :C:64::N 1:C:64::OD :B:19:VAL:HG11 1:B:167:VAL:HG :B:56:VAL:HG13 1:B:56::HA :A:57::HD12 1:A:941:THR:HG :C:46:ALA:HA 1:C:23::HA :C:57::HD12 1:C:941:THR:HG :A:56:VAL:HG13 1:A:56::HA

21 Page 21 Full wwpdb/emdatabank EM Map/Model Validation Report 6CV Atom-1 Atom-2 Interatomic Clash distance (Å) overlap (Å) 1:A:68::HD21 1:A:925::HG :B:658::HA 1:B:659:PRO:HD :C:449:THR:HB 1:C:485:TYR:H :C:68::HD21 1:C:925::HG :A:342:PHE:HD2 1:A:345::HD :B:967:VAL:HB 1:B:11:VAL:HB :A:48:ARG:NH1 1:B:143:TYR:OH :A:449:THR:HB 1:A:485:TYR:H :B:449:THR:HB 1:B:485:TYR:H :C:635::HD12 1:C:635::HA :A:163::O 1:A:164::HB :C:163::O 1:C:164::CB :A:856:GLN:OE1 1:C:33::ND :C:967:VAL:HB 1:C:11:VAL:HB :C:342:PHE:HD2 1:C:345::HD :C:822:GLN:NE2 1:C:826::OD :A:1:ALA:HB2 1:A:188:VAL:HG :A:276::OD1 1:A:351:TYR:OH :A:89:ARG:HH12 1:A:894:GLN:HE :B:116::HD2 1:B:123:THR:HA :B:975:PHE:HB3 1:B:984::HG :C:975:PHE:HB3 1:C:984::HG :C:677::HG13 1:C:677::H :C:739:PRO:HA 1:C:74:PRO:HD :A:632:CYS:HA 1:A:635::HG :A:658::HA 1:A:659:PRO:HD :B:1:ALA:HB2 1:B:188:VAL:HG :C:1:ALA:HA 1:C:188:VAL:HA :A:458::HD23 1:A:458::HA :A:975:PHE:HB3 1:A:984::HG :B:163::O 1:B:164::HB :B:342:PHE:HD2 1:B:345::HD :B:68::HD21 1:B:925::HG :B:33::ND2 1:C:856:GLN:OE :B:11:VAL:HG22 1:C:993:ARG:HH :A:116::HD2 1:A:123:THR:HA :A:261::HB3 1:A:265:THR:HG :B:1:ALA:HA 1:B:188:VAL:HA :B:122:NAG:H61 2:B:1221:NAG:N :B:632:CYS:HA 1:B:635::HG :A:635::HD12 1:A:635::HA

22 Page 22 Full wwpdb/emdatabank EM Map/Model Validation Report 6CV Atom-1 Atom-2 Interatomic Clash distance (Å) overlap (Å) 1:B:491:CYS:SG 1:B:492::N :C:1:ALA:HB2 1:C:188:VAL:HG :C:888::HA 1:C:891:VAL:HG :A:34::HD11 1:B:856:GLN:HG :A:967:VAL:HB 1:A:11:VAL:HB There are no symmetry-related clashes. 5.3 Torsion angles io Protein backbone io In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries. The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues. Mol Chain Analysed Favoured Allowed Outliers Percentiles 1 A 989/115 (9%) 857 (87%) 13 (13%) 2 (%) B 989/115 (9%) 854 (86%) 133 (13%) 2 (%) C 989/115 (9%) 855 (86%) 132 (13%) 2 (%) All All 2967/3315 (9%) 2566 (86%) 395 (13%) 6 (%) All (6) Ramachandran outliers are listed below: Mol Chain Res Type 1 A 17 1 B 17 1 C 17 1 A 659 PRO 1 B 659 PRO 1 C 659 PRO Protein sidechains io In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM

23 Page 23 Full wwpdb/emdatabank EM Map/Model Validation Report 6CV entries. The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues. Mol Chain Analysed Rotameric Outliers Percentiles 1 A 849/953 (89%) 845 (1%) 4 (%) B 849/953 (89%) 845 (1%) 4 (%) C 849/953 (89%) 845 (1%) 4 (%) 9 95 All All 2547/2859 (89%) 2535 (1%) 12 (%) 9 95 All (12) residues with a non-rotameric sidechain are listed below: Mol Chain Res Type 1 A 28 TYR 1 A A 64 1 A B 28 TYR 1 B B 64 1 B C 28 TYR 1 C C 64 1 C 784 Some sidechains can be ipped to improve hydrogen bonding and reduce clashes. All (28) such sidechains are listed below: Mol Chain Res Type 1 A 41 1 A 43 1 A A 216 GLN 1 A 41 GLN 1 A A 894 GLN 1 A 9 GLN 1 A 963 GLN 1 B 41 1 B 43 1 B B 216 GLN

24 Page 24 Full wwpdb/emdatabank EM Map/Model Validation Report 6CV Mol Chain Res Type 1 B 41 GLN 1 B B 894 GLN 1 B 9 GLN 1 B 963 GLN 1 C 41 1 C 43 1 C C 17 1 C 216 GLN 1 C 41 GLN 1 C C 894 GLN 1 C 9 GLN 1 C 963 GLN RNA io There are no RNA molecules in this entry. 5.4 Non-standard residues in protein, DNA, RNA chains io There are no non-standard protein/dna/rna residues in this entry. 5.5 Carbohydrates io There are no carbohydrates in this entry. 5.6 Ligand geometry io 87 ligands are modelled in this entry. In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are dened in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with Z > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

25 Page 25 Full wwpdb/emdatabank EM Map/Model Validation Report 6CV Mol Type Chain Res Link Bond lengths Bond angles Counts RMSZ # Z > 2 Counts RMSZ # Z > 2 2 NAG A ,14, ,19, NAG A ,14, ,19, NAG A ,14, ,19, NAG A ,14, ,19, NAG A 125 1,2 14,14, ,19, NAG A ,14, ,19, NAG A ,14, ,19, NAG A 128 1,2 14,14, ,19, NAG A ,14, ,19, NAG A 121 1,2 14,14, ,19, NAG A ,14, ,19, NAG A ,14, ,19, NAG A ,14, ,19, (5%) 2 NAG A ,2 14,14, ,19, NAG A ,14, ,19, (5%) 2 NAG A ,14, ,19, NAG A ,14, ,19, (5%) 2 NAG A ,14, ,19, NAG A ,14, ,19, NAG A 122 1,2 14,14, ,19, (5%) 2 NAG A ,14, ,19, NAG A ,14, ,19, (5%) 2 NAG A ,2 14,14, ,19, NAG A ,14, ,19, NAG A ,14, ,19, NAG A ,14, ,19, NAG A ,2 14,14, ,19, NAG A ,14, ,19, NAG A ,14, ,19, NAG B ,14, ,19, NAG B ,14, ,19, NAG B ,14, ,19, NAG B ,14, ,19, NAG B 125 1,2 14,14, ,19, NAG B ,14, ,19, NAG B ,14, ,19, NAG B 128 1,2 14,14, ,19, NAG B ,14, ,19, NAG B 121 1,2 14,14, ,19, NAG B ,14, ,19, NAG B ,14, ,19, NAG B ,14, ,19,21.51

26 Page 26 Full wwpdb/emdatabank EM Map/Model Validation Report 6CV Mol Type Chain Res Link Bond lengths Bond angles Counts RMSZ # Z > 2 Counts RMSZ # Z > 2 2 NAG B ,2 14,14, ,19, NAG B ,14, ,19, NAG B ,14, ,19, NAG B ,14, ,19, (5%) 2 NAG B ,14, ,19, NAG B ,14, ,19, NAG B 122 1,2 14,14, ,19, (5%) 2 NAG B ,14, ,19, NAG B ,14, ,19, (5%) 2 NAG B ,2 14,14, ,19, NAG B ,14, ,19, NAG B ,14, ,19, NAG B ,14, ,19, NAG B ,2 14,14, ,19, NAG B ,14, ,19, NAG B ,14, ,19, NAG C ,14, ,19, NAG C ,14, ,19, NAG C ,14, ,19, NAG C ,14, ,19, NAG C 125 1,2 14,14, ,19, NAG C ,14, ,19, NAG C ,14, ,19, NAG C 128 1,2 14,14, ,19, NAG C ,14, ,19, (5%) 2 NAG C 121 1,2 14,14, ,19, NAG C ,14, ,19, NAG C ,14, ,19, NAG C ,14, ,19, NAG C ,2 14,14, ,19, NAG C ,14, ,19, NAG C ,14, ,19, NAG C ,14, ,19, (5%) 2 NAG C ,14, ,19, NAG C ,14, ,19, NAG C 122 1,2 14,14, ,19, (5%) 2 NAG C ,14, ,19, NAG C ,14, ,19, (5%) 2 NAG C ,2 14,14, ,19, NAG C ,14, ,19, NAG C ,14, ,19,21.63

27 Page 27 Full wwpdb/emdatabank EM Map/Model Validation Report 6CV Mol Type Chain Res Link Bond lengths Bond angles Counts RMSZ # Z > 2 Counts RMSZ # Z > 2 2 NAG C ,14, ,19, NAG C ,2 14,14, ,19, NAG C ,14, ,19, NAG C ,14, ,19,21.58 In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number dened in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identied. Mol Type Chain Res Link Chirals Torsions Rings 2 NAG A /6/23/26 /1/1/1 2 NAG A /6/23/26 /1/1/1 2 NAG A /6/23/26 /1/1/1 2 NAG A /6/23/26 /1/1/1 2 NAG A 125 1,2 - /6/23/26 /1/1/1 2 NAG A /6/23/26 /1/1/1 2 NAG A /6/23/26 /1/1/1 2 NAG A 128 1,2 - /6/23/26 /1/1/1 2 NAG A /6/23/26 /1/1/1 2 NAG A 121 1,2 - /6/23/26 /1/1/1 2 NAG A /6/23/26 /1/1/1 2 NAG A /6/23/26 /1/1/1 2 NAG A /6/23/26 /1/1/1 2 NAG A ,2 - /6/23/26 /1/1/1 2 NAG A /6/23/26 /1/1/1 2 NAG A /6/23/26 /1/1/1 2 NAG A /6/23/26 /1/1/1 2 NAG A /6/23/26 /1/1/1 2 NAG A /6/23/26 /1/1/1 2 NAG A 122 1,2 - /6/23/26 /1/1/1 2 NAG A /6/23/26 /1/1/1 2 NAG A /6/23/26 /1/1/1 2 NAG A ,2 - /6/23/26 /1/1/1 2 NAG A /6/23/26 /1/1/1 2 NAG A /6/23/26 /1/1/1 2 NAG A /6/23/26 /1/1/1 2 NAG A ,2 - /6/23/26 /1/1/1 2 NAG A /6/23/26 /1/1/1 2 NAG A /6/23/26 /1/1/1 2 NAG B /6/23/26 /1/1/1 2 NAG B /6/23/26 /1/1/1 2 NAG B /6/23/26 /1/1/1

28 Page 28 Full wwpdb/emdatabank EM Map/Model Validation Report 6CV Mol Type Chain Res Link Chirals Torsions Rings 2 NAG B /6/23/26 /1/1/1 2 NAG B 125 1,2 - /6/23/26 /1/1/1 2 NAG B /6/23/26 /1/1/1 2 NAG B /6/23/26 /1/1/1 2 NAG B 128 1,2 - /6/23/26 /1/1/1 2 NAG B /6/23/26 /1/1/1 2 NAG B 121 1,2 - /6/23/26 /1/1/1 2 NAG B /6/23/26 /1/1/1 2 NAG B /6/23/26 /1/1/1 2 NAG B /6/23/26 /1/1/1 2 NAG B ,2 - /6/23/26 /1/1/1 2 NAG B /6/23/26 /1/1/1 2 NAG B /6/23/26 /1/1/1 2 NAG B /6/23/26 /1/1/1 2 NAG B /6/23/26 /1/1/1 2 NAG B /6/23/26 /1/1/1 2 NAG B 122 1,2 - /6/23/26 /1/1/1 2 NAG B /6/23/26 /1/1/1 2 NAG B /6/23/26 /1/1/1 2 NAG B ,2 - /6/23/26 /1/1/1 2 NAG B /6/23/26 /1/1/1 2 NAG B /6/23/26 /1/1/1 2 NAG B /6/23/26 /1/1/1 2 NAG B ,2 - /6/23/26 /1/1/1 2 NAG B /6/23/26 /1/1/1 2 NAG B /6/23/26 /1/1/1 2 NAG C /6/23/26 /1/1/1 2 NAG C /6/23/26 /1/1/1 2 NAG C /6/23/26 /1/1/1 2 NAG C /6/23/26 /1/1/1 2 NAG C 125 1,2 - /6/23/26 /1/1/1 2 NAG C /6/23/26 /1/1/1 2 NAG C /6/23/26 /1/1/1 2 NAG C 128 1,2 - /6/23/26 /1/1/1 2 NAG C /6/23/26 /1/1/1 2 NAG C 121 1,2 - /6/23/26 /1/1/1 2 NAG C /6/23/26 /1/1/1 2 NAG C /6/23/26 /1/1/1 2 NAG C /6/23/26 /1/1/1 2 NAG C ,2 - /6/23/26 /1/1/1 2 NAG C /6/23/26 /1/1/1 2 NAG C /6/23/26 /1/1/1

29 Page 29 Full wwpdb/emdatabank EM Map/Model Validation Report 6CV Mol Type Chain Res Link Chirals Torsions Rings 2 NAG C /6/23/26 /1/1/1 2 NAG C /6/23/26 /1/1/1 2 NAG C /6/23/26 /1/1/1 2 NAG C 122 1,2 - /6/23/26 /1/1/1 2 NAG C /6/23/26 /1/1/1 2 NAG C /6/23/26 /1/1/1 2 NAG C ,2 - /6/23/26 /1/1/1 2 NAG C /6/23/26 /1/1/1 2 NAG C /6/23/26 /1/1/1 2 NAG C /6/23/26 /1/1/1 2 NAG C ,2 - /6/23/26 /1/1/1 2 NAG C /6/23/26 /1/1/1 2 NAG C /6/23/26 /1/1/1 There are no bond length outliers. All (12) bond angle outliers are listed below: Mol Chain Res Type Atoms Z Observed( o ) Ideal( o ) 29 NAG C1-O5-C NAG C1-O5-C NAG C1-O5-C NAG C1-O5-C NAG C1-O5-C NAG C1-O5-C NAG C1-O5-C NAG C1-O5-C NAG C1-O5-C NAG C1-O5-C NAG C1-O5-C NAG C1-O5-C There are no chirality outliers. There are no torsion outliers. There are no ring outliers. 7 monomers are involved in 11 short contacts: Mol Chain Res Type Clashes Symm-Clashes 25 NAG NAG 1 25 NAG 2

30 Page 3 Full wwpdb/emdatabank EM Map/Model Validation Report 6CV Mol Chain Res Type Clashes Symm-Clashes 22 NAG NAG 1 25 NAG NAG Other polymers io There are no such residues in this entry. 5.8 Polymer linkage issues io There are no chain breaks in this entry.

Full wwpdb/emdatabank EM Map/Model Validation Report i

Full wwpdb/emdatabank EM Map/Model Validation Report i Full wwpdb/emdatabank EM Map/Model Validation Report i Sep 25, 2018 07:01 PM EDT PDB ID : 6C0V EMDB ID: : EMD-7325 Title : Molecular structure of human P-glycoprotein in the ATP-bound, outwardfacing conformation

More information

wwpdb X-ray Structure Validation Summary Report

wwpdb X-ray Structure Validation Summary Report wwpdb X-ray Structure Validation Summary Report io Jan 31, 2016 06:45 PM GMT PDB ID : 1CBS Title : CRYSTAL STRUCTURE OF CELLULAR RETINOIC-ACID-BINDING PROTEINS I AND II IN COMPLEX WITH ALL-TRANS-RETINOIC

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Jan 17, 2019 09:42 AM EST PDB ID : 6D3Z Title : Protease SFTI complex Authors : Law, R.H.P.; Wu, G. Deposited on : 2018-04-17 Resolution : 2.00 Å(reported)

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Jan 14, 2019 11:10 AM EST PDB ID : 6GYW Title : Crystal structure of DacA from Staphylococcus aureus Authors : Tosi, T.; Freemont, P.S.; Grundling, A. Deposited

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Feb 17, 2018 01:16 am GMT PDB ID : 1IFT Title : RICIN A-CHAIN (RECOMBINANT) Authors : Weston, S.A.; Tucker, A.D.; Thatcher, D.R.; Derbyshire, D.J.; Pauptit,

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 8, 2018 06:13 pm GMT PDB ID : 5G5C Title : Structure of the Pyrococcus furiosus Esterase Pf2001 with space group C2221 Authors : Varejao, N.; Reverter,

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 14, 2018 02:00 pm GMT PDB ID : 3RRQ Title : Crystal structure of the extracellular domain of human PD-1 Authors : Lazar-Molnar, E.; Ramagopal, U.A.; Nathenson,

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 13, 2018 04:03 pm GMT PDB ID : 5NMJ Title : Chicken GRIFIN (crystallisation ph: 6.5) Authors : Ruiz, F.M.; Romero, A. Deposited on : 2017-04-06 Resolution

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 8, 2018 08:34 pm GMT PDB ID : 1RUT Title : Complex of LMO4 LIM domains 1 and 2 with the ldb1 LID domain Authors : Deane, J.E.; Ryan, D.P.; Maher, M.J.;

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Jan 28, 2019 11:10 AM EST PDB ID : 6A5H Title : The structure of [4+2] and [6+4] cyclase in the biosynthetic pathway of unidentified natural product Authors

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 10, 2018 01:44 am GMT PDB ID : 1MWP Title : N-TERMINAL DOMAIN OF THE AMYLOID PRECURSOR PROTEIN Authors : Rossjohn, J.; Cappai, R.; Feil, S.C.; Henry,

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 8, 2018 10:24 pm GMT PDB ID : 1A30 Title : HIV-1 PROTEASE COMPLEXED WITH A TRIPEPTIDE INHIBITOR Authors : Louis, J.M.; Dyda, F.; Nashed, N.T.; Kimmel,

More information

Full wwpdb/emdatabank EM Map/Model Validation Report i

Full wwpdb/emdatabank EM Map/Model Validation Report i Full wwpdb/emdatabank EM Map/Model Validation Report i Feb 20, 2018 02:57 pm GMT PDB ID : 3ZYS EMDB ID: : EMD-1949 Title : Human dynamin 1 deltaprd polymer stabilized with GMPPCP Authors : Chappie, J.S.;

More information

Full wwpdb NMR Structure Validation Report i

Full wwpdb NMR Structure Validation Report i Full wwpdb NMR Structure Validation Report i Feb 17, 2018 06:22 am GMT PDB ID : 141D Title : SOLUTION STRUCTURE OF A CONSERVED DNA SEQUENCE FROM THE HIV-1 GENOME: RESTRAINED MOLECULAR DYNAMICS SIMU- LATION

More information

Full wwpdb/emdatabank EM Map/Model Validation Report io

Full wwpdb/emdatabank EM Map/Model Validation Report io Full wwpdb/emdatabank EM Map/Model Validation Report io Apr 9, 218 2:5 PM EDT PDB ID : 6AUI EMDB ID: : EMD-76 Title : Human ribonucleotide reductase large subunit (alpha) with datp and CDP Authors : Brignole,

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 10, 2018 12:51 am GMT PDB ID : 1G59 Title : GLUTAMYL-TRNA SYNTHETASE COMPLEXED WITH TRNA(GLU). Authors : Sekine, S.; Nureki, O.; Shimada, A.; Vassylyev,

More information

Full wwpdb/emdatabank EM Map/Model Validation Report i

Full wwpdb/emdatabank EM Map/Model Validation Report i Full wwpdb/emdatabank EM Map/Model Validation Report i Oct 9, 2018 11:26 AM EDT PDB ID : 5MLC EMDB ID: : EMD-3525 Title : Cryo-EM structure of the spinach chloroplast ribosome reveals the location of plastid-specific

More information

1.b What are current best practices for selecting an initial target ligand atomic model(s) for structure refinement from X-ray diffraction data?!

1.b What are current best practices for selecting an initial target ligand atomic model(s) for structure refinement from X-ray diffraction data?! 1.b What are current best practices for selecting an initial target ligand atomic model(s) for structure refinement from X-ray diffraction data?! Visual analysis: Identification of ligand density from

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 7, 2018 09:30 am GMT PDB ID : 2VGF Title : HUMAN ERYTHROCYTE PYRUVATE KINASE: T384M mutant Authors : Valentini, G.; Chiarelli, L.R.; Fortin, R.; Dolzan,

More information

Protein Data Bank Contents Guide: Atomic Coordinate Entry Format Description. Version Document Published by the wwpdb

Protein Data Bank Contents Guide: Atomic Coordinate Entry Format Description. Version Document Published by the wwpdb Protein Data Bank Contents Guide: Atomic Coordinate Entry Format Description Version 3.30 Document Published by the wwpdb This format complies with the PDB Exchange Dictionary (PDBx) http://mmcif.pdb.org/dictionaries/mmcif_pdbx.dic/index/index.html.

More information

Ramachandran Plot. 4ysz Phi (degrees) Plot statistics

Ramachandran Plot. 4ysz Phi (degrees) Plot statistics B Ramachandran Plot ~b b 135 b ~b ~l l Psi (degrees) 5-5 a A ~a L - -135 SER HIS (F) 59 (G) SER (B) ~b b LYS ASP ASP 315 13 13 (A) (F) (B) LYS ALA ALA 315 173 (E) 173 (E)(A) ~p p ~b - -135 - -5 5 135 (degrees)

More information

Supplementary figure 1. Comparison of unbound ogm-csf and ogm-csf as captured in the GIF:GM-CSF complex. Alignment of two copies of unbound ovine

Supplementary figure 1. Comparison of unbound ogm-csf and ogm-csf as captured in the GIF:GM-CSF complex. Alignment of two copies of unbound ovine Supplementary figure 1. Comparison of unbound and as captured in the GIF:GM-CSF complex. Alignment of two copies of unbound ovine GM-CSF (slate) with bound GM-CSF in the GIF:GM-CSF complex (GIF: green,

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 14, 2018 02:38 pm GMT PDB ID : 4Z5R Title : Rontalizumab Fab bound to Interferon-a2 Authors : Eigenbrot, C.; Maurer, B.; Bosanac, I. Deposited on : 2015-04-02

More information

FW 1 CDR 1 FW 2 CDR 2

FW 1 CDR 1 FW 2 CDR 2 Supplementary Figure 1 Supplementary Figure 1: Interface of the E9:Fas structure. The two interfaces formed by V H and V L of E9 with Fas are shown in stereo. The Fas receptor is represented as a surface

More information

Manipulating Ligands Using Coot. Paul Emsley May 2013

Manipulating Ligands Using Coot. Paul Emsley May 2013 Manipulating Ligands Using Coot Paul Emsley May 2013 Ligand and Density... Ligand and Density... Ligand and Density... Protein-ligand complex models are often a result of subjective interpretation Scoring

More information

Cryo-EM data collection, refinement and validation statistics

Cryo-EM data collection, refinement and validation statistics 1 Table S1 Cryo-EM data collection, refinement and validation statistics Data collection and processing CPSF-160 WDR33 (EMDB-7114) (PDB 6BM0) CPSF-160 WDR33 (EMDB-7113) (PDB 6BLY) CPSF-160 WDR33 CPSF-30

More information

Garib N Murshudov MRC-LMB, Cambridge

Garib N Murshudov MRC-LMB, Cambridge Garib N Murshudov MRC-LMB, Cambridge Contents Introduction AceDRG: two functions Validation of entries in the DB and derived data Generation of new ligand description Jligand for link description Conclusions

More information

Structure and evolution of the spliceosomal peptidyl-prolyl cistrans isomerase Cwc27

Structure and evolution of the spliceosomal peptidyl-prolyl cistrans isomerase Cwc27 Acta Cryst. (2014). D70, doi:10.1107/s1399004714021695 Supporting information Volume 70 (2014) Supporting information for article: Structure and evolution of the spliceosomal peptidyl-prolyl cistrans isomerase

More information

Protein Data Bank Contents Guide: Atomic Coordinate Entry Format Description. Version 3.0, December 1, 2006 Updated to Version 3.

Protein Data Bank Contents Guide: Atomic Coordinate Entry Format Description. Version 3.0, December 1, 2006 Updated to Version 3. Protein Data Bank Contents Guide: Atomic Coordinate Entry Format Description Version 3.0, December 1, 2006 Updated to Version 3.01 March 30, 2007 1. Introduction The Protein Data Bank (PDB) is an archive

More information

Physiochemical Properties of Residues

Physiochemical Properties of Residues Physiochemical Properties of Residues Various Sources C N Cα R Slide 1 Conformational Propensities Conformational Propensity is the frequency in which a residue adopts a given conformation (in a polypeptide)

More information

Modelling Macromolecules with Coot

Modelling Macromolecules with Coot Modelling Macromolecules with Coot Overview Real Space Refinement A Sample of Tools Tools for Cryo-EM Tools for Ligands [Carbohydrates] Paul Emsley MRC Laboratory of Molecular Biology Acknowldegments,

More information

Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08 Å resolution: comparison with the Azotobacter vinelandii MoFe protein

Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08 Å resolution: comparison with the Azotobacter vinelandii MoFe protein Acta Cryst. (2015). D71, 274-282, doi:10.1107/s1399004714025243 Supporting information Volume 71 (2015) Supporting information for article: Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08

More information

Introduction to Comparative Protein Modeling. Chapter 4 Part I

Introduction to Comparative Protein Modeling. Chapter 4 Part I Introduction to Comparative Protein Modeling Chapter 4 Part I 1 Information on Proteins Each modeling study depends on the quality of the known experimental data. Basis of the model Search in the literature

More information

Report of protein analysis

Report of protein analysis Report of protein analysis By the WHAT IF program 2010-09-19 1 Introduction what check is the name of the validation option in what if. It doesn t matter whether you use the what check program or the what

More information

Viewing and Analyzing Proteins, Ligands and their Complexes 2

Viewing and Analyzing Proteins, Ligands and their Complexes 2 2 Viewing and Analyzing Proteins, Ligands and their Complexes 2 Overview Viewing the accessible surface Analyzing the properties of proteins containing thousands of atoms is best accomplished by representing

More information

Protein Structures: Experiments and Modeling. Patrice Koehl

Protein Structures: Experiments and Modeling. Patrice Koehl Protein Structures: Experiments and Modeling Patrice Koehl Structural Bioinformatics: Proteins Proteins: Sources of Structure Information Proteins: Homology Modeling Proteins: Ab initio prediction Proteins:

More information

April, The energy functions include:

April, The energy functions include: REDUX A collection of Python scripts for torsion angle Monte Carlo protein molecular simulations and analysis The program is based on unified residue peptide model and is designed for more efficient exploration

More information

Conformational Geometry of Peptides and Proteins:

Conformational Geometry of Peptides and Proteins: Conformational Geometry of Peptides and Proteins: Before discussing secondary structure, it is important to appreciate the conformational plasticity of proteins. Each residue in a polypeptide has three

More information

SEQUENCE ALIGNMENT BACKGROUND: BIOINFORMATICS. Prokaryotes and Eukaryotes. DNA and RNA

SEQUENCE ALIGNMENT BACKGROUND: BIOINFORMATICS. Prokaryotes and Eukaryotes. DNA and RNA SEQUENCE ALIGNMENT BACKGROUND: BIOINFORMATICS 1 Prokaryotes and Eukaryotes 2 DNA and RNA 3 4 Double helix structure Codons Codons are triplets of bases from the RNA sequence. Each triplet defines an amino-acid.

More information

Properties of amino acids in proteins

Properties of amino acids in proteins Properties of amino acids in proteins one of the primary roles of DNA (but not the only one!) is to code for proteins A typical bacterium builds thousands types of proteins, all from ~20 amino acids repeated

More information

Protein Fragment Search Program ver Overview: Contents:

Protein Fragment Search Program ver Overview: Contents: Protein Fragment Search Program ver 1.1.1 Developed by: BioPhysics Laboratory, Faculty of Life and Environmental Science, Shimane University 1060 Nishikawatsu-cho, Matsue-shi, Shimane, 690-8504, Japan

More information

Report of protein analysis

Report of protein analysis Report of protein analysis By the WHAT IF program 2010-09-19 1 Introduction what check is the name of the validation option in what if. It doesn t matter whether you use the what check program or the what

More information

Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets

Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets Supporting information Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets Wan-Na Chen, Christoph Nitsche, Kala Bharath Pilla, Bim Graham, Thomas

More information

Using Higher Calculus to Study Biologically Important Molecules Julie C. Mitchell

Using Higher Calculus to Study Biologically Important Molecules Julie C. Mitchell Using Higher Calculus to Study Biologically Important Molecules Julie C. Mitchell Mathematics and Biochemistry University of Wisconsin - Madison 0 There Are Many Kinds Of Proteins The word protein comes

More information

Other Methods for Generating Ions 1. MALDI matrix assisted laser desorption ionization MS 2. Spray ionization techniques 3. Fast atom bombardment 4.

Other Methods for Generating Ions 1. MALDI matrix assisted laser desorption ionization MS 2. Spray ionization techniques 3. Fast atom bombardment 4. Other Methods for Generating Ions 1. MALDI matrix assisted laser desorption ionization MS 2. Spray ionization techniques 3. Fast atom bombardment 4. Field Desorption 5. MS MS techniques Matrix assisted

More information

Protein structure analysis. Risto Laakso 10th January 2005

Protein structure analysis. Risto Laakso 10th January 2005 Protein structure analysis Risto Laakso risto.laakso@hut.fi 10th January 2005 1 1 Summary Various methods of protein structure analysis were examined. Two proteins, 1HLB (Sea cucumber hemoglobin) and 1HLM

More information

DOCKING TUTORIAL. A. The docking Workflow

DOCKING TUTORIAL. A. The docking Workflow 2 nd Strasbourg Summer School on Chemoinformatics VVF Obernai, France, 20-24 June 2010 E. Kellenberger DOCKING TUTORIAL A. The docking Workflow 1. Ligand preparation It consists in the standardization

More information

Secondary Structure. Bioch/BIMS 503 Lecture 2. Structure and Function of Proteins. Further Reading. Φ, Ψ angles alone determine protein structure

Secondary Structure. Bioch/BIMS 503 Lecture 2. Structure and Function of Proteins. Further Reading. Φ, Ψ angles alone determine protein structure Bioch/BIMS 503 Lecture 2 Structure and Function of Proteins August 28, 2008 Robert Nakamoto rkn3c@virginia.edu 2-0279 Secondary Structure Φ Ψ angles determine protein structure Φ Ψ angles are restricted

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:1.138/nature1737 Supplementary Table 1 variant Description FSEC - 2B12 a FSEC - 6A1 a K d (leucine) c Leucine uptake e K (wild-type like) K (Y18F) K (TS) K (TSY) K288A mutant, lipid facing side chain

More information

Sequential resonance assignments in (small) proteins: homonuclear method 2º structure determination

Sequential resonance assignments in (small) proteins: homonuclear method 2º structure determination Lecture 9 M230 Feigon Sequential resonance assignments in (small) proteins: homonuclear method 2º structure determination Reading resources v Roberts NMR of Macromolecules, Chap 4 by Christina Redfield

More information

Analyzing Molecular Conformations Using the Cambridge Structural Database. Jason Cole Cambridge Crystallographic Data Centre

Analyzing Molecular Conformations Using the Cambridge Structural Database. Jason Cole Cambridge Crystallographic Data Centre Analyzing Molecular Conformations Using the Cambridge Structural Database Jason Cole Cambridge Crystallographic Data Centre 1 The Cambridge Structural Database (CSD) 905,284* USOPEZ a natural product intermediate,

More information

NH 2. Biochemistry I, Fall Term Sept 9, Lecture 5: Amino Acids & Peptides Assigned reading in Campbell: Chapter

NH 2. Biochemistry I, Fall Term Sept 9, Lecture 5: Amino Acids & Peptides Assigned reading in Campbell: Chapter Biochemistry I, Fall Term Sept 9, 2005 Lecture 5: Amino Acids & Peptides Assigned reading in Campbell: Chapter 3.1-3.4. Key Terms: ptical Activity, Chirality Peptide bond Condensation reaction ydrolysis

More information

1. (5) Draw a diagram of an isomeric molecule to demonstrate a structural, geometric, and an enantiomer organization.

1. (5) Draw a diagram of an isomeric molecule to demonstrate a structural, geometric, and an enantiomer organization. Organic Chemistry Assignment Score. Name Sec.. Date. Working by yourself or in a group, answer the following questions about the Organic Chemistry material. This assignment is worth 35 points with the

More information

Efficient Perception of Proteins and Nucleic Acids from Atomic Connectivity. Roger Sayle, Ph.D. NextMove Software, Cambridge, UK

Efficient Perception of Proteins and Nucleic Acids from Atomic Connectivity. Roger Sayle, Ph.D. NextMove Software, Cambridge, UK Efficient Perception of Proteins and Nucleic Acids from Atomic Connectivity Roger Sayle, Ph.D. NextMove Software, Cambridge, UK motivation Chemical Structure Normalization/Tautomers. IMI Open PHACTS suggest

More information

Overview. The peptide bond. Page 1

Overview. The peptide bond. Page 1 Overview Secondary structure: the conformation of the peptide backbone The peptide bond, steric implications Steric hindrance and sterically allowed conformations. Ramachandran diagrams Side chain conformations

More information

C H E M I S T R Y N A T I O N A L Q U A L I F Y I N G E X A M I N A T I O N SOLUTIONS GUIDE

C H E M I S T R Y N A T I O N A L Q U A L I F Y I N G E X A M I N A T I O N SOLUTIONS GUIDE C H E M I S T R Y 2 0 0 0 A T I A L Q U A L I F Y I G E X A M I A T I SLUTIS GUIDE Answers are a guide only and do not represent a preferred method of solving problems. Section A 1B, 2A, 3C, 4C, 5D, 6D,

More information

Section Week 3. Junaid Malek, M.D.

Section Week 3. Junaid Malek, M.D. Section Week 3 Junaid Malek, M.D. Biological Polymers DA 4 monomers (building blocks), limited structure (double-helix) RA 4 monomers, greater flexibility, multiple structures Proteins 20 Amino Acids,

More information

Protein structure. Protein structure. Amino acid residue. Cell communication channel. Bioinformatics Methods

Protein structure. Protein structure. Amino acid residue. Cell communication channel. Bioinformatics Methods Cell communication channel Bioinformatics Methods Iosif Vaisman Email: ivaisman@gmu.edu SEQUENCE STRUCTURE DNA Sequence Protein Sequence Protein Structure Protein structure ATGAAATTTGGAAACTTCCTTCTCACTTATCAGCCACCT...

More information

HOMOLOGY MODELING. The sequence alignment and template structure are then used to produce a structural model of the target.

HOMOLOGY MODELING. The sequence alignment and template structure are then used to produce a structural model of the target. HOMOLOGY MODELING Homology modeling, also known as comparative modeling of protein refers to constructing an atomic-resolution model of the "target" protein from its amino acid sequence and an experimental

More information

Generating Small Molecule Conformations from Structural Data

Generating Small Molecule Conformations from Structural Data Generating Small Molecule Conformations from Structural Data Jason Cole cole@ccdc.cam.ac.uk Cambridge Crystallographic Data Centre 1 The Cambridge Crystallographic Data Centre About us A not-for-profit,

More information

Molecular Structure Prediction by Global Optimization

Molecular Structure Prediction by Global Optimization Molecular Structure Prediction by Global Optimization K.A. DILL Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA 94118 A.T. PHILLIPS Computer Science

More information

Peptides And Proteins

Peptides And Proteins Kevin Burgess, May 3, 2017 1 Peptides And Proteins from chapter(s) in the recommended text A. Introduction B. omenclature And Conventions by amide bonds. on the left, right. 2 -terminal C-terminal triglycine

More information

Basic Principles of Protein Structures

Basic Principles of Protein Structures Basic Principles of Protein Structures Proteins Proteins: The Molecule of Life Proteins: Building Blocks Proteins: Secondary Structures Proteins: Tertiary and Quartenary Structure Proteins: Geometry Proteins

More information

Table 1. Crystallographic data collection, phasing and refinement statistics. Native Hg soaked Mn soaked 1 Mn soaked 2

Table 1. Crystallographic data collection, phasing and refinement statistics. Native Hg soaked Mn soaked 1 Mn soaked 2 Table 1. Crystallographic data collection, phasing and refinement statistics Native Hg soaked Mn soaked 1 Mn soaked 2 Data collection Space group P2 1 2 1 2 1 P2 1 2 1 2 1 P2 1 2 1 2 1 P2 1 2 1 2 1 Cell

More information

Central Dogma. modifications genome transcriptome proteome

Central Dogma. modifications genome transcriptome proteome entral Dogma DA ma protein post-translational modifications genome transcriptome proteome 83 ierarchy of Protein Structure 20 Amino Acids There are 20 n possible sequences for a protein of n residues!

More information

PDBe TUTORIAL. PDBePISA (Protein Interfaces, Surfaces and Assemblies)

PDBe TUTORIAL. PDBePISA (Protein Interfaces, Surfaces and Assemblies) PDBe TUTORIAL PDBePISA (Protein Interfaces, Surfaces and Assemblies) http://pdbe.org/pisa/ This tutorial introduces the PDBePISA (PISA for short) service, which is a webbased interactive tool offered by

More information

B O C 4 H 2 O O. NOTE: The reaction proceeds with a carbonium ion stabilized on the C 1 of sugar A.

B O C 4 H 2 O O. NOTE: The reaction proceeds with a carbonium ion stabilized on the C 1 of sugar A. hbcse 33 rd International Page 101 hemistry lympiad Preparatory 05/02/01 Problems d. In the hydrolysis of the glycosidic bond, the glycosidic bridge oxygen goes with 4 of the sugar B. n cleavage, 18 from

More information

1. What is an ångstrom unit, and why is it used to describe molecular structures?

1. What is an ångstrom unit, and why is it used to describe molecular structures? 1. What is an ångstrom unit, and why is it used to describe molecular structures? The ångstrom unit is a unit of distance suitable for measuring atomic scale objects. 1 ångstrom (Å) = 1 10-10 m. The diameter

More information

NMR parameters intensity chemical shift coupling constants 1D 1 H spectra of nucleic acids and proteins

NMR parameters intensity chemical shift coupling constants 1D 1 H spectra of nucleic acids and proteins Lecture #2 M230 NMR parameters intensity chemical shift coupling constants Juli Feigon 1D 1 H spectra of nucleic acids and proteins NMR Parameters A. Intensity (area) 1D NMR spectrum: integrated intensity

More information

C CH 3 N C COOH. Write the structural formulas of all of the dipeptides that they could form with each other.

C CH 3 N C COOH. Write the structural formulas of all of the dipeptides that they could form with each other. hapter 25 Biochemistry oncept heck 25.1 Two common amino acids are 3 2 N alanine 3 2 N threonine Write the structural formulas of all of the dipeptides that they could form with each other. The carboxyl

More information

Protein Struktur (optional, flexible)

Protein Struktur (optional, flexible) Protein Struktur (optional, flexible) 22/10/2009 [ 1 ] Andrew Torda, Wintersemester 2009 / 2010, AST nur für Informatiker, Mathematiker,.. 26 kt, 3 ov 2009 Proteins - who cares? 22/10/2009 [ 2 ] Most important

More information

Biological Macromolecules

Biological Macromolecules Introduction for Chem 493 Chemistry of Biological Macromolecules Dr. L. Luyt January 2008 Dr. L. Luyt Chem 493-2008 1 Biological macromolecules are the molecules of life allow for organization serve a

More information

Chapter 4: Amino Acids

Chapter 4: Amino Acids Chapter 4: Amino Acids All peptides and polypeptides are polymers of alpha-amino acids. lipid polysaccharide enzyme 1940s 1980s. Lipids membrane 1960s. Polysaccharide Are energy metabolites and many of

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Results DNA binding property of the SRA domain was examined by an electrophoresis mobility shift assay (EMSA) using synthesized 12-bp oligonucleotide duplexes containing unmodified, hemi-methylated,

More information

Packing of Secondary Structures

Packing of Secondary Structures 7.88 Lecture Notes - 4 7.24/7.88J/5.48J The Protein Folding and Human Disease Professor Gossard Retrieving, Viewing Protein Structures from the Protein Data Base Helix helix packing Packing of Secondary

More information

Rotamers in the CHARMM19 Force Field

Rotamers in the CHARMM19 Force Field Appendix A Rotamers in the CHARMM19 Force Field The people may be made to follow a path of action, but they may not be made to understand it. Confucius (551 BC - 479 BC) ( ) V r 1 (j),r 2 (j),r 3 (j),...,r

More information

Supplementary Figure 3 a. Structural comparison between the two determined structures for the IL 23:MA12 complex. The overall RMSD between the two

Supplementary Figure 3 a. Structural comparison between the two determined structures for the IL 23:MA12 complex. The overall RMSD between the two Supplementary Figure 1. Biopanningg and clone enrichment of Alphabody binders against human IL 23. Positive clones in i phage ELISA with optical density (OD) 3 times higher than background are shown for

More information

What makes a good graphene-binding peptide? Adsorption of amino acids and peptides at aqueous graphene interfaces: Electronic Supplementary

What makes a good graphene-binding peptide? Adsorption of amino acids and peptides at aqueous graphene interfaces: Electronic Supplementary Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is The Royal Society of Chemistry 21 What makes a good graphene-binding peptide? Adsorption of amino acids and

More information

Identifying Interaction Hot Spots with SuperStar

Identifying Interaction Hot Spots with SuperStar Identifying Interaction Hot Spots with SuperStar Version 1.0 November 2017 Table of Contents Identifying Interaction Hot Spots with SuperStar... 2 Case Study... 3 Introduction... 3 Generate SuperStar Maps

More information

Data File Formats. There are dozens of file formats for chemical data.

Data File Formats. There are dozens of file formats for chemical data. 1 Introduction There are dozens of file formats for chemical data. We will do an overview of a few that are often used in structural bioinformatics. 2 1 PDB File Format (1) The PDB file format specification

More information

Clustering and Model Integration under the Wasserstein Metric. Jia Li Department of Statistics Penn State University

Clustering and Model Integration under the Wasserstein Metric. Jia Li Department of Statistics Penn State University Clustering and Model Integration under the Wasserstein Metric Jia Li Department of Statistics Penn State University Clustering Data represented by vectors or pairwise distances. Methods Top- down approaches

More information

Biochemistry Quiz Review 1I. 1. Of the 20 standard amino acids, only is not optically active. The reason is that its side chain.

Biochemistry Quiz Review 1I. 1. Of the 20 standard amino acids, only is not optically active. The reason is that its side chain. Biochemistry Quiz Review 1I A general note: Short answer questions are just that, short. Writing a paragraph filled with every term you can remember from class won t improve your answer just answer clearly,

More information

Model Mélange. Physical Models of Peptides and Proteins

Model Mélange. Physical Models of Peptides and Proteins Model Mélange Physical Models of Peptides and Proteins In the Model Mélange activity, you will visit four different stations each featuring a variety of different physical models of peptides or proteins.

More information

Three-dimensional structure of a viral genome-delivery portal vertex

Three-dimensional structure of a viral genome-delivery portal vertex Three-dimensional structure of a viral genome-delivery portal vertex Adam S. Olia 1, Peter E. Prevelige Jr. 2, John E. Johnson 3 and Gino Cingolani 4 1 Department of Biological Sciences, Purdue University,

More information

Supplementary Information

Supplementary Information 1 Supplementary Information Figure S1 The V=0.5 Harker section of an anomalous difference Patterson map calculated using diffraction data from the NNQQNY crystal at 1.3 Å resolution. The position of the

More information

Resonance assignments in proteins. Christina Redfield

Resonance assignments in proteins. Christina Redfield Resonance assignments in proteins Christina Redfield 1. Introduction The assignment of resonances in the complex NMR spectrum of a protein is the first step in any study of protein structure, function

More information

Q1 current best prac2ce

Q1 current best prac2ce Group- A Q1 current best prac2ce Star2ng from some common molecular representa2on with bond orders, configura2on on chiral centers (e.g. ChemDraw, SMILES) NEW! PDB should become resource for refinement

More information

Conformational Analysis

Conformational Analysis Conformational Analysis C01 3 C C 3 is the most stable by 0.9 kcal/mole C02 K eq = K 1-1 * K 2 = 0.45-1 * 0.048 = 0.11 C04 The intermediate in the reaction of 2 has an unfavorable syn-pentane interaction,

More information

7.012 Problem Set 1. i) What are two main differences between prokaryotic cells and eukaryotic cells?

7.012 Problem Set 1. i) What are two main differences between prokaryotic cells and eukaryotic cells? ame 7.01 Problem Set 1 Section Question 1 a) What are the four major types of biological molecules discussed in lecture? Give one important function of each type of biological molecule in the cell? b)

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11054 Supplementary Fig. 1 Sequence alignment of Na v Rh with NaChBac, Na v Ab, and eukaryotic Na v and Ca v homologs. Secondary structural elements of Na v Rh are indicated above the

More information

Problem Set 1

Problem Set 1 2006 7.012 Problem Set 1 Due before 5 PM on FRIDAY, September 15, 2006. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. For each of the following parts, pick

More information

Secondary and sidechain structures

Secondary and sidechain structures Lecture 2 Secondary and sidechain structures James Chou BCMP201 Spring 2008 Images from Petsko & Ringe, Protein Structure and Function. Branden & Tooze, Introduction to Protein Structure. Richardson, J.

More information

A new generation of crystallographic validation tools for the Protein Data Bank

A new generation of crystallographic validation tools for the Protein Data Bank A new generation of crystallographic validation tools for the Protein Data Bank Randy J. Read 1,*, Paul D. Adams 2, W. Bryan Arendall III 3, Axel T. Brunger 4, Paul Emsley 5, Robbie P. Joosten 6,7, Gerard

More information

Electronic Supplementary Information (ESI) for Chem. Commun. Unveiling the three- dimensional structure of the green pigment of nitrite- cured meat

Electronic Supplementary Information (ESI) for Chem. Commun. Unveiling the three- dimensional structure of the green pigment of nitrite- cured meat Electronic Supplementary Information (ESI) for Chem. Commun. Unveiling the three- dimensional structure of the green pigment of nitrite- cured meat Jun Yi* and George B. Richter- Addo* Department of Chemistry

More information

Tools for Cryo-EM Map Fitting. Paul Emsley MRC Laboratory of Molecular Biology

Tools for Cryo-EM Map Fitting. Paul Emsley MRC Laboratory of Molecular Biology Tools for Cryo-EM Map Fitting Paul Emsley MRC Laboratory of Molecular Biology April 2017 Cryo-EM model-building typically need to move more atoms that one does for crystallography the maps are lower resolution

More information

Supplemental Materials for. Structural Diversity of Protein Segments Follows a Power-law Distribution

Supplemental Materials for. Structural Diversity of Protein Segments Follows a Power-law Distribution Supplemental Materials for Structural Diversity of Protein Segments Follows a Power-law Distribution Yoshito SAWADA and Shinya HONDA* National Institute of Advanced Industrial Science and Technology (AIST),

More information

LS1a Fall 2014 Problem Set #2 Due Monday 10/6 at 6 pm in the drop boxes on the Science Center 2 nd Floor

LS1a Fall 2014 Problem Set #2 Due Monday 10/6 at 6 pm in the drop boxes on the Science Center 2 nd Floor LS1a Fall 2014 Problem Set #2 Due Monday 10/6 at 6 pm in the drop boxes on the Science Center 2 nd Floor Note: Adequate space is given for each answer. Questions that require a brief explanation should

More information

Course Notes: Topics in Computational. Structural Biology.

Course Notes: Topics in Computational. Structural Biology. Course Notes: Topics in Computational Structural Biology. Bruce R. Donald June, 2010 Copyright c 2012 Contents 11 Computational Protein Design 1 11.1 Introduction.........................................

More information

Exam I Answer Key: Summer 2006, Semester C

Exam I Answer Key: Summer 2006, Semester C 1. Which of the following tripeptides would migrate most rapidly towards the negative electrode if electrophoresis is carried out at ph 3.0? a. gly-gly-gly b. glu-glu-asp c. lys-glu-lys d. val-asn-lys

More information

Supplementary Information. Broad Spectrum Anti-Influenza Agents by Inhibiting Self- Association of Matrix Protein 1

Supplementary Information. Broad Spectrum Anti-Influenza Agents by Inhibiting Self- Association of Matrix Protein 1 Supplementary Information Broad Spectrum Anti-Influenza Agents by Inhibiting Self- Association of Matrix Protein 1 Philip D. Mosier 1, Meng-Jung Chiang 2, Zhengshi Lin 2, Yamei Gao 2, Bashayer Althufairi

More information