IMPLEMENTING MOX NANOSENSORS FOR AMBIENT AIR APPLICATION

Size: px
Start display at page:

Download "IMPLEMENTING MOX NANOSENSORS FOR AMBIENT AIR APPLICATION"

Transcription

1 IMPLEMENTING MOX NANOSENSORS FOR AMBIENT AIR APPLICATION F. Adrover, C. Jaeschke, A. Parellada Nanotechnology and Nanosensors Online Course. Coursera Technion Israel Institute of Technology June 10, Felanitx (Spain), Tübingen (Germany), Barcelona (Spain)

2 Table of content 1. Abstract Introduction Literature review Project description MOX gas sensors Method for Fabrication Characterization Power Consumption Gas specific Sensor Characterization Improvements Real-life application of smelling VOCs in the ambient air Sensing mechanism in the case of an exposition to formaldehyde Conclusions and recommendartions References... 9 Table of figures Figure 1. Principle of the transducer Figure 2. Commercial gas sensors with a TO-39 socket Figure 3. Reaction scheme of the formaldehyde detection.... 8

3 1. Abstract In this report we want to show, the purpose of using nanotechnology and nanosensors for imitating the human sense of smell. Regarding this topic we are going to implement metal oxide (MOX) gas sensors in a so-called Smart intelligent house or flat. These sensors are able to detect displeasing odours each room and the evaluation unit could decide on its own to open a window or to turn on the ventilation system to get fresh air and to remove the unpleasant smell or could give the owners a message on their mobile phone or tablet. The evaluation unit consists out of a data acquisition and analysis system using pattern recognition methods and algorithms. The resistance of the active sensing layer changes due to contact with the gas to be detected. In the ideal case, the gas reacts with the sensor surface in a completely reversible reaction. Keywords: MOX, nanotechnology, nanosensors, smell human sense, ambient air detection, VOCs, displeasing odour, Smart intelligent house 2. Introduction A gas sensor is a device that can be used to detect different types and composition of gases such as ethanol, CO 2, CO, etc. This report is dedicated to explain how the metal oxide (MOX) gas sensors are working, how can we fabricate them and which features can characterize them for implementing a day life application using the MOX principles. The gas sensors based on MOX have an important role in environmental monitoring, air quality, chemical process controlling, personal safety, process controls, detection of toxic environmental pollutants in human health, preventing of hazardous gas leaks, and we could expand this until having a huge list. [1] It is well-known that the sensitivity characteristics of these sensors strongly depend on the morphology of metal oxide semiconductor (MOS). 3. Literature review The following paragraph will be focused on which is the State of the art related with MOX sensors. In past decades, gas sensors based on the metal oxide semiconductors (MOSs) have been studied in diverse field for wide applications. One of the main reasons because of some people is putting such an effort to build new devices is because of the cheap price of this technology. 2

4 There is the need to say that is not clear some functionality of the sensors, and that is why some people prefer using silicon nanowires or gold nanoparticles instead of MOX solutions. Probably in the future the applications will be adopt different technologies at the same time instead of usi g just the po er of just one of them. Nowadays there are companies which have a large product range of ambient air gas detection solutions, but they are not able to detect displeasing VOCs. There is no existing working smart home solution which is able to help the residents with artificial intelligence. 4. Project description In our project, we would like to show a possibility of imitating the smell as one of the important human senses with nanotechnologies and nanosensors. Especially to improve the sense of smell could be very useful because humans are not able to smell CO and it is a great advantage to detect VOCs in the ambient air before a human nose could smell it. The following part will describe general information about metal oxide (MOX) gas sensors. 4.1 MOX gas sensors Gas sensors are used for the detection of gaseous substances and compounds. In the presents of a target gas, the sensor transduces the chemical information into an electrical signal (see figure 1). Figure 1. Principle of the transducer. Such a chemical sensor is assembled by different parts as described in the following. The receptor is formed by the sensitive layer and the transducer. The sensitive layer is in direct contact to the gaseous sample and due to the contact with a target gas the sensitive layer is altered and its physical 3

5 properties changes. These changes are translated into an electronic signal by the measurement electronics (transducer). Generally sensors are constructed in the following way. On an alumina (Al 2O 3) substrate, there is a platinum heater at the bottom. This heater is needed to set the operating temperature of the sensor via applying a voltage. At the top, there are interdigitated platinum electrodes, where the changes in the resistance of the sensor are measured. Above this interdigital-structure there is the sensitive layer (e.g. SnO 2). The substrate separates the heater from the electrodes at the top. Because of the fact that there is a metal oxide as a sensitive layer at the top of the sensor, these sensors are called metal oxide gas sensors, short MOX sensors or MOS - sensors for metal oxide semiconductor gas sensors. SnO 2 is an n-type semiconductor because of oxygen vacancies in the crystal lattice. These certain metal oxides, such as SnO 2, change their conductivity under a gas exposure. In the case of an oxidizing gas the conductivity decreases and in the case of an exposure to a reducing gas the conductivity will increase. The sensor layout of commercial sensors is mostly the same one as mentioned above. But because of the miniaturization it is a little bit different. These sensors are mounted in a metal can with a socket, for example the so-called TO-39 socket, as can be seen in figure 2. Figure 2. Commercial gas sensors with a TO-39 socket. MOX sensors consist of the same components as the planar gas sensor. The substrate separates the heating electrodes at the bottom from the measuring electrodes at the top of the sensor. The commonly used sensitive layers in commercial sensors are made out of tin oxide (SnO 2) [2], tungsten oxide (WO 3) [3] or zinc oxide (ZnO) [4]. The properties of the sensitive layer can be adjusted through doping materials, for example to reach a higher sensitivity to a target gas. The sensitive layer is located directly over the interdigital-electrodes. Heater and sensor electrodes are connected to the pins of the TO-39 socket. This layout sometimes differs for different suppliers. 4

6 4.2 Method for Fabrication There are some different techniques of manufacturing sensitive layers for MOX sensors. Depending on which is our final goal and which are the conditions we are working on, is better using one or another technique. Nowadays, the companies and researchers who are developing these sensors are mainly using three different sensors. These sensors can be distinguished according the morphology they have: - Thick film technology (Taguchi-type): most of the times they are produced via screen printing. They are recognized as 3D sensors. The working principle is using a porous sintered block [1]. - Thin film technology: This type of sensors are recognised as 2D sensors. Thin film sensors are produced by chemical vapor deposition or physical vapor deposition [1]. - Nanowires: The MOS nanowires can be synthesized by thermal oxidation technique. This technique has been successfully used for synthesizing ZnO or CuO by simply heating pure Zn and Cu material source, respectively. This are the most innovative and they can be known as third generation of MOX sensors. The sensing mechanism is based in chemisorption and change transfer interaction with the gas. They are currently helping the understanding of adsorption between gas and metal oxides. The nanowire fabrication routes can usually be categorized by bottom-up or top-down. Recently, advances in bottom-up fabrication processes have opened up the possibility of a synergy between bottom-up and top-down processes to achieve the benefits of both. Nanowire sensors can be described as having a well-defined geometry, high surface to volume ratio and good crystallinity. [5] 4.3 Characterization The MOX sensors can achieve very different features depending on the method of fabrication, sizes and morphologies of the nanostructures explained before. Depending on the application, we are going to choose the best type of MOX sensor which is fitting for that purpose. 5

7 The MOS gas sensors have some advantages in front other types of sensors because of their miniaturization, low power consumption, ultra-fast response times, simple construction, good sensing properties, and high compatibility with microelectronic processing. So, they have rapidly gained attention over the years Power Consumption The difference in power consumption of metal oxide gas sensors is because of the different designs we can have on the applications. Standard sensors, require approximately 1.3 W of power (at 350 C). The power consumption can be reduced by the thermal decoupling of the sensor from the housing, for example through the use of micro-hotplates. In this case, the power consumption will change to less than 150 mw. Thin film sensors need a pretty high power consumption, being a limitation for some applications Gas specific Sensor Characterization Due to their chemical composition and properties, metal oxide gas sensors are well-suited for a wide range of applications and for the detection of all reactive gases. The detection limit will depend on the material that is used for sensing and the gases which are going to be detected. The typical operating temperatures range can be between 300 C and 900 C. If we have a good sensor in the proper conditions, we can detect from a few ppb Improvements For improving the results, there is the chance to implement a software processing. Algorithms are implemented to the MOXs gas sensors results for getting a maximum and optimal selectivity, drift compensation and for self-calibration. 4.4 Real-life application of smelling VOCs in the ambient air Semiconductor gas sensors can be used for a wide array of applications, ranging from safety equipment (explosion, leakage, fire, contamination and poisoning protection) up to emissions and air quality monitoring, quality assurance, process instrumentation and measurement technology. For 6

8 example, gases such as carbon monoxide (CO), nitrogen oxide (NOx), ammonia (NH 3), sulfurous gases (H 2S, SO 2) and hydrocarbons (C xh y) as well as volatile organic compounds (VOCs) can be detected. Now, we are going to implement an application directed to an intelligent house: Sensor systems with the MOX-nanosensors could be placed in different places (like in the kitchen, in the living room, in nursery, in the toilet and in the sleeping room) in the house or flat. These nanosensors work in a network with the other sensors, which are located all around the house, and the data acquirement and data analysis will be done by a computer system, which is located in the basement. These system is responsible for the results of the different sensors. This multi sensor system for ambient air analysis is utilized with an advanced software for pattern recognition methods (like principal component analysis (PCA), principal component regression (PCR) or k-nearest neighbours algorithms (KNN)) for evaluating the outputs of the sensors. The data analysis software reduces the noise of the sensors via using and applying filters and feature extraction tools. In the case of contaminated ambient air the system is able to start the ventilation system of the house or to open the window electrically to clean the air in this room. This is a great advantage because these systems can work without humans, so these systems are able to help old people and also babies, because you are able to set your parameters for fresh air in your house or flat as you want and the system takes care of the actual value and the given value. These application could make the human life easy, the baby could sleep in its bedroom with the best value of fresh air during the parents are not at home. Another example for our real-life application are nanosensors in the kitchen. Sensors could control the hood. The nanosensors are placed around the cooking plate and the oven so that these kitchen sensors can detect volatile organic compounds (VOCs) which are coming from the displeasing smell of cooking. The pattern recognition system will evaluate the smell and would start the kitchen hood at the needed power. Thereby it is possible to reduce the power consumption, because the kitchen hood is working on the high level only if it is needed. This sensor in the kitchen hood is also able to detect fire. Another sensor is placed in the refrigerator to detect spoilt meat or tainted food. These application enhances the security of the feeding and it helps people to decide is the food okay or not, especially children and older people. Our real-life application could also be placed in the bathroom or toilets, because here is the most common place of undesired and displeasing odour of humans. To reduce this, nanosensors could be placed around important detecting points and the data acquisition and analysis software is able to detect the bad smell. The software starts the ventilation process and could spray good smelling fragrances directly into the bathroom or toilet. The pattern recognition system is trained for the used perfume so that the software is able to differentiate between the used good smelling odour and displeasing ones (e.g. other fragrances or human odours). 7

9 The sensing mechanism for formaldehyde of these MOX-nanosensors is described in the following section Sensing mechanism in the case of an exposition to formaldehyde Formaldehyde reacts with the ionosorbed oxygen ions at the surface of the semiconductor. CO 2 and water will be formed and the previously trapped electrons are released into the conduction band of the semiconductor. The sensor resistance is decreasing during the form equation (1) [6]: (1) Through a following in situ DRIFTS study Zhang et al. Also confirmed each step starting from formaldehyde with all important intermediates (dioxymethylene, formate species and polyoxymethylene) to the formation of CO 2 and water, as can be seen in the equations (2) (6) [6]: (2) (3) (4) (5) (6) Other molecules of formaldehyde can be polymerized to linear polyoxymethylene during the creation of CO 2 and water. In figure 3 the possible gas-sensing reaction mechanism of formaldehyde and the decomposition is shown. Figure 3. Reaction scheme of the formaldehyde detection [6]. 8

10 Moreover Zhang et al. (2013) reached an excellent formaldehyde gas-sensing property with the use of nano-sno 2 powder for the sensitive layer. 5. Conclusions and recommendations This report is showing how to use the MOX technology for implementing a Smart Sensing for Houses. As we have seen, the Metal Oxide Gas Sensors are a good candidate as a gas sensing device, because of their miniaturization, great stability, fast response times and simple construction. Moreover, the size and morphology are playing a big role on the sensitivity characterization, surface to volume ratio and depletion layer width. Our gas sensor applications are based on the important role of MOX in environmental-house monitoring, air quality, chemical process controlling, personal safety. Preventing any type of possible damage for the people is living there and giving them a better and more comfortable live. Other technologies like Silicon Nanowires and Gold Nanoparticles could be used with MOXs, because in some cases they have better implementation. For instance, they can have flexible substrates, and better power consumption because they dont need to heat up to very high temperature for sensing. 6. References [1] H. Haick, Coursera le ture otes anotechnology and nanosensors, [2] N. Tagu hi, Jp. Pate t No. -,. [3] J. Polleu, A. Gurlo, N. Bârsa, U. Wei ar, M. A to ietti, a d M. Nieder erger, Te plate-free Synthesis and Assembly of Single-Crystalline Tungsten Oxide Nanowires and their Gas-Sensing Properties, Angew. Chemie, vol. 118, no. 2, pp , Jan [4] X. Chu, T. Che, W. Zha g, a d H. Z. B. hui, I estigatio o for aldeh de gas se sor ith Z O thi k fil prepared through i ro a e heati g ethod, Sensors Actuators B Chem., vol. 142, no. 1, pp , Oct [5] R. G. Hobbs, N. Petkov, and J. D. Hol es, e i o du tor a o ire fa ri atio otto -up and topdo paradig s, Chem. Mater., vol. 24, no. 11, pp , [6] Z. Zha g, K. Hua g, F. Yua, a d C. Xie, Gas-sensing properties and in situ diffuse reflectance infrared Fourier tra sfor spe tros op stud of for aldeh de adsorptio a d rea tio s o O fil s, J. Mater. Res., vol. 29, no. 01, pp , Nov

Plasma Deposition (Overview) Lecture 1

Plasma Deposition (Overview) Lecture 1 Plasma Deposition (Overview) Lecture 1 Material Processes Plasma Processing Plasma-assisted Deposition Implantation Surface Modification Development of Plasma-based processing Microelectronics needs (fabrication

More information

AASS, Örebro University

AASS, Örebro University Mobile Robotics Achim J. and Lilienthal Olfaction Lab, AASS, Örebro University 1 Contents 1. "Classical" Electronic Nose 2. Further Gas Sensing Technologies for Mobile Robots 3. (Signal Processing in Electronic

More information

Gas Sensors and Solar Water Splitting. Yang Xu

Gas Sensors and Solar Water Splitting. Yang Xu Gas Sensors and Solar Water Splitting Yang Xu 11/16/14 Seite 1 Gas Sensor 11/16/14 Seite 2 What are sensors? American National Standards Institute (ANSI) Definition: a device which provides a usable output

More information

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD Chapter 4 DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD 4.1 INTRODUCTION Sputter deposition process is another old technique being used in modern semiconductor industries. Sputtering

More information

An account of our efforts towards air quality monitoring in epitaxial graphene on SiC

An account of our efforts towards air quality monitoring in epitaxial graphene on SiC European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - EuNetAir COST Action TD1105 2 nd International Workshop EuNetAir on New Sensing Technologies for

More information

GRAPHENE FLAGSHIP TECHNOLOGIES

GRAPHENE FLAGSHIP TECHNOLOGIES IOT AND SENSORS DATACOM HEALTH ENERGY COMPOSITES GRAPHENE FLAGSHIP TECHNOLOGIES IOT AND SENSORS CHROMATIC EYE The chromatic eye contains many different graphene photodetectors. This is a broadband sensor

More information

MODELING, DESIGN AND EXPERIMENTAL CARACHTERIZATION OF MICRO-ELECTRO ELECTRO-MECHANICAL- SYSTEMS FOR GAS- CHROMATOGRAPHIC APPLICATIONS

MODELING, DESIGN AND EXPERIMENTAL CARACHTERIZATION OF MICRO-ELECTRO ELECTRO-MECHANICAL- SYSTEMS FOR GAS- CHROMATOGRAPHIC APPLICATIONS MODELING, DESIGN AND EXPERIMENTAL CARACHTERIZATION OF MICRO-ELECTRO ELECTRO-MECHANICAL- SYSTEMS FOR GAS- CHROMATOGRAPHIC APPLICATIONS ENRICO COZZANI DEIS DOCTORATE CYCLE XXIII 18/01/2011 Enrico Cozzani

More information

Catalytic bead sensors are used primarily to detect

Catalytic bead sensors are used primarily to detect Chapter 3 Catalytic Combustible Gas Sensors Catalytic bead sensors are used primarily to detect combustible gases. They have been in use for more than 50 years. Initially, these sensors were used for monitoring

More information

A HYDROGEN SENSITIVE Pd/GaN SCHOTTKY DIODE SENSOR

A HYDROGEN SENSITIVE Pd/GaN SCHOTTKY DIODE SENSOR Journal of Physical Science, Vol. 17(2), 161 167, 2006 161 A HYDROGEN SENSITIVE Pd/GaN SCHOTTKY DIODE SENSOR A.Y. Hudeish 1,2* and A. Abdul Aziz 1 1 School of Physics, Universiti Sains Malaysia, 11800

More information

Achim J. Lilienthal Erik Schaffernicht Achim J. Lilienthal. AASS, Örebro University

Achim J. Lilienthal Erik Schaffernicht Achim J. Lilienthal. AASS, Örebro University Achim J. Lilienthal Erik Schaffernicht Mobile Achim J. Achim J. Lilienthal Room T1222 Robotics and Lilienthal Olfaction Room T1211 Lab, Erik Schaffernicht achim.lilienthal@oru.se AASS, Örebro University

More information

Available online at ScienceDirect. Procedia Engineering 168 (2016 ) th Eurosensors Conference, EUROSENSORS 2016

Available online at  ScienceDirect. Procedia Engineering 168 (2016 ) th Eurosensors Conference, EUROSENSORS 2016 Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 168 (2016 ) 216 220 30th Eurosensors Conference, EUROSENSORS 2016 SiC-FET sensors for selective and quantitative detection of

More information

Fluctuation-Enhanced Sensing with Commercial Gas Sensors

Fluctuation-Enhanced Sensing with Commercial Gas Sensors Sensors & Transducers ISSN 1726-5479 2003 by IFSA http://www.sensorsportal.com Fluctuation-Enhanced Sensing with Commercial Gas Sensors Jose L. SOLIS, Gary SEETON, Yingfeng LI, and Laszlo B. KISH Department

More information

Chemical Storage Guide

Chemical Storage Guide 1 P a g e Chemical Storage Guide It is the responsibility of every occupant, owner, tenant, contractor, employee & visitor and ALL users of this facility to ensure they take all reasonably practical steps

More information

Alternative deposition solution for cost reduction of TSV integration

Alternative deposition solution for cost reduction of TSV integration Alternative deposition solution for cost reduction of TSV integration J. Vitiello, F. Piallat, L. Bonnet KOBUS 611 rue Aristide Bergès, Z.A. de Pré Millet, Montbonnot-Saint-Martin, 38330 France Ph: +33

More information

EE 5344 Introduction to MEMS CHAPTER 7 Biochemical Sensors. Biochemical Microsensors

EE 5344 Introduction to MEMS CHAPTER 7 Biochemical Sensors. Biochemical Microsensors I. Basic Considerations & Definitions 1. Definitions: EE 5344 Introduction to MEMS CHAPTER 7 Biochemical Sensors Chemical/ Biological quantity Biochemical Microsensors Electrical Signal Ex: Chemical species

More information

Investigation of FIGARO TGS2620 under different Chemical Environment

Investigation of FIGARO TGS2620 under different Chemical Environment Investigation of FIGARO TGS2620 under different Chemical Environment Joyita Chakraborty 1, Abhishek Paul 2 1 Department of A.E.I.E, 2 Department of E.C.E Camellia Institute of Technology Kolkata, India

More information

Automotive Grade Silicon Capacitors for Under the Hood Applications

Automotive Grade Silicon Capacitors for Under the Hood Applications Automotive Grade Silicon Capacitors for Under the Hood Applications Sébastien Jacqueline, Laurent Lengignon, Laëtitia Omnès IPDiA, 2 rue de la Girafe, 14000 Caen, France laetitia.omnes@ipdia.com, +33 (0)

More information

ANN TECHNIQUE FOR ELECTRONIC NOSE BASED ON SMART SENSORS ARRAY

ANN TECHNIQUE FOR ELECTRONIC NOSE BASED ON SMART SENSORS ARRAY U.P.B. Sci. Bull., Series C, Vol. 79, Iss. 4, 2017 ISSN 2286-3540 ANN TECHNIQUE FOR ELECTRONIC NOSE BASED ON SMART SENSORS ARRAY Samia KHALDI 1, Zohir DIBI 2 Electronic Nose is widely used in environmental

More information

Innovative Nanosensor for Disease Diagnosis

Innovative Nanosensor for Disease Diagnosis Supporting Information Innovative Nanosensor for Disease Diagnosis Sang Joon Kim,, Seon Jin Choi,,, Ji Soo Jang, Hee Jin Cho, and Il Doo Kim,* Department of Materials Science and Engineering, Korea Advanced

More information

Gas Sensors Based on Multiwall Carbon Nanotubes Decorated with. Different Metal Oxides Nanoparticles.

Gas Sensors Based on Multiwall Carbon Nanotubes Decorated with. Different Metal Oxides Nanoparticles. Gas Sensors Based on Multiwall Carbon Nanotubes Decorated with Different Metal Oxides Nanoparticles. A. Abbaspourrad, C. Verissimo, R.V. Gelamo, M. M. da Silva, A. R. Vaz, F. P. M. Rouxinol, O. L. Alves,

More information

Improving Gas Sensing Properties of Tin Oxide Nanowires Palladium-Coated Using a Low Cost Technique

Improving Gas Sensing Properties of Tin Oxide Nanowires Palladium-Coated Using a Low Cost Technique JNS 2 (2013) 469-476 Improving Gas Sensing Properties of Tin Oxide Nanowires Palladium-Coated Using a Low Cost Technique M. Barzegar*, M. B. Rahmani, H. Haratizadeh Department of Physics, Shahrood University

More information

College of Mechanical Engineering, Yangzhou University, Yangzhou , China; 2

College of Mechanical Engineering, Yangzhou University, Yangzhou , China; 2 Proceedings Light-Assisted Room-Temperature NO2 Sensors Based on Black Sheet-Like NiO Xin Geng 1,2,3, Driss Lahem 4, Chao Zhang 1, *, Marie-Georges Olivier 3 and Marc Debliquy 3 1 College of Mechanical

More information

School of Chemical and Biological Engineering, College of Engineering, Seoul National University, 599 Gwanangno, Gwanakgu, Seoul , Korea ACS

School of Chemical and Biological Engineering, College of Engineering, Seoul National University, 599 Gwanangno, Gwanakgu, Seoul , Korea ACS School of Chemical and Biological Engineering, College of Engineering, Seoul National University, 599 Gwanangno, Gwanakgu, Seoul 151-742, Korea ACS Appl. Mater. Interfaces 2015, 7, 1746 1751 (DOI: 10.1021/am507314t)

More information

Nanostrukturphysik (Nanostructure Physics)

Nanostrukturphysik (Nanostructure Physics) Nanostrukturphysik (Nanostructure Physics) Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de; yang.xu@tu-ilmenau.de Office: Unterpoerlitzer

More information

Wafer-scale fabrication of graphene

Wafer-scale fabrication of graphene Wafer-scale fabrication of graphene Sten Vollebregt, MSc Delft University of Technology, Delft Institute of Mircosystems and Nanotechnology Delft University of Technology Challenge the future Delft University

More information

The application of nano aluminum powder on solid propellant

The application of nano aluminum powder on solid propellant The application of nano aluminum powder on solid propellant Metal incendiary agent is one of the important components of modern solid propellant, which can improve the explosion heat and density of propellant.

More information

RS DYNAMICS ECOPROBE 5. Portable IR/PID Gas Analyzer PID. PID and IR Analyzers

RS DYNAMICS ECOPROBE 5. Portable IR/PID Gas Analyzer PID. PID and IR Analyzers RS DYNAMICS ECOPROBE 5 Portable IR/PID Gas Analyzer PID + IR PID and IR Analyzers General ECOPROBE 5 has two autonomous analyzers in one case. The combination of analyzers provides a set of data designed

More information

Understanding ammonia sensors and their applications

Understanding ammonia sensors and their applications : Understanding ammonia sensors and their applications Different types of ammonia sensors are optimized for use in specific applications. The key to success is understanding the monitoring environment,

More information

Hazard Communication & Chemical Safety. Based on OSHA Standard

Hazard Communication & Chemical Safety. Based on OSHA Standard Hazard Communication & Chemical Safety Based on OSHA Standard 1910.1200 We use many chemicals We want you to know how to use them safely You will learn about The Hazards of Chemicals Our Written Program

More information

White Paper. Overview: NDIR Definition:

White Paper. Overview: NDIR Definition: Title: NDIR Technology Overview, Compliance, and Comparison to Other Generally Available Gas Measurement Technologies TSN Number: 06 File:\\MII- SRV1\Metron\Bridge_Analyzers\Customer_Service_Documentation\White_Papers\06

More information

Catalytic Decomposition of Formaldehyde on Nanometer Manganese Dioxide

Catalytic Decomposition of Formaldehyde on Nanometer Manganese Dioxide Modern Applied Science April, 29 Catalytic Decomposition of Formaldehyde on Nanometer Manganese Dioxide Xiujuan Chu & Hua Zhang (Corresponding author) Tianjin Municipal Key Lab of Fibres Modification and

More information

ARTIFICIAL CHEMICAL SENSES - ELECTRONIC TONGUE & ELECTRONIC NOSE

ARTIFICIAL CHEMICAL SENSES - ELECTRONIC TONGUE & ELECTRONIC NOSE ARTIFICIAL CHEMICAL SENSES - ELECTRONIC TONGUE & ELECTRONIC NOSE 1 Human senses Physical Vision Hearing Touch Chemical Smell Taste Bionics study modeling analysis Of functioning of biological organisms

More information

ALE 1. Chemical Kinetics: Rates of Chemical Reactions

ALE 1. Chemical Kinetics: Rates of Chemical Reactions Name Chem 163 Section: Team Number: ALE 1. Chemical Kinetics: Rates of Chemical Reactions (Reference: Sections 16.1 16.2 + parts of 16.5 16.6 Silberberg 5 th edition) How do the surface area, concentration

More information

Surface Ioniza.on on Metal Oxide Gas Sensors

Surface Ioniza.on on Metal Oxide Gas Sensors Surface Ioniza.on on Metal Oxide Gas Sensors A. Ponzoni 1, D. Zappa 1,2, A. Karakuscu 1,2, E. Comini 1,2, G. Faglia 1,2, G. Sberveglieri 1,2 1 CNR- IDASC SENSOR Lab, Via Branze 45, 25123 Brescia, Italy

More information

Atmospheric Analysis Gases. Sampling and analysis of gaseous compounds

Atmospheric Analysis Gases. Sampling and analysis of gaseous compounds Atmospheric Analysis Gases Sampling and analysis of gaseous compounds Introduction - External environment (ambient air) ; global warming, acid rain, introduction of pollutants, etc - Internal environment

More information

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors. Fabrication of semiconductor sensor

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors. Fabrication of semiconductor sensor Lecture 2 Introduction to semiconductors Structures and characteristics in semiconductors Semiconductor p-n junction Metal Oxide Silicon structure Semiconductor contact Fabrication of semiconductor sensor

More information

SCIENCE & TECHNOLOGY

SCIENCE & TECHNOLOGY Pertanika J. Sci. & Technol. 25 (S): 259-266 (2017) SCIENCE & TECHNOLOGY Journal homepage: http://www.pertanika.upm.edu.my/ Sensitivity Study of Graphene Nanoribbon with NH 3 at Room Temperature Mohd Nizar

More information

Balancing chemical reaction equations (stoichiometry)

Balancing chemical reaction equations (stoichiometry) Balancing chemical reaction equations (stoichiometry) This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit

More information

Nano-mechatronics. Presented by: György BudaváriSzabó (X0LY4M)

Nano-mechatronics. Presented by: György BudaváriSzabó (X0LY4M) Nano-mechatronics Presented by: György BudaváriSzabó (X0LY4M) Nano-mechatronics Nano-mechatronics is currently used in broader spectra, ranging from basic applications in robotics, actuators, sensors,

More information

Chapter 6 Notes. Section 4-5 Nonmetals

Chapter 6 Notes. Section 4-5 Nonmetals Chapter 6 Notes Section 4-5 Nonmetals Section 4-5 Objectives 8) Contrast the reactivity and abundance of elements in the Group 3A through Group 8A. 9) Name an important element in each group of p-block

More information

2D Materials for Gas Sensing

2D Materials for Gas Sensing 2D Materials for Gas Sensing S. Guo, A. Rani, and M.E. Zaghloul Department of Electrical and Computer Engineering The George Washington University, Washington DC 20052 Outline Background Structures of

More information

Integrated measuring system for MEMS

Integrated measuring system for MEMS Integrated measuring system for MEMS Thermal characterization of gas flows under slip-flow regime Alice Vittoriosi May 16, 2011 I NSTITUTE FOR M ICRO P ROCESS E NGINEERING - T HERMAL P ROCESS E NGINEERING

More information

Atoms and Elements Review KEY

Atoms and Elements Review KEY Atoms and Elements Review KEY YOU ARE EXPECTED TO KNOW THE MEANING OF ALL THE FOLLOWING TERMS: ELEMENT ATOM WHMIS HHPS SDS PURE MIXTURE COMPOUND MOLECULE DIATOMIC HETEROGENEOUS HOMOGENEOUS METALS NON-METALS

More information

Page 2. Q1.Which of the following contains the most chloride ions? 10 cm 3 of mol dm 3 aluminium chloride solution

Page 2. Q1.Which of the following contains the most chloride ions? 10 cm 3 of mol dm 3 aluminium chloride solution Q1.Which of the following contains the most chloride ions? A B C D 10 cm 3 of 3.30 10 2 mol dm 3 aluminium chloride solution 20 cm 3 of 5.00 10 2 mol dm 3 calcium chloride solution 30 cm 3 of 3.30 10 2

More information

RESEARCH ON BENZENE VAPOR DETECTION USING POROUS SILICON

RESEARCH ON BENZENE VAPOR DETECTION USING POROUS SILICON Section Micro and Nano Technologies RESEARCH ON BENZENE VAPOR DETECTION USING POROUS SILICON Assoc. Prof. Ersin Kayahan 1,2,3 1 Kocaeli University, Electro-optic and Sys. Eng. Umuttepe, 41380, Kocaeli-Turkey

More information

Ultra-High Vacuum Technology. Sputter Ion Pumps l/s

Ultra-High Vacuum Technology. Sputter Ion Pumps l/s Ultra-High Vacuum Technology 30-400 l/s 181.06.01 Excerpt from the Product Chapter C15 Edition November 2007 Contents General General..........................................................................

More information

3. Chemical Hygiene Plan: Laboratory Standard Operating Procedures. A. Laboratory Specific Information and Signatures

3. Chemical Hygiene Plan: Laboratory Standard Operating Procedures. A. Laboratory Specific Information and Signatures 3. Chemical Hygiene Plan: Laboratory Standard Operating Procedures A. Laboratory Specific Information and Signatures The Chemical Hygiene Plan: Laboratory Standard Operating Procedures (section 3 only),

More information

UV Hound Series. Dependable High Quality Air Monitoring. Accurate Readings Within Seconds. Portable UVDOAS Multi-gas Analyzers. Multi-Gas Capability

UV Hound Series. Dependable High Quality Air Monitoring. Accurate Readings Within Seconds. Portable UVDOAS Multi-gas Analyzers. Multi-Gas Capability UV Hound Series Portable UVDOAS Multi-gas Analyzers Multi-Gas Capability Dependable High Quality Air Monitoring Individual VOCs PPB Sensitivity Non-Contact Optical Measurement Automated Reporting Configurable

More information

Highly Sensitive, Temperature-Independent Oxygen Gas Sensor based on Anatase TiO 2 Nanoparticles-grafted, 2D Mixed Valent VO x Nanoflakelets

Highly Sensitive, Temperature-Independent Oxygen Gas Sensor based on Anatase TiO 2 Nanoparticles-grafted, 2D Mixed Valent VO x Nanoflakelets Highly Sensitive, Temperature-Independent Oxygen Gas Sensor based on Anatase TiO 2 Nanoparticles-grafted, 2D Mixed Valent VO x Nanoflakelets Appu Vengattoor Raghu, Karthikeyan K Karuppanan and Biji Pullithadathil

More information

Property Ozone Vs Oxygen. Molecular Formula: O3 O2. Molecular Mass: Color: light blue Colourless

Property Ozone Vs Oxygen. Molecular Formula: O3 O2. Molecular Mass: Color: light blue Colourless What is Ozone? Ozone is a naturally occurring oxidizing and disinfecting agent which is composed of three oxygen atoms combine to form O3. It is a bluish or colorless gas with a very characteristic odour.

More information

In terms of production, nitric acid is the third most widely produced acid across the world.

In terms of production, nitric acid is the third most widely produced acid across the world. In terms of production, nitric acid is the third most widely produced acid across the world. It has a wide range of uses in agriculture, industry and medicine where it is used as a fertiliser and in the

More information

Multilayer Ceramic Chip Capacitors

Multilayer Ceramic Chip Capacitors HIGH VOLTAGE SERIES JARO high voltage series Multilayer Ceramic Capacitors are constructed by depositing alternative layers of ceramic dielectric materials and internal metallic electrodes, by using advanced

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK DEVELOPMENT OF HYDROXYAPATITE NANOCEREMICS FOR METHANOL AND ETHANOL SENSOR RAJENDRA

More information

Supporting information

Supporting information Supporting information A Facile Photo-induced Synthesis of COOH Functionalized Mesomacroporous Carbon Film and its Excellent Sensing Capability for Aromatic Amines Lichao Jia, Gurudas P. Mane, Chokkalingam

More information

Available online at ScienceDirect. Procedia Materials Science 6 (2014 )

Available online at   ScienceDirect. Procedia Materials Science 6 (2014 ) Available online at www.sciencedirect.com ScienceDirect Procedia Materials Science 6 (201 ) 1976 1980 3rd International Conference on Materials Processing and Characterisation (ICMPC 201) Fabrication of

More information

Final Meeting at PRAGUE (CZ), 5-7 October The SENSIndoor FP7 Project: Main Results, Lessons Learned and Outlook

Final Meeting at PRAGUE (CZ), 5-7 October The SENSIndoor FP7 Project: Main Results, Lessons Learned and Outlook European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - EuNetAir COST Action TD1105 Final Meeting at PRAGUE (CZ), 5-7 October 2016 New Sensing Technologies

More information

Shell-isolated nanoparticle-enhanced Raman spectroscopy

Shell-isolated nanoparticle-enhanced Raman spectroscopy Shell-isolated nanoparticle-enhanced Raman spectroscopy Jian Feng Li, Yi Fan Huang, Yong Ding, Zhi Lin Yang, Song Bo Li, Xiao Shun Zhou, Feng Ru Fan, Wei Zhang, Zhi You Zhou, De Yin Wu, Bin Ren, Zhong

More information

Wafer holders. Mo- or Ta- made holders Bonding: In (Ga), or In-free (clamped) Quick and easy transfer

Wafer holders. Mo- or Ta- made holders Bonding: In (Ga), or In-free (clamped) Quick and easy transfer Wafer holders Mo- or Ta- made holders Bonding: In (Ga), or In-free (clamped) Quick and easy transfer Image: In-free, 3-inch sample holder fitting a quarter of a 2- inch wafer Reflection High Energy Electron

More information

Q1. The chart shows the processes involved in the manufacture of nitric acid from ammonia.

Q1. The chart shows the processes involved in the manufacture of nitric acid from ammonia. Q1. The chart shows the processes involved in the manufacture of nitric acid from ammonia. (a) Complete the word equation for the reaction that takes place in the first reaction vessel. ammonia +... nitrogen

More information

k T m 8 B P m k T M T

k T m 8 B P m k T M T I. INTRODUCTION AND OBJECTIVE OF THE EXPERIENT The techniques for evaporation of chemicals in a vacuum are widely used for thin film deposition on rigid substrates, leading to multiple applications: production

More information

GCSE Chemistry. Module C7 Further Chemistry: What you should know. Name: Science Group: Teacher:

GCSE Chemistry. Module C7 Further Chemistry: What you should know. Name: Science Group: Teacher: GCSE Chemistry Module C7 Further Chemistry: What you should know Name: Science Group: Teacher: R.A.G. each of the statements to help focus your revision: R = Red: I don t know this A = Amber: I partly

More information

MASTERING VOC DETECTION FOR BETTER INDOOR AIR QUALITY

MASTERING VOC DETECTION FOR BETTER INDOOR AIR QUALITY European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - EuNetAir COST Action TD1105 WGs and MC Meeting at ISTANBUL, 3-5 December 2014 Action Start date:

More information

sensors ISSN by MDPI

sensors ISSN by MDPI Sensors 2006, 6, 318-323 sensors ISSN 1424-8220 2006 by MDPI http://www.mdpi.org/sensors Gas Sensing Properties of Ordered Mesoporous SnO 2 Thorsten Wagner 1,2,*, Claus-Dieter Kohl 1, Michael Fröba 2 and

More information

SECTION 1. Identification of the substance/mixture and of the company/undertaking. Low Density Polyethylene LF2207M

SECTION 1. Identification of the substance/mixture and of the company/undertaking. Low Density Polyethylene LF2207M SECTION 1. Identification of the substance/mixture and of the company/undertaking Product identifier Trade name Synonyms Polyethylene; LDPE Relevant identified uses of the substance or mixture and uses

More information

1. A. Define the term rate of reaction. The measure of the amount of reactants being converted into products per unit amount of time

1. A. Define the term rate of reaction. The measure of the amount of reactants being converted into products per unit amount of time Name answer key period IB topic 6 Kinetics 1. A. Define the term rate of reaction. The measure of the amount of reactants being converted into products per unit amount of time b. the reaction between C

More information

Nova 600 NanoLab Dual beam Focused Ion Beam IITKanpur

Nova 600 NanoLab Dual beam Focused Ion Beam IITKanpur Nova 600 NanoLab Dual beam Focused Ion Beam system @ IITKanpur Dual Beam Nova 600 Nano Lab From FEI company (Dual Beam = SEM + FIB) SEM: The Electron Beam for SEM Field Emission Electron Gun Energy : 500

More information

A One-Step Low Temperature Processing Route for Organolead Halide Perovskite Solar Cells

A One-Step Low Temperature Processing Route for Organolead Halide Perovskite Solar Cells Electronic Supplementary Information A One-Step Low Temperature Processing Route for Organolead Halide Perovskite Solar Cells Matthew J. Carnie, a Cecile Charbonneau, a Matthew L. Davies, b Joel Troughton,

More information

not to be confused with using the materials to template nanostructures

not to be confused with using the materials to template nanostructures Zeolites as Templates: continued Synthesis: Most zeolite syntheses are performed by using template-synthesis not to be confused with using the materials to template nanostructures templates are often surfactants

More information

Synthesis Breakout. Overarching Issues

Synthesis Breakout. Overarching Issues Synthesis Breakout. Overarching Issues 1. What are fundamental structural and electronic factors limiting Jsc, Voc, and FF in typical polymer bulk-heterojunction cells? Rational P- and N-type materials

More information

CURRENT STATUS OF ELECTRONIC NOSE: THE SENSING SYSTEM

CURRENT STATUS OF ELECTRONIC NOSE: THE SENSING SYSTEM 5 th INTERNATIONAL MULTIDISCIPLINARY CONFERENCE CURRENT STATUS OF ELECTRONIC NOSE: THE SENSING SYSTEM Alin, Tisan, North University of Baia Mare, atisan@ubm.ro Stefan, Oniga, North University of Baia Mare,

More information

Nanostructured materials for solar energy

Nanostructured materials for solar energy Nanostructured materials for solar energy Water Splitting & Dye Solar Cells Journée Scientifique des Comices «Energie Solaire» du WARE 23 avril 2012 à Jambes Prof. Rudi Cloots, C. Henrist, Contributors:

More information

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors Lecture 2 Introduction to semiconductors Structures and characteristics in semiconductors Semiconductor p-n junction Metal Oxide Silicon structure Semiconductor contact Literature Glen F. Knoll, Radiation

More information

Synthesis and photocatalytic activity of TiO2 Nanoparticles

Synthesis and photocatalytic activity of TiO2 Nanoparticles Journal of Babylon University/Pure and Applied Sciences/ No.(1)/ Vol.(22): 2012 College of Science/Babylon University Scientific Conference Synthesis and photocatalytic activity of TiO2 Nanoparticles MAJEED

More information

Original citation: Santra, S., Sinha, A. K., Ray, S. K., Ali, S. Z., Udrea, F., Gardner, J. W. (Julian W.), 1958- and Guha, P. K.. (214) Ambient temperature carbon nanotube ammonia sensor on CMOS platform.

More information

Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy

Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy Micromechanics Ass.Prof. Priv.-Doz. DI Dr. Harald Plank a,b a Institute of Electron Microscopy and Nanoanalysis, Graz

More information

AUTOMATED ONLINE IDENTIFICATION AND MONITORING OF IMPURITIES IN GASES

AUTOMATED ONLINE IDENTIFICATION AND MONITORING OF IMPURITIES IN GASES JPACSM 127 AUTOMATED ONLINE IDENTIFICATION AND MONITORING OF IMPURITIES IN GASES Trace Analytical Inc. Menlo Park, CA ABSTRACT GC based gas analyzers with Reduction Gas Detector (RGD) and Flame Ionization

More information

Chapter 7. Conclusion and Future Scope

Chapter 7. Conclusion and Future Scope Chapter 7 Conclusion and Future Scope This chapter presents a summary of the work with concluding remarks for the research performed and reported in this thesis and then lays out the future scope pertaining

More information

1. Introduction : 1.2 New properties:

1. Introduction : 1.2 New properties: Nanodevices In Electronics Rakesh Kasaraneni(PID : 4672248) Department of Electrical Engineering EEL 5425 Introduction to Nanotechnology Florida International University Abstract : This paper describes

More information

UNIT 2. Chemical Reactions. Chapter 4: Developing Chemical Equations. Chapter 5:Classifying. Chemical Reactions. Chapter 6:Acids and Bases

UNIT 2. Chemical Reactions. Chapter 4: Developing Chemical Equations. Chapter 5:Classifying. Chemical Reactions. Chapter 6:Acids and Bases UNIT 2 Chemical Reactions Chapter 4: Developing Chemical Equations Chapter 5:Classifying Chemical Reactions Chapter 6:Acids and Bases CHAPTER 5 Classifying Chemical Reactions In this chapter, you will:

More information

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors Lecture 2 Introduction to semiconductors Structures and characteristics in semiconductors Semiconductor p-n junction Metal Oxide Silicon structure Semiconductor contact Literature Glen F. Knoll, Radiation

More information

Nanotechnology Fabrication Methods.

Nanotechnology Fabrication Methods. Nanotechnology Fabrication Methods. 10 / 05 / 2016 1 Summary: 1.Introduction to Nanotechnology:...3 2.Nanotechnology Fabrication Methods:...5 2.1.Top-down Methods:...7 2.2.Bottom-up Methods:...16 3.Conclusions:...19

More information

Nanoscale Materials and Their Properties Teacher Guide Unit 2: Metallic and Ionic Nanoparticle

Nanoscale Materials and Their Properties Teacher Guide Unit 2: Metallic and Ionic Nanoparticle Nanoscale Materials and Their Properties Teacher Guide Unit 2: Metallic and Ionic Nanoparticles: Extendable Structures Objectives for Metallic and Ionic Nanoparticles: Extendable Structures Lesson Objectives:

More information

Chapter 1 Overview of Semiconductor Materials and Physics

Chapter 1 Overview of Semiconductor Materials and Physics Chapter 1 Overview of Semiconductor Materials and Physics Professor Paul K. Chu Conductivity / Resistivity of Insulators, Semiconductors, and Conductors Semiconductor Elements Period II III IV V VI 2 B

More information

CHAPTER 3. OPTICAL STUDIES ON SnS NANOPARTICLES

CHAPTER 3. OPTICAL STUDIES ON SnS NANOPARTICLES 42 CHAPTER 3 OPTICAL STUDIES ON SnS NANOPARTICLES 3.1 INTRODUCTION In recent years, considerable interest has been shown on semiconducting nanostructures owing to their enhanced optical and electrical

More information

University of South Florida Development of a Smart Window for Green Buildings in Florida

University of South Florida Development of a Smart Window for Green Buildings in Florida University of South Florida Development of a Smart Window for Green Buildings in Florida PI: Dr. Sarath Witanachchi Students: Marak Merlak, Ph.D Description: This proposal is aimed at developing a smart

More information

Today we re going to talk about understanding chemical labels. Each one of us works with chemicals, whether at work or at home. You need to know how

Today we re going to talk about understanding chemical labels. Each one of us works with chemicals, whether at work or at home. You need to know how Today we re going to talk about understanding chemical labels. Each one of us works with chemicals, whether at work or at home. You need to know how to determine their hazards to protect yourself against

More information

Based on the work you have completed in S1 to S3, complete Prior Learning 3.1.

Based on the work you have completed in S1 to S3, complete Prior Learning 3.1. 3.2: Metals In this chapter you will learn about the structure of pure metals, alloys and how they react with other substances. You will develop skills in the correct use of the SQA data booklet to create

More information

Miniaturized Sensor for the Detection of Environmental Pollutants Alexander Graf 1, Ronald Stübner 1, Christian Kunath 1, Sebastian Meyer 1, Harald Schenk 1 1 Fraunhofer Institute for Photonic Microsystems

More information

Sub-category: Physics and Principles of Measurement Topic: Monitoring anesthetic gases and vapours Date: January 15-17, 2016 Language: English

Sub-category: Physics and Principles of Measurement Topic: Monitoring anesthetic gases and vapours Date: January 15-17, 2016 Language: English Course n : Course 3 Title: RESPIRATORY PHYSIOLOGY, PHYSICS AND PATHOLOGY IN RELATION TO ANAESTHESIA AND INTENSIVE CARE Sub-category: Physics and Principles of Measurement Topic: Monitoring anesthetic gases

More information

SCR-Catalyst Materials for Exhaust Gas Detection D. Schönauer-Kamin, R. Moos

SCR-Catalyst Materials for Exhaust Gas Detection D. Schönauer-Kamin, R. Moos SCR-Catalyst Materials for Exhaust Gas Detection D. Schönauer-Kamin, R. Moos IMCS 14th, 22.5.212, D. Schönauer-Kamin / 1 Motivation SCR: selective catalytic reduction of NO x by NH 3 - NH 3 added as aqueous

More information

Detecting Simulated Patterns of Lung Cancer Biomarkers by Random Network of Single-Walled Carbon Nanotubes Coated with Non-Polymeric Organic Materials

Detecting Simulated Patterns of Lung Cancer Biomarkers by Random Network of Single-Walled Carbon Nanotubes Coated with Non-Polymeric Organic Materials Supporting Information for: Detecting Simulated Patterns of Lung Cancer Biomarkers by Random Network of Single-Walled Carbon Nanotubes Coated with Non-Polymeric Organic Materials Gang Peng, Elena Trock,

More information

M. Audronis 1 and F. Zimone 2 1. Nova Fabrica Ltd. 1. Angstrom Sciences Inc.

M. Audronis 1 and F. Zimone 2 1. Nova Fabrica Ltd. 1. Angstrom Sciences Inc. M. Audronis 1 and F. Zimone 2 1 Nova Fabrica Ltd. 1 Angstrom Sciences Inc. Email: info@novafabrica.biz 1 Founded in 2013 the company is based in Lithuania (northern EU). NF are involved in two business

More information

Ferroelectric Zinc Oxide Nanowire Embedded Flexible. Sensor for Motion and Temperature Sensing

Ferroelectric Zinc Oxide Nanowire Embedded Flexible. Sensor for Motion and Temperature Sensing Supporting information for: Ferroelectric Zinc Oxide Nanowire Embedded Flexible Sensor for Motion and Temperature Sensing Sung-Ho Shin 1, Dae Hoon Park 1, Joo-Yun Jung 2, Min Hyung Lee 3, Junghyo Nah 1,*

More information

Understanding catalytic LEL combustible gas sensor performance

Understanding catalytic LEL combustible gas sensor performance : Understanding catalytic LEL combustible gas sensor performance These four conditions are frequently diagrammed as the "Fire Tetrahedron". If any side of the tetrahedron is missing, incomplete or insubstantial;

More information

WHAT S WRONG WITH THIS PICTURE?

WHAT S WRONG WITH THIS PICTURE? 1606 WHAT S WRONG WITH THIS PICTURE? Hazard Communication & GHS Leader s Guide Aurora Pictures Program Synopsis WHAT S WRONG WITH THIS PICTURE? Hazard Communication & GHS This video holds the viewer's

More information

PREDICTION OF INDOOR NITROGEN OXIDES CONCENTRATION

PREDICTION OF INDOOR NITROGEN OXIDES CONCENTRATION PREDICTION OF INDOOR NITROGEN OXIDES CONCENTRATION I Senitkova *, S Vilcekova Civil Environmental Engineering Institute, Technical University Kosice, Slovakia ABSTRACT Indoor air is mostly contaminated

More information

LMM-H04 Mass Air Flow Sensor

LMM-H04 Mass Air Flow Sensor Hot Film Anemometer Component Highly reliable and long term stable Uni-directional airflow measurement Fast reaction time Manufactured according ISO TS16949 Can be adapted to various flow channel geometries

More information

Technology Brief 9: Capacitive Sensors

Technology Brief 9: Capacitive Sensors 218 TEHNOLOGY BRIEF 9: APAITIVE SENSORS Technology Brief 9: apacitive Sensors To sense is to respond to a stimulus. (See Tech Brief 7 on resistive sensors.) A capacitor can function as a sensor if the

More information

Titanium dioxide nanoparticles as a highly active photocatalytic material

Titanium dioxide nanoparticles as a highly active photocatalytic material Titanium dioxide nanoparticles as a highly active photocatalytic material 1 Ultrafine (nanoparticle) TiO 2 production at Cinkarna Celje, Inc... 4 Photocatalytic degradation of organic pollutants and of

More information

Materials Informatics: Statistical Modeling in Material Science

Materials Informatics: Statistical Modeling in Material Science Materials Informatics: Statistical Modeling in Material Science Hanoch Senderowitz Bar-Ilan University, Israel Strasbourg Summer School in Cheminformatics, June 2016, Strasbourg, France Presentation Goals

More information