MAGNETIC FIELD EFFECTS ON THE NANOSCOPIC CLUSTER-SIZE DISTRIBUTION FOR THERAPEUTIC PROTON BEAMS

Size: px
Start display at page:

Download "MAGNETIC FIELD EFFECTS ON THE NANOSCOPIC CLUSTER-SIZE DISTRIBUTION FOR THERAPEUTIC PROTON BEAMS"

Transcription

1 MAGNETIC FIELD EFFECTS ON THE NANOSCOPIC CLUSTER-SIZE DISTRIBUTION FOR THERAPEUTIC PROTON BEAMS Danielle Tyrrell 1, Dr Susanna Guatelli 2, Prof. Anatoly Rozenfeld 3 1 SZROS, Mater Centre South Brisbane, Danielle_tyrrell@health.qld.gov.au 2 Centre for Medical Radiation Physics, University of Wollongong 3 Centre for Medical Radiation Physics, University of Wollongong

2 Presentation Outline Introduction Project Overview Experimental Evidence Geant4 for nanodosimetry Simulation description Results Conclusion

3 Introduction Absorbed dose (D) is a macroscopic quantity describing energy deposited by radiation in a volume of given mass The efficiency of different types of radiation at causing biological effects results solely from different dose deposition patterns An understanding of the stochastics of energy deposition can give better insight to the biological consequences of the radiation and can be an invaluable for radiological protection purposes, medical applications etc. Nanodosimetry studies energy deposition within nanometric volumes which can be used to predict biological effects

4 Introduction Advances in Image guided radiotherapy techniques have lead to the introduction of MRI linacs for photon and proton radiotherapy. Magnetic field (MF) interacts with moving charged particles which are produced by all types of radiation Understanding the radiobiological consequences of associated with a Magnetic Field on a sub-cellular level is important Magnetic field affects (Raaijmakers et al 2007, Raaymakers et al 2008, Li et al 2001) Build-up dose Penumbral shape Exit dose Effects of a MF on macroscopic proton dose has been investigated with little effect seen due to secondary electrons having lower energy and shorter range than in photon irradiation

5 Project Overview What is the effect of a magnetic field on charged particle tracks? Can a magnetic field change the spatial deposition of dose on a DNA level and alter biological outcomes? Geant4 Monte Carlo was used to study distribution of proton induced charged particle tracks in a DNA molecule Investigated the nanoscopic energy deposition characteristics for protons, energies relevant at the distal end of the bragg peak. Investigated the influence of a magnetic field on secondary electron tracks on a DNA level Use nanoscopic quantities, specifically ionisation cluster-size, to relate charged particle track structure to biological outcomes

6 Experimental Evidence MC studies have shown that high strength magnetic fields affect the spatial distribution of low energy secondary electrons, energies down to 1keV (Nettelbeck et al 2008) In vitro studies have indicated that a magnetic field can decrease cell survival during kv photon irradiation Proton interactions in water produce an abundance of δ-electrons δ-electron average energies <2keV, δ-electron ranges <10nm, any changes to track structure on DNA level may not be evident macroscopically

7 Nanodosimetry It is well established that biological effect is related to spatial deposition of dose and that when multiple ionisations occur in close proximity on a DNA scale, the chance of biological damage for an absorbed dose is increased Nanodosimetry provides a means for determining the distribution of ionisations on a DNA level Experimental dosimetry with nanometric spatial resolution is difficult Monte Carlo simulations can be used to predict nanoscopic tracks play a fundamental role in nanodosimetry MC simulations can be used to characterise the radiation field in terms of energy distributions on nanoscopic level

8 Geant4 for nanodosimetry Geant4 Version ref 04 Geant4-DNA Very low energy extension, designed for microdosimetry applications Extension of physics processes in liquid water down to ev Detailed modelling of track structure to nanometric scale Explicitly simulate all interactions (step-by-step) to precisely reconstruct track structures of ionising particles at nanometre cell and DNA level

9 Geant4-DNA physics processes DNA Physics processes include; Elastic scattering Excitation Ionisation Charge Change Electrons 8.23 ev 1 MeV, (0.025 ev latest release) Protons energies 10 ev 100 MeV (excitation), 100 ev 100 MeV (ionisation) Experimental cross-section data in liquid water is difficult to obtain and not readily available in literature Physics models based on experimental gas-phase data with approximations and semi-empirical corrections based on dielectric formalism to extend the data to the sub kev range

10 Validation of Physics Processes GEANT4-DNA processes model interactions in liquid water however there is a lack of experimental data measured in liquid water Physics evaluated by comparison with experimental data in the gas-phase Qualitative comparisons have found GEANT4-DNA models plausible (Incerti et al 2010) Additional validation performed by comparison with an alternative Monte Carlo codes developed for similar nanoscopic applications (TRIOL, PTB) (Francis et al 2010, Bug et al 2010). Found reasonable agreement with G4-DNA and other MC codes. Measurements in liquid water are needed for full quantitative analysis of GEANT4- DNA models

11 Simulation- Primary Particle Mono-energetic proton pencil beam Resultant δ-electrons have ranges in the order of nm Proton RBE is maximum for energies <10MeV Energies simulated: 1 kev 9 MeV These energies are present in the distal end of the Bragg peak for clinical proton beams

12 Simulation - The Target DNA is the critical the target for radiobiological effects Ionisation clustering is considered a critical property of radiation when predominantly confined to ~10 base pairs 6 nm The DNA target was modelled as a DNA segment consisting of ~ 10 bp. Represented by a water cylinder, 2.3 nm diameter, 3.4 nm height. The nucleosome was modelled surrounding the DNA segment Sensitive volume surrounded by cubic water volume, 150 nm side length 3.4 nm 2.3 nm DNA 10 nm Geometry suitable for correlating results with radiobiological effects on a DNA level (Grosswendt 2002, Nikjoo et al 1997) Nucleosome

13 Simulation Design Protons incident on the surface of the DNA segment A uniform transverse magnetic field was applied along the y-axis B Input parameters: Magnetic field strength: 0-10 Tesla. Proton particle energy: 1keV-9MeV 10 6 incident protons were tracked per simulation p All secondary electrons are transported down to 8.23eV DNA Simulation records/event: Ionisations and excitations z energy deposited position of interaction ROOT analysis used to extract histogram data and determine the cluster-size and mean energy deposited per primary event y x Nucleosome

14 Visualisation 10 kev Proton 80 kev Proton

15 Computational requirements Simulations were run through collaboration with the Queensland University of Technology (QUT) Remote access to the University High Performance Computer, SGI XE Cluster Open source Linux distribution SUSE 404 x 64 bit Intel Xeon processor cores GHz CPU 940 GB of RAM (total)

16 Analysis- Ionisation cluster-size Simulation determined # of ionisations/event (in target) defined as Ionisation cluster-size, v Ionisation cluster-size nanoscopic quantity dependent on track structure, used to relate track structure to initial DNA Damage (Grosswendt et al 2004) Data is used to create a probability distribution, of ionisation cluster-size for each beam quality. The probability distribution describes the probability P v (Q), that an exact number, of ionisations, v, is produced by a primary particle of radiation quality, Q. The mean of the probability distribution, M 1 (Q), was used is used to characterise the radiation quality in terms of its track structure The mean cluster-size was determined for each beam quality and used to evaluate any changes in the secondary electron distribution with a MF

17 Results Mean energy deposited in sensitive volume Mean energy/primary particle deposited by all primary and secondary particles in DNA Maximum for 80 kev protons Minimum for E>2MeV Mean Energy Deposited, ev Initial Proton Energy, kev DNA Segment

18 DNA Results Ionisation cluster-size probability distribution, P v (Q) # of ionisations per primary particle was scored in DNA, used to create a probability distribution for each energy 1.0E E-01 (a) 50 and 80 kev protons are more likely to form larger clusters in DNA than other energies. Pv(Q) 1.0E E-03 10keV 20keV 50keV 80keV Clusters of 5-8 ionisations are most probable for 50 and 80 kev protons 1.0E Ionisation cluster size, v (b) 1.0E+00 Clusters of 3-6 ionisations are required for a DSB(Goodhead 1989, 1994, Brenner and Ward 1992 ) Pν(Q) 1.0E E-02 80keV 200keV 400keV 800 kev 1.0E-03 Protons of 50 and 80 kev are highly efficient at causing biologically relevant DNA damage 1.0E Ionisation cluster size, v

19 Results Mean ionisation cluster-size M 1 (Q) Mean ionisation cluster-size was used to characterise the probability distribution The mean cluster-size was used to represent the efficiency of each proton energy at causing DNA damage The largest mean cluster-size occurs for energies kev Mean cluster size, M1(Q) DNA Nucleosome Proton Energy (kev)

20 Results Magnetic Field Effect on mean energy deposition Mean energy deposited in DNA remains unchanged under the influence of the MF (1-10T) Mean Energy Deposited/event, ev Mean Energy Deposited/event, ev Tesla MF Mean energy deposited in in DNA segment Incident Proton Energy, kev No MF No MF 3 Tesla MF 3 Tesla MF

21 Results Magnetic Field Effect on M 1 (Q) Mean Ionization Cluster-size appears to be unaffected by MF strength 6 Mean Ionisation cluster-size in DNA, M 1 (Q) Mean Cluster-size/event Mean Cluster-size/event 5 Mean Ionisation cluster-size in DNA, M 1 (Q) No MF 6 3 Tesla MF 4 5 No MF Tesla MF Initial 100 Proton Energy, kev 1000 Initial Proton Energy, kev 10000

22 Results Magnetic Field Effect on M 1 (Q) For 100 kev protons- high probability of producing larger cluster-sizes, no significant difference in seen in mean ionization cluster-size with MF Data is normalized to that with no MF Error bars represent the standard deviation of the mean, 95 % confidence level 100 kev protons 1.04 DNA segment M 1 (B)/M 1 (0) Magnetic Field Strength, B(T)

23 Results Magnetic Field Effect on M 1 (Q) For energies with high probability of forming small clusters in DNA, no significant change in mean cluster-size was seen with MF Statistic analysis (Kolmogorov-Smirnov test) found no differences in the mean ionization cluster-size distributions for all strength MF tested 20 kev protons M 1 (B)/M 1 (0) DNA segment Magnetic Field Strength, B(T)

24 Results Summary Protons in the energy range of keV showed maximum biological effectiveness based on energy deposition in nanometric targets The mean cluster-size in a MF did not vary by more than 5% from that with no MF. All deviations were within the standard error and not considered significant Results show no significant change in energy deposition or mean ionisation cluster-sizes in DNA or Nucleosome volumes with MF strength up to 10T

25 Conclusion Geant4-DNA MC can be used to determine spatial distribution of dose in nanometric targets Geant4 can be used for investigation into change in Proton RBE with energy by studying energy deposition in nanometric volumes further research required to relate cluster-size in DNA to cellular dose-response effects MC results found no evidence that transverse magnetic fields in proton irradiation cause spatial redistribution of δ-electron tracks as measurable by a change in ionisation cluster size. Simulations only accounted for interactions of δ-electron, and not those of free radicals generated around the DNA (species are created but not tracked)

26 Future work Further investigation into magnetic field effects to find conclusive evidence of the mechanisms of biological enhancement in a magnetic field Use of simulation codes devoted to the study of the physical and chemical processes of radical species generated the DNA environment Futher experiments in condensed phase water is required for full validation of the G4-DNA physics models Future experimental measurements of cell survival in proton irradiation when exposed to a magnetic field should be conducted Current measurements are being performed at the PTB Institute in Germany.

27 Magnetic Field Effects References Raaijmakers, AEJ, Raaymakers, BW, Lagendijk, JJW. Experimental verification of magnetic field dose effects for the MRIaccelerator. Phys. Med. Biol 2007; 52:4283 Raaymakers, BW, Raaijmakers, AJE, Lagendijk, JJW. Feasibility of MRI guided proton therapy: magnetic filed dose effects. Phys. Med. Biol 2008;53: Li, XA, Reiffel, L, Chu, J, Naqvi, S. Conformal photon-beam therapy with transverse magnetic fields: A Monte Carlo study. Medical Physics 2001;28: Geant4 Models and Validation Chauvie, S, Incerti, B, Moretto, Pia, MG. Evaluation of Phase Effects in Geant4 Microdosimetry Models for Particle Interactions in Water. IEEE Transactions on Nuclear Science Symposium Conference Record 2007: Francis, Z, Incerti, B, Capra, R, et al. Molecular scale track structure simulations in liquid water using the Geant4-DNA Monte-Carlo processes. Applied Radiation and Isotopes Incerti, S, Ivanchenko, A, Karamitros, M, et al. Comparison of GEANT4 very low energy cross section models with experimental data in water. Medical Physics 2010;37: Baek, WY, Grosswendt, B, Willems, G. Ionization ranges of protons in water vapour in the energy range kev. Radiat Prot Dosimetry 2006;122: Spiga, J, Siegbahn, EA, Brauer-Krisch, E, Randaccio, P, Bravin, A. Microdosimetry for Microbeam Radiation Therapy (MRT): theoretical calculations using the Monte Carlo toolkit. Nuclear Science Symposium Conference Record, IEEE. 2006; Chauvie, S, Francis, Z, Guatelli, S, et al. Monte Carlo Simulation of Electromagnetic Interactions of Radiation with Liquid Water in the Framework of the Geant4-DNA Project. Nuclear Science Symposium Conference Record, IEEE. 2006; Chauvie, S, Francis, Z, Guatelli, S, et al. Geant4 Physics Processes for Microdosimetry Simulation: Design Foundation and Implementation of the First Set of Models. IEEE Transactions on Nuclear Science 2007;54: Bug M U, Gargioni E, Guatelli S, Incerti S, Rabus H, Schulte R and Rosenfeld A B 2010 Effect of a magnetic field on the track structure of low-energy electrons: a Monte Carlo study Eur. Phys. J. D

28 References Dingfelder, M. Cross Section Calculations in Condensed Media: Charged Particles in Liquid Water. Radiation Protection Dosimetry 2002;99: Dingfelder, M, Inokuti, M, Paretzke, HG. Inelastic-collision cross sections of liquid water for interactions of energetic protons. Rad. Phys. Chem 2000;59: Emfietzoglou, D, Karava, K, Papamichael, G. Monte Carlo simulation of the energy loss of low-energy electrons in liquid water. Phys. Med. Biol 2003;48: Emfietzoglou, D, Moscovitch, M. Inelastic collision characteristics of electrons in liquid water. Nucl. Instrum. Meth. B 2002;193: Emfietzoglou, D, Nikjoo, H. The effect of model approximations on single-collision distributions of low-energy electrons in liquid water. Radiat. Res. 2005;163: Emfietzoglou, D, Nikjoo, H. Accurate Electron Inelastic Cross Sections and Stopping Powers for Liquid Water over the kev Range Based on an Improved Dielectric Description of the Bethe Surface. Radiation Research 2007;167: Rudd, ME. Cross sections for ionization of water vapour by kev protons. Phys. Rev. A. 1985;31: Rudd, ME. Cross Sections for Production of Secondary Electrons by Charged Particles. Radiation Protection Dosimetry 1990;31: Nanodosimetry Ward, JF. The yield of double-strand breaks produced intracellularly by ionising radiation: a review. Int. J. Radiat. Biol 1990;66: Brenner, DJ, Ward, JF. Constraints on energy deposition and target size of multiply damaged sites associated with DNA doublestrand breaks. International Journal of Radiation Biology 1992;61: Garty, G, Schulte, R, Schemelinin, S, Grosswendt, B, Leloup, C, Assaf, G. First attempts at prediction of DNA strand break yeilds using nanodosimetric data. Radiation Protection Dosimetry 2006;122: Nikjoo, H, O'Neill, P, Goodhead, DT, Terrissol, M. Computational modeling of low energy electron-induced DNA damage by early physical and chemical events. Int. J. Radiat. Biol 1997;71: Grosswendt, B. Formation of ionisation clusters in nanometric structures of propane-based tissue-equivalent gas or liquid water by electrons and alpha-particles. Radiat Environ Biophys 2002;41:

Effect of a static magnetic field on nanodosimetric quantities in a DNA volume

Effect of a static magnetic field on nanodosimetric quantities in a DNA volume University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 2012 Effect of a static magnetic field on nanodosimetric quantities in

More information

Comparison of nanodosimetric parameters of track structure calculated by the Monte Carlo codes Geant4-DNA and PTra

Comparison of nanodosimetric parameters of track structure calculated by the Monte Carlo codes Geant4-DNA and PTra University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 2012 Comparison of nanodosimetric parameters of track structure calculated

More information

Microdosimetry in biological cells with the Geant4 Monte Carlo simulation toolkit

Microdosimetry in biological cells with the Geant4 Monte Carlo simulation toolkit Microdosimetry in biological cells with the Geant4 Monte Carlo simulation toolkit Stéphane CHAUVIE Sébastien INCERTI Philippe MORETTO Maria Grazia PIA Hervé SEZNEC IPB/CENBG NSS / MIC 2007 Oct. 27 Nov.

More information

Geant4-DNA. DNA Physics and biological models

Geant4-DNA. DNA Physics and biological models Geant4-DNA DNA Physics and biological models S. Chauvie, Z. Francis, S. Guatelli, S. Incerti, B. Mascialino, Ph. Moretto, G. Montarou, P. Nieminen, M.G. Pia Topical Seminar on Innovative Particle and Radiation

More information

Characterization of radiation quality based on nanodosimetry. Hans Rabus

Characterization of radiation quality based on nanodosimetry. Hans Rabus Characterization of radiation quality based on nanodosimetry Hans Rabus Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany Motivation Biological effectiveness of ionizing radiation depends

More information

Probing the sub-disciplines: what do we know? what do we need to know? The physics The chemistry - Modelling

Probing the sub-disciplines: what do we know? what do we need to know? The physics The chemistry - Modelling Session 3: Probing the sub-disciplines: what do we know? what do we need to know? The physics The chemistry - Modelling Michael Dingfelder Department of Physics, East Carolina University Mailstop #563

More information

Geant4 Simulation of Very Low Energy Electromagnetic Interactions

Geant4 Simulation of Very Low Energy Electromagnetic Interactions Geant4 Simulation of Very Low Energy Electromagnetic Interactions R. Capra 1, Z. Francis 2, S. Incerti 3, G. Montarou 2, Ph. Moretto 3, P. Nieminen 4, M. G. Pia 1 1 INFN Sezione di Genova; I-16146 Genova,

More information

This is the peer reviewed author accepted manuscript (post print) version of a published work that appeared in final form in:

This is the peer reviewed author accepted manuscript (post print) version of a published work that appeared in final form in: Review of Geant4-DNA applications for micro and nanoscale simulations This is the peer reviewed author accepted manuscript (post print) version of a published work that appeared in final form in: Incerti,

More information

Flagged uniform particle split for Geant4-DNA

Flagged uniform particle split for Geant4-DNA Flagged uniform particle split for Geant4-DNA José Ramos-Méndez and Bruce Faddegon. Department of Radiation Oncology UCSF Helen Diller Family Comprehensive Cancer Center 21st Geant4 Collaboration meeting,

More information

Analysis of radioinduced DNA damages using Monte Carlo calculations at nanometric scale for different irradiation configurations

Analysis of radioinduced DNA damages using Monte Carlo calculations at nanometric scale for different irradiation configurations DOI: 10.15669/pnst.4.413 Progress in Nuclear Science and Technology Volume 4 (2014) pp. 413-417 ARTICLE Analysis of radioinduced DNA damages using Monte Carlo calculations at nanometric scale for different

More information

Radiobiology, nanotechnology, radiation effects on components. S. Chauvie (Cuneo Hospital and INFN Genova) Maria Grazia Pia (INFN Genova)

Radiobiology, nanotechnology, radiation effects on components. S. Chauvie (Cuneo Hospital and INFN Genova) Maria Grazia Pia (INFN Genova) for microdosimetry Radiobiology, nanotechnology, radiation effects on components S. Chauvie (Cuneo Hospital and INFN Genova) Maria Grazia Pia (INFN Genova) Workshop: La radiobiologia dell INFN Trieste,

More information

Ranges of Electrons for Human Body Substances

Ranges of Electrons for Human Body Substances Abstract Research Journal of Chemical Sciences ISSN 2231-606X Ranges of Electrons for Human Body Substances Singh Hemlata 1, Rathi S.K. 1,2 and Verma A.S. 3 1 Department of physics, B. S. A. College, Mathura

More information

Physics of Particle Beams. Hsiao-Ming Lu, Ph.D., Jay Flanz, Ph.D., Harald Paganetti, Ph.D. Massachusetts General Hospital Harvard Medical School

Physics of Particle Beams. Hsiao-Ming Lu, Ph.D., Jay Flanz, Ph.D., Harald Paganetti, Ph.D. Massachusetts General Hospital Harvard Medical School Physics of Particle Beams Hsiao-Ming Lu, Ph.D., Jay Flanz, Ph.D., Harald Paganetti, Ph.D. Massachusetts General Hospital Harvard Medical School PTCOG 53 Education Session, Shanghai, 2014 Dose External

More information

Influence of Sensitive Volume Dimensions on the Distribution of Energy Transferred by Charged Particles

Influence of Sensitive Volume Dimensions on the Distribution of Energy Transferred by Charged Particles Influence of Sensitive Volume Dimensions on the Distribution of Energy Transferred by Charged Particles Z. Palajová 1, F. Spurný 2, D. Merta 2, M. Běgusová 2 1 Dept. of Dosimetry and Application of Ionizing

More information

8/1/2017. Introduction to Monte Carlo simulations at the (sub-)cellular scale: Concept and current status

8/1/2017. Introduction to Monte Carlo simulations at the (sub-)cellular scale: Concept and current status MC-ADC ADC TOPAS 8/1/2017 Introduction to Monte Carlo simulations at the (sub-)cellular scale: Concept and current status Jan Schuemann Assistant Professor Head of the Multi-Scale Monte Carlo Modeling

More information

Physics of particles. H. Paganetti PhD Massachusetts General Hospital & Harvard Medical School

Physics of particles. H. Paganetti PhD Massachusetts General Hospital & Harvard Medical School Physics of particles H. Paganetti PhD Massachusetts General Hospital & Harvard Medical School Introduction Dose The ideal dose distribution ideal Dose: Energy deposited Energy/Mass Depth [J/kg] [Gy] Introduction

More information

Review Paper Continuous Slowing Down Approximation (CS and DA) Ranges of Electrons and Positrons for Carbon, Aluminium and Copper

Review Paper Continuous Slowing Down Approximation (CS and DA) Ranges of Electrons and Positrons for Carbon, Aluminium and Copper Research Journal of Recent Sciences ISSN 2277-22 Vol. 1(6), 7-76, June (212) Res.J.Recent Sci. Review Paper Continuous Slowing Down Approximation (CS and DA) Ranges of Electrons and Positrons for Carbon,

More information

DESIGN OF A 10 NM ELECTRON COLLECTOR FOR A TRACK-

DESIGN OF A 10 NM ELECTRON COLLECTOR FOR A TRACK- DESIGN OF A 10 NM ELECTRON COLLECTOR FOR A TRACK- NANODOSIMETRIC COUNTER L. De Nardo 1, A. Alkaa 2, C. Khamphan 2, P. Colautti 3, V. Conte 3 1 University of Padova, Physics Department, via Marzolo 8, I-35131

More information

Physics of Novel Radiation Modalities Particles and Isotopes. Todd Pawlicki, Ph.D. UC San Diego

Physics of Novel Radiation Modalities Particles and Isotopes. Todd Pawlicki, Ph.D. UC San Diego Physics of Novel Radiation Modalities Particles and Isotopes Todd Pawlicki, Ph.D. UC San Diego Disclosure I have no conflicts of interest to disclose. Learning Objectives Understand the physics of proton

More information

THE mono-energetic hadron beam such as heavy-ions or

THE mono-energetic hadron beam such as heavy-ions or Verification of the Dose Distributions with GEANT4 Simulation for Proton Therapy T.Aso, A.Kimura, S.Tanaka, H.Yoshida, N.Kanematsu, T.Sasaki, T.Akagi Abstract The GEANT4 based simulation of an irradiation

More information

Interactions of Particulate Radiation with Matter. Purpose. Importance of particulate interactions

Interactions of Particulate Radiation with Matter. Purpose. Importance of particulate interactions Interactions of Particulate Radiation with Matter George Starkschall, Ph.D. Department of Radiation Physics U.T. M.D. Anderson Cancer Center Purpose To describe the various mechanisms by which particulate

More information

1 Introduction. A Monte Carlo study

1 Introduction. A Monte Carlo study Current Directions in Biomedical Engineering 2017; 3(2): 281 285 Sebastian Richter*, Stefan Pojtinger, David Mönnich, Oliver S. Dohm, and Daniela Thorwarth Influence of a transverse magnetic field on the

More information

INTRODUCTION TO IONIZING RADIATION (Attix Chapter 1 p. 1-5)

INTRODUCTION TO IONIZING RADIATION (Attix Chapter 1 p. 1-5) INTRODUCTION TO IONIZING RADIATION (Attix Chapter 1 p. 1-5) Ionizing radiation: Particle or electromagnetic radiation that is capable of ionizing matter. IR interacts through different types of collision

More information

Micro- and nanodosimetric calculations using the Geant4-DNA Monte Carlo code

Micro- and nanodosimetric calculations using the Geant4-DNA Monte Carlo code Micro- and nanodosimetric calculations using the Geant4-DNA Monte Carlo code EURADOS Winter school : Status and Future Perspectives of Computational Micro- and Nanodosimetry C. Villagrasa. IRSN (Institut

More information

Radiation protection issues in proton therapy

Radiation protection issues in proton therapy Protons IMRT Tony Lomax, Centre for Proton Radiotherapy, Paul Scherrer Institute, Switzerland Overview of presentation 1. Proton therapy: An overview 2. Radiation protection issues: Staff 3. Radiation

More information

Title. Author(s)Date, H.; Sutherland, K.L.; Hayashi, T.; Matsuzaki, CitationRadiation Physics and Chemistry, 75(2): Issue Date

Title. Author(s)Date, H.; Sutherland, K.L.; Hayashi, T.; Matsuzaki, CitationRadiation Physics and Chemistry, 75(2): Issue Date Title Inelastic collis processes of low energy protons Author(s)Date, H.; Sutherland, K.L.; Hayashi, T.; Matsuzaki, CitatRadiat Physics and Chemistry, 75(2): 179-187 Issue Date 2006-02 Doc URL http://hdl.handle.net/2115/7380

More information

DR KAZI SAZZAD MANIR

DR KAZI SAZZAD MANIR DR KAZI SAZZAD MANIR PHOTON BEAM MATTER ENERGY TRANSFER IONISATION EXCITATION ATTENUATION removal of photons from the beam by the matter. ABSORPTION SCATTERING TRANSMISSION Taking up the energy from the

More information

CHARACTERISTICS OF DEGRADED ELECTRON BEAMS PRODUCED BY NOVAC7 IORT ACCELERATOR

CHARACTERISTICS OF DEGRADED ELECTRON BEAMS PRODUCED BY NOVAC7 IORT ACCELERATOR ANALELE STIINTIFICE ALE UNIVERSITATII AL. I. CUZA IASI Tomul II, s. Biofizică, Fizică medicală şi Fizica mediului 2006 CHARACTERISTICS OF DEGRADED ELECTRON BEAMS PRODUCED BY NOVAC7 IORT ACCELERATOR Dan

More information

Radiosensitization Effect of the Gold Nanoparticle in the Cell Simulated with NASIC Code

Radiosensitization Effect of the Gold Nanoparticle in the Cell Simulated with NASIC Code Radiosensitization Effect of the Gold Nanoparticle in the Cell Simulated with NASIC Code Yizheng Chen 1,2, Chunyan Li 1,3, Junli Li 1,2, * 1. Department of Engineering Physics, Tsinghua University, Beijing,

More information

Towards efficient and accurate particle transport simulation in medical applications

Towards efficient and accurate particle transport simulation in medical applications Towards efficient and accurate particle transport simulation in medical applications L. Grzanka1,2, M. Kłodowska1, N. Mojżeszek1, N. Bassler3 1 Cyclotron Centre Bronowice, Institute of Nuclear Physics

More information

Microdosimetry and nanodosimetry for internal emitters changing the scale

Microdosimetry and nanodosimetry for internal emitters changing the scale Microdosimetry and nanodosimetry for internal emitters changing the scale Weibo Li Institute of Radiation Protection Helmholtz Zentrum München, Neuherberg, Germany EURADOS Winter School, 02/03/2017, Karlsruhe

More information

Monte Carlo Simulation concerning Particle Therapy

Monte Carlo Simulation concerning Particle Therapy Monte Carlo Simulation concerning Particle Therapy Masaaki Takashina Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan INTRODUCTION It is well known that the particle therapy has some

More information

Manipulation on charged particle beam for RT benefit.

Manipulation on charged particle beam for RT benefit. High Electron Beam Dose Modification using Transverse Magnetic Fields Ion Chamber Response Modification under Strong Magnetic Field Conditions Sion Koren, Radiation Oncology Preface Manipulation on charged

More information

Energy deposition and relative frequency of hits of cylindrical nanovolume in medium irradiated by ions: Monte Carlo simulation of tracks structure

Energy deposition and relative frequency of hits of cylindrical nanovolume in medium irradiated by ions: Monte Carlo simulation of tracks structure DOI 10.1007/s00411-009-0255-7 ORIGINAL PAPER Energy deposition and relative frequency of hits of cylindrical nanovolume in medium irradiated by ions: Monte Carlo simulation of tracks structure Ianik Plante

More information

Lorentz force correction to the Boltzmann radiation transport equation and its implications for Monte Carlo algorithms

Lorentz force correction to the Boltzmann radiation transport equation and its implications for Monte Carlo algorithms Physics in Medicine & Biology PAPER Lorentz force correction to the Boltzmann radiation transport equation and its implications for Monte Carlo algorithms To cite this article: Hugo Bouchard and Alex Bielajew

More information

FLUKA simulations of selected topics regarding proton pencil beam scanning

FLUKA simulations of selected topics regarding proton pencil beam scanning FLUKA simulations of selected topics regarding proton pencil beam scanning C. Bäumer, J. Farr, J. Lambert and B. Mukherjee Westdeutsches Protonentherapiezentrum Essen, Germany T. Mertens, and B. Marchand

More information

TRACKS IN PHYSICS AND BIOLOGY Hooshang Nikjoo Radiation Biophysics Group Department of Oncology pathology Karoloinska Institutet

TRACKS IN PHYSICS AND BIOLOGY Hooshang Nikjoo Radiation Biophysics Group Department of Oncology pathology Karoloinska Institutet TRACKS IN PHYSICS AND BIOLOGY Hooshang Nikjoo Radiation Biophysics Group Department of Oncology pathology Karoloinska Institutet Some Questions in Radiation Physics, Biology, and Protection: How much better

More information

Professor Anatoly Rosenfeld, Ph.D.

Professor Anatoly Rosenfeld, Ph.D. Professor Anatoly Rosenfeld, Ph.D. Prof Anatoly Rozenfeld Founder and Director A/Prof Michael Lerch Dr George Takacs Dr Iwan Cornelius Prof Peter Metcalfe Dr Dean Cutajar Dr Marco Petasecca Karen Ford

More information

Transport under magnetic fields with the EGSnrc simulation toolkit

Transport under magnetic fields with the EGSnrc simulation toolkit Transport under magnetic fields with the EGSnrc simulation toolkit Ernesto Mainegra-Hing, Frédéric Tessier, Blake Walters Measurement Science and Standards, National Research Council Canada Hugo Bouchard

More information

Physics of Radiotherapy. Lecture II: Interaction of Ionizing Radiation With Matter

Physics of Radiotherapy. Lecture II: Interaction of Ionizing Radiation With Matter Physics of Radiotherapy Lecture II: Interaction of Ionizing Radiation With Matter Charge Particle Interaction Energetic charged particles interact with matter by electrical forces and lose kinetic energy

More information

Introduction to microdosimetry! Manuel Bardiès, INSERM UMR 892, Nantes, France

Introduction to microdosimetry! Manuel Bardiès, INSERM UMR 892, Nantes, France Introduction to microdosimetry! Manuel Bardiès, INSERM UMR 892, Nantes, France manuel.bardies@inserm.fr Introduction to microdosimetry! In general, NM dosimetry: macrodosimetry, but:! macrodosimetry macroscopic

More information

Geant4 simulation for LHC radiation monitoring

Geant4 simulation for LHC radiation monitoring University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2006 Geant4 simulation for LHC radiation monitoring

More information

Physical Parameters Related to Quantify Quality of Effectiveness of Charged Particles at Lower Doses

Physical Parameters Related to Quantify Quality of Effectiveness of Charged Particles at Lower Doses World Journal of Nuclear Science and Technology, 011, 1, 1-5 doi:10.436/wjnst.011.11001 Published Online April 011 (http://www.scirp.org/journal/wjnst) 1 Physical Parameters Related to Quantify Quality

More information

STUDY ON IONIZATION EFFECTS PRODUCED BY NEUTRON INTERACTION PRODUCTS IN BNCT FIELD *

STUDY ON IONIZATION EFFECTS PRODUCED BY NEUTRON INTERACTION PRODUCTS IN BNCT FIELD * Iranian Journal of Science & Technology, Transaction A, Vol., No. A Printed in the Islamic Republic of Iran, 8 Shiraz University STUDY ON IONIZATION EFFECTS PRODUCED BY NEUTRON INTERACTION PRODUCTS IN

More information

Monte Carlo study of the potential reduction in out-of-field dose using a patient-specific aperture in pencil beam scanning proton therapy

Monte Carlo study of the potential reduction in out-of-field dose using a patient-specific aperture in pencil beam scanning proton therapy University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 2012 Monte Carlo study of the potential reduction in out-of-field dose

More information

Statistical effects of dose deposition in track-structure. modelling of radiobiology efficiency

Statistical effects of dose deposition in track-structure. modelling of radiobiology efficiency Statistical effects of dose deposition in track-structure modelling of radiobiology efficiency M. Beuve 1, A. Colliaux 1, D. Dabli 2, D. Dauvergne 1, B. Gervais 3, G. Montarou 2, E.Testa 1 1 Université

More information

Toward a testable statistical model for radiation effects in DNA

Toward a testable statistical model for radiation effects in DNA Toward a testable statistical model for radiation effects in DNA Kay Kinoshita Department of Physics University of Cincinnati with Ed Merino (Department of Chemistry, A&S) Mike Lamba (Department of Radiology,

More information

Radiation Quantities and Units

Radiation Quantities and Units Radiation Quantities and Units George Starkschall, Ph.D. Lecture Objectives Define and identify units for the following: Exposure Kerma Absorbed dose Dose equivalent Relative biological effectiveness Activity

More information

assuming continuous slowing down approximation , full width at half maximum (FWHM), W 80 20

assuming continuous slowing down approximation , full width at half maximum (FWHM), W 80 20 Special Edition 408 Depth Dose Characteristics of Proton Beams within Therapeutic Energy Range Using the Particle Therapy Simulation Framework (PTSim) Monte Carlo Technique Siou Yin Cai 1, Tsi Chain Chao

More information

Radiation Protection Dosimetry Advance Access published May 4, Radiation Protection Dosimetry (2015), pp. 1 5

Radiation Protection Dosimetry Advance Access published May 4, Radiation Protection Dosimetry (2015), pp. 1 5 Radiat Protect osimetry Advance Access published May 4, 2015 Radiat Protect osimetry (2015), pp. 1 5 doi:10.1093/rpd/ncv293 EQUIVALENCE OF PURE PROPANE AN PROPANE TE GASES FOR MICROOSIMETRIC MEASUREMENTS

More information

DNA. for Microdosimetry. Maria Grazia Pia INFN Genova. CECAM Workshop. S. Chauvie (Cuneo Hospital and INFN), S. Incerti and Ph.

DNA. for Microdosimetry. Maria Grazia Pia INFN Genova. CECAM Workshop. S. Chauvie (Cuneo Hospital and INFN), S. Incerti and Ph. Partly funded by for Microdosimetry Maria Grazia Pia INFN Genova DNA S. Chauvie (Cuneo Hospital and INFN), S. Incerti and Ph. Moretto (CENBG) CECAM Workshop Lyon, 3-6 December 2007 Courtesy Borexino Courtesy

More information

Microdosimetric measurements of a clinical proton beam with micrometersized solid-state detector

Microdosimetric measurements of a clinical proton beam with micrometersized solid-state detector Microdosimetric measurements of a clinical proton beam with micrometersized solid-state detector Sarah E. Anderson a) and Keith M. Furutani Department of Radiation Oncology, Mayo Clinic, Rochester, MN

More information

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH GEANT4 LOW ENERGY ELECTROMAGNETIC MODELS FOR ELECTRONS AND PHOTONS

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH GEANT4 LOW ENERGY ELECTROMAGNETIC MODELS FOR ELECTRONS AND PHOTONS EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN-OPEN-XX 19 August 1999 GEANT4 LOW ENERGY ELECTROMAGNETIC MODELS FOR ELECTRONS AND PHOTONS OPEN-99-034 18/08/99 J. Apostolakis 1,S.Giani 1, M. Maire 5,P.Nieminen

More information

NANO5 L. Quintieri (Art. 23)

NANO5 L. Quintieri (Art. 23) NANO5 L. Quintieri (Art. 23) 1 NANO5: Description of main objectives NANO5 is a Geant4-related R&D project. It was approved as part of INFN scientific program of Technology Research in September 2008,

More information

CHARGED PARTICLE INTERACTIONS

CHARGED PARTICLE INTERACTIONS CHARGED PARTICLE INTERACTIONS Background Charged Particles Heavy charged particles Charged particles with Mass > m e α, proton, deuteron, heavy ion (e.g., C +, Fe + ), fission fragment, muon, etc. α is

More information

Tissue equivalence correction in silicon microdosimetry for protons characteristic of the LEO Space Environment

Tissue equivalence correction in silicon microdosimetry for protons characteristic of the LEO Space Environment University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 2008 Tissue equivalence correction in silicon microdosimetry for protons

More information

Division 6 Ionizing Radiation

Division 6 Ionizing Radiation Division 6 Ionizing Radiation Human health and environmental protection are the major fields of work of PTB s Division 6. Here, the task is not only to render direct metrological support for medical applications

More information

LET! (de / dx) 1 Gy= 1 J/kG 1Gy=100 rad. m(kg) dose rate

LET! (de / dx) 1 Gy= 1 J/kG 1Gy=100 rad. m(kg) dose rate Basics of Radiation Dosimetry for the Physicist http://en.wikipedia.org/wiki/ionizing_radiation I. Ionizing radiation consists of subatomic particles or electromagnetic waves that ionize electrons along

More information

Digital imaging of charged particle track structures with a low-pressure optical time projection chamber

Digital imaging of charged particle track structures with a low-pressure optical time projection chamber Digital imaging of charged particle track structures with a low-pressure optical time projection chamber U. Titt *, V. Dangendorf, H. Schuhmacher Physikalisch-Technische Bundesanstalt, Bundesallee 1, 38116

More information

A Monte Carlo Study of the Relationship between the Time. Structures of Prompt Gammas and in vivo Radiation Dose in.

A Monte Carlo Study of the Relationship between the Time. Structures of Prompt Gammas and in vivo Radiation Dose in. A Monte Carlo Study of the Relationship between the Time Structures of Prompt Gammas and in vivo Radiation Dose in Proton Therapy Wook-Geun Shin and Chul Hee Min* Department of Radiation Convergence Engineering,

More information

APPLIED RADIATION PHYSICS

APPLIED RADIATION PHYSICS A PRIMER IN APPLIED RADIATION PHYSICS F A SMITH Queen Mary & Westfield College, London fe World Scientific m Singapore * New Jersey London Hong Kong CONTENTS CHAPTER 1 : SOURCES of RADIATION 1.1 Introduction

More information

arxiv: v2 [physics.med-ph] 29 May 2015

arxiv: v2 [physics.med-ph] 29 May 2015 The Proton Therapy Nozzles at Samsung Medical Center: A Monte Carlo Simulation Study using TOPAS Kwangzoo Chung, Jinsung Kim, Dae-Hyun Kim, Sunghwan Ahn, and Youngyih Han Department of Radiation Oncology,

More information

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects)

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects) LECTURE 5: INTERACTION OF RADIATION WITH MATTER All radiation is detected through its interaction with matter! INTRODUCTION: What happens when radiation passes through matter? Emphasis on what happens

More information

Chapter V: Interactions of neutrons with matter

Chapter V: Interactions of neutrons with matter Chapter V: Interactions of neutrons with matter 1 Content of the chapter Introduction Interaction processes Interaction cross sections Moderation and neutrons path For more details see «Physique des Réacteurs

More information

Outline. Chapter 6 The Basic Interactions between Photons and Charged Particles with Matter. Photon interactions. Photoelectric effect

Outline. Chapter 6 The Basic Interactions between Photons and Charged Particles with Matter. Photon interactions. Photoelectric effect Chapter 6 The Basic Interactions between Photons and Charged Particles with Matter Radiation Dosimetry I Text: H.E Johns and J.R. Cunningham, The physics of radiology, 4 th ed. http://www.utoledo.edu/med/depts/radther

More information

Simulations in Radiation Therapy

Simulations in Radiation Therapy Simulations in Radiation Therapy D. Sarrut Directeur de recherche CNRS Université de Lyon, France CREATIS-CNRS ; IPNL-CNRS ; Centre Léon Bérard Numerical simulations and random processes treat cancer 2

More information

Ionizing radiation produces tracks defined by the geometry of the energy deposition events. An incident ion loses energy by Coulombic interactions

Ionizing radiation produces tracks defined by the geometry of the energy deposition events. An incident ion loses energy by Coulombic interactions Track Structure Ionizing radiation produces tracks defined by the geometry of the energy deposition events. An incident ion loses energy by Coulombic interactions with electrons of the medium. These primary

More information

CHARACTERIZATION OF A RADIATION DETECTOR FOR AIRCRAFT MEASUREMENTS

CHARACTERIZATION OF A RADIATION DETECTOR FOR AIRCRAFT MEASUREMENTS CHARACTERIZATION OF A RADIATION DETECTOR FOR AIRCRAFT MEASUREMENTS Leonardo de Holanda Mencarini 1,2, Claudio A. Federico 1,2 and Linda V. E. Caldas 1 1 Instituto de Pesquisas Energéticas e Nucleares IPEN,

More information

Nuclear Instruments and Methods in Physics Research B

Nuclear Instruments and Methods in Physics Research B Nuclear Instruments and Methods in Physics Research B 69 () 89 96 Contents lists available at ScienceDirect Nuclear Instruments and Methods in Physics Research B journal homepage: www.elsevier.com/locate/nimb

More information

Correction factors to convert microdosimetry measurements in silicon to tissue in 12 C ion therapy

Correction factors to convert microdosimetry measurements in silicon to tissue in 12 C ion therapy University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 7 Correction factors to convert microdosimetry

More information

Neutron Interactions Part I. Rebecca M. Howell, Ph.D. Radiation Physics Y2.5321

Neutron Interactions Part I. Rebecca M. Howell, Ph.D. Radiation Physics Y2.5321 Neutron Interactions Part I Rebecca M. Howell, Ph.D. Radiation Physics rhowell@mdanderson.org Y2.5321 Why do we as Medical Physicists care about neutrons? Neutrons in Radiation Therapy Neutron Therapy

More information

Geant4 Based Space Radiation Application for Planar and Spherical Geometries

Geant4 Based Space Radiation Application for Planar and Spherical Geometries Advances in Applied Sciences 2017; 2(6): 110-114 http://www.sciencepublishinggroup.com/j/aas doi: 10.11648/j.aas.20170206.13 ISSN: 2575-2065 (Print); ISSN: 2575-1514 (Online) Geant4 Based Space Radiation

More information

Comparative Analysis of Nuclear Cross Sections in Monte Carlo Methods for Medical Physics Applications

Comparative Analysis of Nuclear Cross Sections in Monte Carlo Methods for Medical Physics Applications Comparative Analysis of Nuclear Cross Sections in Monte Carlo Methods for Medical Physics Applications Christopher T. Myers 1 Georgia Institute of Technology Bernadette L. Kirk 2 Luiz C. Leal 2 Oak Ridge

More information

Geant4 Electromagnetic Physics Updates

Geant4 Electromagnetic Physics Updates Geant4 Electromagnetic Physics Updates V. Ivanchenko, CERN & Geant4 Associates International S. Incerti, CNRS, IN2P3, CENBG, France 12 th Geant4 Space User Workshop 10-12 April 2017 University of Surrey,

More information

Calculation of the Stopping Power for Intermediate Energy Positrons. Önder Kabaday, and M. Çaǧatay Tufan

Calculation of the Stopping Power for Intermediate Energy Positrons. Önder Kabaday, and M. Çaǧatay Tufan CHINESE JOURNAL OF PHYSICS VOL. 44, NO. 4 AUGUST 006 Calculation of the Stopping Power for Intermediate Energy Positrons Hasan Gümüş, Önder Kabaday, and M. Çaǧatay Tufan Department of Physics, Faculty

More information

Properties of the nucleus. 8.2 Nuclear Physics. Isotopes. Stable Nuclei. Size of the nucleus. Size of the nucleus

Properties of the nucleus. 8.2 Nuclear Physics. Isotopes. Stable Nuclei. Size of the nucleus. Size of the nucleus Properties of the nucleus 8. Nuclear Physics Properties of nuclei Binding Energy Radioactive decay Natural radioactivity Consists of protons and neutrons Z = no. of protons (Atomic number) N = no. of neutrons

More information

Evaluation on Geant4 Hadronic Models for Pion Minus, Pion Plus and Neutron Particles as Major Antiproton Annihilation Products ABSTRACT

Evaluation on Geant4 Hadronic Models for Pion Minus, Pion Plus and Neutron Particles as Major Antiproton Annihilation Products ABSTRACT Original Article www.jmss.mui.ac.ir Evaluation on Geant4 Hadronic Models for Pion Minus, Pion Plus and Neutron Particles as Major Antiproton Annihilation Products Mohammad Bagher Tavakoli, Mohammad Mehdi

More information

Prompt gamma measurements for the verification of dose deposition in proton therapy. Contents. Two Proton Beam Facilities for Therapy and Research

Prompt gamma measurements for the verification of dose deposition in proton therapy. Contents. Two Proton Beam Facilities for Therapy and Research Prompt gamma measurements for the verification of dose deposition in proton therapy Two Proton Beam Facilities for Therapy and Research Ion Beam Facilities in Korea 1. Proton therapy facility at National

More information

Simulation for LHC Radiation Background

Simulation for LHC Radiation Background Simulation for LHC Radiation Background Optimisation of monitoring detectors and experimental validation M. Glaser1, S. Guatelli2, B. Mascialino2, M. Moll1, M.G. Pia2, F. Ravotti1 1 CERN, Geneva, Switzerland

More information

NIH Public Access Author Manuscript Radiat Phys Chem Oxf Engl Author manuscript; available in PMC 2009 February 10.

NIH Public Access Author Manuscript Radiat Phys Chem Oxf Engl Author manuscript; available in PMC 2009 February 10. NIH Public Access Author Manuscript Published in final edited form as: Radiat Phys Chem Oxf Engl 1993. 2008 ; 77(10-12): 1213 1217. doi:10.1016/j.radphyschem.2008.05.046. Electron Emission from Foils and

More information

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH GEANT4 SIMULATION OF ENERGY LOSSES OF SLOW HADRONS

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH GEANT4 SIMULATION OF ENERGY LOSSES OF SLOW HADRONS EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH 2 September 1999 GEANT4 SIMULATION OF ENERGY LOSSES OF SLOW HADRONS V.N. Ivanchenko Budker Institute for Nuclear Physics, Novosibirsk, Russia S. Giani, M.G. Pia

More information

Interactions with Matter Photons, Electrons and Neutrons

Interactions with Matter Photons, Electrons and Neutrons Interactions with Matter Photons, Electrons and Neutrons Ionizing Interactions Jason Matney, MS, PhD Interactions of Ionizing Radiation 1. Photon Interactions Indirectly Ionizing 2. Charge Particle Interactions

More information

Monte Carlo simulation with Geant4 for verification of rotational total skin electron therapy (TSET)

Monte Carlo simulation with Geant4 for verification of rotational total skin electron therapy (TSET) Monte Carlo simulation with Geant4 for verification of rotational total skin electron therapy (TSET) Christina Jarlskog Department of Radiation Physics Lund University, Malmö University Hospital (UMAS)

More information

Radiosensitisation by nanoparticles in Proton therapy

Radiosensitisation by nanoparticles in Proton therapy Radiosensitisation by nanoparticles in Proton therapy Reem Ahmad, Kate Ricketts, Gary Royle Dept of medical physics and bioengineering, University College London UCL Division of Surgery and Interventional

More information

On the energy deposition by electrons in air and the accurate determination of the air-fluorescence yield

On the energy deposition by electrons in air and the accurate determination of the air-fluorescence yield arxiv:1207.2913v1 [astro-ph.im] 12 Jul 2012 On the energy deposition by electrons in air and the accurate determination of the air-fluorescence yield J. Rosado, P. Gallego, D. García-Pinto, F. Blanco and

More information

Gamma-ray emission by proton beam interaction with injected Boron atoms for medical imaging. Giada Petringa - Laboratori Nazionali del Sud -

Gamma-ray emission by proton beam interaction with injected Boron atoms for medical imaging. Giada Petringa - Laboratori Nazionali del Sud - Gamma-ray emission by proton beam interaction with injected Boron atoms for medical imaging Giada Petringa - Laboratori Nazionali del Sud - Giada Petringa Topical Seminar on Innovative Particle and Radiation

More information

College Physics B - PHY2054C

College Physics B - PHY2054C College - PHY2054C Physics - Radioactivity 11/24/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Review Question 1 Isotopes of an element A have the same number of protons and electrons,

More information

The Most Likely Path of an Energetic Charged Particle Through a Uniform Medium

The Most Likely Path of an Energetic Charged Particle Through a Uniform Medium SCIPP-03/07 The Most Likely Path of an Energetic Charged Particle Through a Uniform Medium D.C. Williams Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA E-mail: davidw@scipp.ucsc.edu

More information

The Monte Carlo Method in Medical Radiation Physics

The Monte Carlo Method in Medical Radiation Physics Monte Carlo in Medical Physics The Monte Carlo Method in Medical Radiation Physics P Andreo, Professor of Medical Radiation Physics Stockholm University @ Karolinska Univ Hospital, Stockholm, Sweden ICRM

More information

Nuclear Spectroscopy: Radioactivity and Half Life

Nuclear Spectroscopy: Radioactivity and Half Life Particle and Spectroscopy: and Half Life 02/08/2018 My Office Hours: Thursday 1:00-3:00 PM 212 Keen Building Outline 1 2 3 4 5 Some nuclei are unstable and decay spontaneously into two or more particles.

More information

Radiation Safety Training Session 1: Radiation Protection Fundamentals and Biological Effects

Radiation Safety Training Session 1: Radiation Protection Fundamentals and Biological Effects Radiation Safety Training Session 1: Radiation Protection Fundamentals and Biological Effects Reading Assignment: LLE Radiological Controls Manual (LLEINST 6610) Part 1 UR Radiation Safety Training Manual

More information

Today, I will present the first of two lectures on neutron interactions.

Today, I will present the first of two lectures on neutron interactions. Today, I will present the first of two lectures on neutron interactions. I first need to acknowledge that these two lectures were based on lectures presented previously in Med Phys I by Dr Howell. 1 Before

More information

Detectors in Nuclear Physics: Monte Carlo Methods. Dr. Andrea Mairani. Lectures I-II

Detectors in Nuclear Physics: Monte Carlo Methods. Dr. Andrea Mairani. Lectures I-II Detectors in Nuclear Physics: Monte Carlo Methods Dr. Andrea Mairani Lectures I-II INTRODUCTION Sampling from a probability distribution Sampling from a probability distribution X λ Sampling from a probability

More information

Microdosimetric derivation of inactivation RBE values for heavy ions using data from track-segment survival experiments

Microdosimetric derivation of inactivation RBE values for heavy ions using data from track-segment survival experiments Microdosimetric derivation of inactivation RBE values for heavy ions using data from trac-segment survival experiments Gustavo A. Santa Cruz a a Comisión Nacional de Energía Atómica, Av. del Libertador

More information

Verification of Monte Carlo calculations in fast neutron therapy using silicon microdosimetry

Verification of Monte Carlo calculations in fast neutron therapy using silicon microdosimetry University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 2003 Verification of Monte Carlo calculations in fast neutron therapy

More information

Outline. Radiation Interactions. Spurs, Blobs and Short Tracks. Introduction. Radiation Interactions 1

Outline. Radiation Interactions. Spurs, Blobs and Short Tracks. Introduction. Radiation Interactions 1 Outline Radiation Interactions Introduction Interaction of Heavy Charged Particles Interaction of Fast Electrons Interaction of Gamma Rays Interactions of Neutrons Radiation Exposure & Dose Sources of

More information

Loma Linda University Medical Center, Loma Linda, CA 92354

Loma Linda University Medical Center, Loma Linda, CA 92354 Monte Carlo Studies on Proton Computed Tomography using a Silicon Strip Detector Telescope L. R. Johnson *,B.Keeney *,G.Ross *, H. F.-W. Sadrozinski * (Senior member, IEEE), A. Seiden *, D. C. Williams

More information

Research Physicist Field of Nuclear physics and Detector physics. Developing detector for radiation fields around particle accelerators using:

Research Physicist Field of Nuclear physics and Detector physics. Developing detector for radiation fields around particle accelerators using: Christopher Cassell Research Physicist Field of Nuclear physics and Detector physics Developing detector for radiation fields around particle accelerators using: Experimental data Geant4 Monte Carlo Simulations

More information

Geant4 simulation of SOI microdosimetry for radiation protection in space and aviation environments

Geant4 simulation of SOI microdosimetry for radiation protection in space and aviation environments Geant4 simulation of SOI microdosimetry for radiation protection in space and aviation environments Dale A. Prokopovich,2, Mark I. Reinhard, Iwan M. Cornelius 3 and Anatoly B. Rosenfeld 2 Australian Nuclear

More information

ESTIMATION OF 90 SCATTERING COEFFICIENT IN THE SHIELDING CALCULATION OF DIAGNOSTIC X-RAY EQUIPMENT

ESTIMATION OF 90 SCATTERING COEFFICIENT IN THE SHIELDING CALCULATION OF DIAGNOSTIC X-RAY EQUIPMENT Proceedings of the Eleventh EGS4 Users' Meeting in Japan, KEK Proceedings 2003-15, p.107-113 ESTIMATION OF 90 SCATTERING COEFFICIENT IN THE SHIELDING CALCULATION OF DIAGNOSTIC X-RAY EQUIPMENT K. Noto and

More information