DNA. for Microdosimetry. Maria Grazia Pia INFN Genova. CECAM Workshop. S. Chauvie (Cuneo Hospital and INFN), S. Incerti and Ph.

Size: px
Start display at page:

Download "DNA. for Microdosimetry. Maria Grazia Pia INFN Genova. CECAM Workshop. S. Chauvie (Cuneo Hospital and INFN), S. Incerti and Ph."

Transcription

1 Partly funded by for Microdosimetry Maria Grazia Pia INFN Genova DNA S. Chauvie (Cuneo Hospital and INFN), S. Incerti and Ph. Moretto (CENBG) CECAM Workshop Lyon, 3-6 December 2007

2 Courtesy Borexino Courtesy CMS Collaboration Courtesy ATLAS Collaboration Born from the requirements of large scale HEP experiments S. Agostinelli et al. GEANT4 - a simulation toolkit NIM A 506 (2003) Most cited Nuclear Science and Technology publication! Courtesy H. Araujo and A. Howard, IC London ZEPLIN III Widely used also in Space science and astrophysics Medical physics, nuclear medicine Radiation protection Accelerator physics Humanitarian projects, security etc. Technology transfer to industry, hospitals Courtesy K. Amako et al., KEK Courtesy GATE Collaboration Courtesy R. Nartallo et al.,esa

3 Complex physics Complex detectors 20 years software life-span LHCb LHC ATLAS

4 Multi-disciplinary application environment Dosimetry Courtesy of ESA Space science Radiotherapy Courtesy of CERN RADMON team Effects on components Wide spectrum of physics coverage, variety of physics models Precise, quantitatively validated physics Accurate description of geometry and materials

5 Dosimetry in Medical Applications Hadrontherapy Radiotherapy with external beams, IMRT Courtesy of F. Foppiano et al., IST and INFN Genova Courtesy of P. Cirrone et al., INFN LNS Courtesy of F. Foppiano et al,. IST and INFN Genova Radiation Protection Brachytherapy Courtesy of J. Perl, SLAC Courtesy of L. Beaulieu et al., Laval

6 Exotic Geant4 applications FAO/IAEA International Conference on Area-Wide Control of Insect Pests: Integrating the Sterile Insect and Related Nuclear and Other Techniques Vienna, May 9-13, 2005 K. Manai, K. Farah, A.Trabelsi, F. Gharbi and O. Kadri (Tunisia) Dose Distribution and Dose Uniformity in Pupae Treated by the Tunisian Gamma Irradiator Using the GEANT4 Toolkit

7 Precise dose calculation Geant4 Low Energy Electromagnetic Physics package Electrons and photons (250/100 ev < E < 100 GeV) Models based on the Livermore libraries (EEDL, EPDL, EADL) Models à la Penelope Hadrons and ions Free electron gas + Parameterisations (ICRU49, Ziegler) + Bethe-Bloch Nuclear stopping power, Barkas effect, chemical formula, effective charge etc. Atomic relaxation Fluorescence, Auger electron emission, PIXE shell effects ions Atomic relaxation Fluorescence Auger effect Fe lines GaAs lines

8 Fundamental concepts Functionality: physics, geometry etc. Software technology Toolkit Transparency Open source distribution International Collaboration

9 Physics From the Minutes of LCB (LHCC Computing Board) meeting on 21 October, 1997: It was noted that experiments have requirements for independent, alternative physics models. In Geant4 these models, differently from the concept of packages, allow the user to understand how the results are produced, and hence improve the physics validation. Geant4 is developed with a modular architecture and is the ideal framework where existing components are integrated and new models continue to be developed.

10 Geant4 architecture Software Engineering plays a fundamental role in Geant4 Interface to external products w/o dependencies Domain decomposition hierarchical structure of subdomains Uni-directional flow of dependencies User Requirements formally collected systematically updated PSS-05 standard spiral iterative approach Software Process regular assessments and improvements (SPI process) monitored following the ISO model Object Oriented methods OOAD use of CASE tools openness to extension and evolution contribute to the transparency of physics interface to external software without dependencies commercial tools Quality Assurance code inspections automatic checks of coding guidelines testing procedures at unit and integration level dedicated testing team Use of Standards de jure and de facto

11 OO technology Openness to extension and evolution new implementations can be added w/o changing the existing code Robustness and ease of maintenance protocols and well defined dependencies minimize coupling Strategic vision components Toolkit A set of compatible components each component is specialised for a specific functionality each component can be refined independently to a great detail components can be integrated at any degree of complexity it is easy to provide (and use) alternative components the user application can be customised as needed

12

13 Biological models in Geant4 Relevance for space: astronaut and aircrew radiation hazards Project originally motivated and partly funded by

14 INFN (Genova) - IN2P3 (CENBG) Partly sponsored by ESA New collaborators welcome! DNA Sister activity to Geant4 Low-Energy Electromagnetic Physics Follows the same rigorous software standards Simulation of nano-scale effects of radiation at the DNA level Various scientific domains involved medical, biology, genetics, physics, software engineering Multiple approaches can be implemented with Geant4 RBE parameterisation, detailed biochemical processes, etc. First phase: Collection of user requirements & first prototypes Second phase: started in 2004 Software development & open source release

15 Macroscopic level calculation of dose already feasible with Geant4 develop useful associated tools Cellular level cell modelling processes for cell survival, damage etc. Multiple domains in the same software environment Complexity of software, physics and biology addressed with an iterative and incremental software process DNA level DNA modelling physics processes at the ev scale bio-chemical processes processes for DNA damage, repair etc. Parallel development at all the three levels (domain decomposition)

16 What s s new? Many track structure Monte Carlo codes previously developed A lot of modelling expertise embedded in these codes Each code implements one modelling approach (developed by its authors) Stand-alone codes, with limited application scope Legacy software technology (FORTRAN, procedural programming) Not publicly distributed Geant4-DNA Track structure simulation in a general-purpose Monte Carlo system Toolkit approach: many interchangeable models Advanced software technology Rigorous software process Open source, freely available, supported by an international organization Foster a collaborative spirit in the scientific community Benefit of the feedback of a wider user community

17 1 st development cycle: Geant4 physics extensions Complex domain Physics down to the ev scale Physics: collaboration with theorists Technology: innovative design technique introduced in Geant4 (1 st time in Monte Carlo) Experimental complexity as well Scarce experimental data Collaboration with experimentalists for model validation Geant4 physics validation at low energies is difficult!

18 Geant4-DNA physics processes Specialised processes for low energy interactions with water Models in liquid water More realistic than water vapour Theoretically more challenging Hardly any experimental data New measurements needed Status 1st β-release Geant4 8.1 Full release on 14 December 2007 Further extensions in progress Models for water vapour Models for other materials than water Particle Processes e - p H He++ He+ He Elastic scattering Excitation Ionisation Charge decrease Excitation Ionisation Charge increase Ionisation Charge decrease Excitation Ionisation Charge decrease Charge increase Excitation Ionisation Charge increase Excitation Ionisation

19 (Current) Physics Models e p H α He+ He Elastic > 7.5 ev Screened Rutherford + empirical Brenner-Zaider Excitation Charge Change Ionisation 7.5 ev 10 kev A 1 B 1, B 1 A 1, Ryd A+B, Ryd C+D, diffuse bands 7 ev 10 kev Emfietzoglou 1b 1, 3a 1, 1b 2, 2a 1 + 1a 1 10 ev 500 kev Dingfelder 500 kev 10 MeV Emfietzoglou 100 ev 10 MeV Dingfelder 100 ev 500 kev Rudd 500 kev 10 MeV Dingfelder (Born) 100 ev 10 MeV Dingfelder 100 ev 10 MeV Dingfelder 100 ev 10 MeV Dingfelder Effective charge scaling from same models as for proton Dingfelder

20 Why these models? No emotional attachment to any of the models Toolkit: offer a wide choice among many available alternatives Complementary/alternative models No one size fits all Powerful design Abstract interfaces: the kernel is blind to any specific modelling The system is intrinsically open to multiple implementations Improvements, extensions, options Open system Collaboration is welcome (experimental/modelling/software)

21 What is behind A policy defines a class or class template interface Policy host classes are parameterised classes classes that use other classes as a parameter Advantage w.r.t. a conventional strategy pattern Policies are not required to inherit from a base class The code is bound at compilation time No need of virtual methods, resulting in faster execution Policy-based class design New technique 1 st time introduced in Monte Carlo Weak dependency of the policy and the policy based class on the policy interface Syntax-oriented rather than signature-oriented Highly customizable design Open to extension Policies can proliferate w/o any limitation

22 Geant4-DNA physics process Handled transparently by Geant4 kernel Deprived of any intrinsic physics functionality Configured by template specialization to acquire physics properties

23 Development metrics Open to extension: what does it mean in practice? Implementation + unit test of a new physics model ~ 5 to 7 hours (average computing experience) No integration effort at all Other software processes Peer review of the code Integration testing System testing Porting to other supported platforms User documentation Experimental validation Investment in software technology!

24 More details on both software and physics in IEEE Trans. Nucl. Sci., Vol. 54, no. 6, Dec. 2007

25 Example of simulation Liquid water sphere 0.2 µm diameter 1000 electrons shot from central source E = 20 kev Shower of particles at the nm / ev scale Geant4 physics processes: Elastic scattering Excitation Ionisation 0.2 µm

26 How accurate are Geant4-DNA physics models? Both theoretical and experimental complexity in the very low energy régime Theoretical calculations must take into account the detailed dielectric structure of the interacting material Approximations, assumptions, semi-empirical models Experimental measurements are difficult Control of systematics Practical constraints depending on the phase

27 Verification & Validation Verification Conformity with theoretical models Performed on all physics models Validation Against experimental data Lack of experimental data in liquid water in the very low energy range New measurements needed Evaluation of plausibility Only practical option at the present stage Comparison against experimental data in water vapour/ice Interesting also to study phase-related effects

28 A selection of results Systematic comparison in progress Survey of literature: extensive collection of experimental data (goal: all!) No time to show all of them ( paper) Selection of a few interesting cases Highlight the complexity of the experimental domain Discuss physics modelling features S. Chauvie, S. Incerti, P. Moretto, M. G. Pia, Evaluation of Phase Effects in Geant4 Microdosimetry Models for Particle Interactions in Water, Proc. IEEE NSS 2007

29 Electron elastic scattering Theoretical challenge to model accurately at very low energy Various theoretical approaches at different degrees of complexity From simple screened Rutherford cross section to sophisticated phase shift calculations No experimental data in liquid water Geant4-DNA Simple screened Rutherford cross section + semi-empirical model based on vapour data (Why so unsophisticated? Look at the experimental data ) Open to evolution along with the availability of new data

30 Electron elastic scattering: total cross section Cross section(cm 2 ) Not all available experimental data reported the picture would be too crowded! Recommended total cross section smaller than elastic only one! Geant4-DNA elastic Itikawa & Mason elastic (recommended) Itikawa & Mason total (recommended) Danjo & Nishimura Seng et al. Sueoka et al. Saglam et al. Evident discrepancy of the experimental data Puzzle: inconsistency in recommended evaluated data from Itikawa & Mason, J. Phys. Chem. Ref. Data, 34-1, pp. 1-22, Geant4-DNA Better agreement with some of the data sets Hardly conclusive comparison, given the experimental status Energy (ev)

31 Electron ionisation Semi-empirical model D. Emfietzoglou and M. Moscovitch, Inelastic collision characteristics of electrons in liquid water, NIM B, vol. 193, pp , 2002 Based on dielectric formalism for the valence shells (1b1, 3a1, 1b2 and 2a1) responsible for condensedphase effects Based on the binary encounter approximation for the K-shell (1a1)

32 Electron ionisation: total cross section Different phases Geant4-DNA model: liquid water Experimental data: vapour Plausible behaviour of Geant4 implementation Geant4-DNA Born ionisation Itikawa & Mason ionisation (recommended) Phase differences appear more significant at lower energies

33 Proton ionisation Cross section based on two complementary models a semi-empirical analytical approach with parameters specifically calculated for liquid water for 100 ev < E < 500 kev a model based on the Born theory for 500 kev < E < 10 MeV M. Dingfelder et al., Inelastic-collision cross sections of liquid water for interactions of energetic protons, Radiat. Phys. Chem., vol. 59, pp , M. E. Rudd et al., Cross sections for ionisation of water vapor by kev protons, Phys. Rev. A, vol. 31, pp , M. E. Rudd et al., Electron production in proton collisions: total cross sections, Rev. Mod. Phys., vol. 57, no. 4, pp , 1985.

34 Proton ionisation: total cross section Different phases Geant4-DNA model: liquid water Experimental data: vapour M. E. Rudd, T. V. Goffe, R. D. DuBois, L. H. Toburen, Cross sections for ionisation of water vapor by kev protons, Phys. Rev. A, vol. 31, pp , Geant4-DNA All measurements performed by the same team at different accelerators and time Even data taken by the same group exhibit inconsistencies! systematic is difficult to control in delicate experimental conditions Geant4-DNA models look plausible PNL data early Van de Graaff data late Van de Graaff data early Univ. Nebraska-Lincoln data late Univ. Nebraska-Lincoln data tandem Van de Graaff data Fit to experimental data Hard to discuss phase effects in these experimental conditions! Goodness-of-fit test Geant4 DNA model incompatible with experimental data (p-value < 0.001) Compatibility w.r.t. data fit? Cramer-von Mises test: p-value = 0.1 Anderson-Darling test: p-value <0.001

35 Proton and hydrogen charge change Cross section based on a semi-empirical approach Described by an analytical formula With parameters optimised from experimental data in vapour M. Dingfelder et al., Inelastic-collision cross sections of liquid water for interactions of energetic protons, Radiat. Phys. Chem., vol. 59, pp , B. G. Lindsay et al., Charge transfer of 0.5-, 1.5-, and 5-keV protons with H2O: absolute differential and integral cross sections, Phys. Rev. A, vol. 55, no. 5, pp , R. Dagnac et al., A study on the collision of hydrogen ions H + 1, H+ 2 and H+ 3 with a water-vapour target, J. Phys. B, vol. 3, pp , L. H. Toburen et al., Measurement of highenergy charge transfer cross sections for incident protons and atomic hydrogen in various gases, Phys. Rev., vol. 171, no. 1, pp , 1968

36 Charge change cross section: proton and hydrogen Large discrepancies among the data! Different phases Geant4-DNA model: liquid Experimental data: vapour Lindsay et al. Dagnac et al. Toburenetal. Berkner et al. Cable Koopman Chambers et al. Goodness-of-fit test Geant4-DNA model experimental data (white symbols only) Anderson-Darling test Cramer-von Mises test Kolmogorov-Smirnov test Kuiper test Watson test p-value > 0.1 from all tests but some data were used to optimise the semi-empirical empirical model!

37 Conclusion from comparisons Geant4-DNA models (liquid) look plausible when compared to available experimental data (vapour) More experimental data are needed In liquid water for simulation model validation In vapour and ice to study the importance of phase effects in modelling particle interactions with the medium With good control of systematic and reproducibility of experimental conditions! Hard to draw firm conclusions about phase effects Available experimental data exhibit significant discrepancies in many cases Some of these data have been already used to constrain or optimize semiempirical models

38 Exploiting the toolkit For the first time a general-purpose Monte Carlo system is equipped with functionality specific to the simulation of biological effects of radiation Geant4-DNA physics processes Kernel User Interface Geometry Visualisation

39 Microdosimetry in high resolution cellular phantoms with Geant4-DNA IPB/CENBG

40 Context Understanding the health effects of low doses of ionizing radiation is the challenge of today s radiobiology research At the cell scale, recent results include the observation of bystander effects adaptive response gene expression changes genomic instability genetic susceptibility May question the validity of health risk estimation at low doses of radiation Consequences for radiotherapy, environment exposure, space exploration Dedicated worldwide experimental facilities to investigate the interaction of ionizing radiation with living cells radioactive sources classical beams microbeams: allow a perfect control of the deposited dose in the targeted cell (e.g. the CENBG irradiation facility in France)

41 CENBG AIFIRA irradiation facility in Bordeaux, France AIFIRA equipped with a cellular irradiation microbeam line 3 MeV proton or α beam single cell & single ion mode Targeting accuracy on living cells in air: a few µm Able to quantify DNA damages like double strand breaks IPB/CENBG

42 Realistic cellular geometries from confocal microscopy Confocal microscopy offers several advantages over conventional widefield optical microscopy ability to control depth of field elimination of background information away from the focal plane (that leads to image degradation) Olympus collect serial optical sections from thick specimens

43 Confocal microscopy IPB/CENBG IPB/CENBG Images of human keratinocyte cells HaCaT/(GFP-H2B)Tg acquired at CENBG cell line used in single cell irradiation at CENBG Cells fixed after 4 hours or 24 hours of incubation (cell irradiation conditions) Staining Nucleus: Hoechst dye (DNA marker) Cytoplasm: propidium iodide, (RNA and DNA marker). Nucleoli (high chromatine and protein concentration regions): idem Acquisition 2D images acquired every 163 nm with a Leica DMR TCS SP2 confocal microscope several 2D resolutions, up to pixels Image reconstruction 3D stacking using the Leica Confocal Software filtering and phantom geometry reconstruction with Mercury Computer Systems, Inc. Amira suite

44 Building cellular models a b Selection of four phantoms reconstructed from D confocal images. c d Incubation : 4 hours for cells a and b 24 hours for cells c and d IPB/CENBG The cytoplasm and nucleoli appear in red while the nucleus is shown in blue

45 Geometry modelling Exploit the advantage of a general purpose Monte Carlo system Powerful Geant4 geometry package Use of functionality already existing in Geant4 Voxel geometries + Navigation optimisation techniques Not available in ad-hoc Monte Carlo codes Parameterised volumes Nested parameterisation Direct benefit from investment in the Geant4 toolkit Realistic rendering of the biological systems Important for overall realistic simulation results

46 Cellular phantoms in Geant4 Implemented either as parameterised volumes or nested geometries (faster navigation above 64x64 resolution) Composition: liquid water (compatible with Geant4 DNA models) These cellular models are publicly available in the Geant4 microbeam Advanced Example geant4/examples/advanced/microbeam

47 Cellular phantom model 24h incubated cell Irradiated with a 2.37 MeV α + beam 64 x 64 x 60 resolution 0.36 x 0.36 x 0.16 µm 3 voxel size 2.37 MeV α + hitting the cell cytoplasm ~10 µm nucleus

48 Shower in cellular phantom 2.37 MeV α+ delivered on targeted cell by the CENBG microbeam irradiation facility ZOOM Elastic scattering Ionisation G4 DNA processes CPU ~45 min (preliminary timing) Charge decrease Charge increase Excitation (unit: µm)

49 Geant4 DNA capabilities With this Geant4 extension, it is now possible to study the energy deposit distribution produced by a primary particle and its secondaries inside a cell Access distributions in nucleus, cytoplasm, mitochondria What you get in return is more than your own investment!

50 Changing scale Courtesy E. Hall Large effort for microscopic modelling of interactions and biological systems in Geant4 Parallel approach: macroscopic modelling in Geant4 Concept of dose in a cell population Statistical evaluation of radiation effects from empirical data All this is possible in the same simulation environment (toolkit) Human cell lines irradiated with X-rays Example: modelling cell survival fraction in a population of irradiated cells

51 Survival Example Data points: Geant4 simulation results Continuous line: LQ theoretical model with Folkard parameters Computation of dose in a cell population and estimation of survival fraction Monolayer V79-379A cells Proton beam E= 3.66 MeV/n Linear-Quadratic model Dose (Gy) α = 0.32 β = Folkard et al., Int. J. Rad. Biol., 1996 Macroscopic cell survival models to be distributed in Geant4 (advanced example in preparation)

52 Conclusion The Geant4 DNA processes are publicly available Can be applied to realistic cell geometries Full comparison against vapour/ice will be published evaluation of phase effects Thanks to the flexibility of policy-based code design of Geant4 DNA, any interaction model can be easily implemented in a few hours and automatically integrated in Geant4! Not limited to radiation biology

53 Short term Geant4 DNA processes Perspectives will be publicly available in Geant4 9.1 on 14 December 2007 Microdosimetry advanced example will be available in the next Geant4 releases (presumably end of June 2008) illustrates how to use the Geant4 DNA physics processes Cellular survival advanced example in preparation Other physics models thanks to the novel software design Longer term Chemical phase: production of radical species Geometry-dedicated development cycle: DNA geometry modelling Biological phase: prediction of DNA damages (double strand breaks fatal lesions, DNA fragments ) after irrradiation Other materials than liquid water: DNA bases, silicon etc.

54 For discussion Geant4-DNA proposes a paradigm shift Open source, freely available software Microdosimetry/radiobiology functionality in a general-purpose Monte Carlo code Availability of multiple models in the same environment Equal importance to functionality and software technology Foster collaboration within the scientific community Theoretical modelling, experimental measurements, software technology Promote feedback from users of the software Comments and suggestions are welcome...

55 Acknowledgment Thanks to M. Dingfelder and D. Emfietzoglou for theoretical support W. Friedland and H. Paretzke for fruitful discussions and suggestions P. Nieminen for motivation and support to the project through ESA funding COST-P9 for supporting short-term visits R. Capra, Z. Francis, G. Montarou for preliminary contributions at an early stage G. Cosmo and I. McLaren for support in the Geant4 system testing process K. Amako for support in releasing the Geant4-DNA code documentation Z. W. Bell (TNS Senior Editor) for his advice in the paper publication process CERN Library for providing many reference papers Thanks to Nigel Mason and CECAM for organizing this workshop and supporting our participation!

Radiobiology, nanotechnology, radiation effects on components. S. Chauvie (Cuneo Hospital and INFN Genova) Maria Grazia Pia (INFN Genova)

Radiobiology, nanotechnology, radiation effects on components. S. Chauvie (Cuneo Hospital and INFN Genova) Maria Grazia Pia (INFN Genova) for microdosimetry Radiobiology, nanotechnology, radiation effects on components S. Chauvie (Cuneo Hospital and INFN Genova) Maria Grazia Pia (INFN Genova) Workshop: La radiobiologia dell INFN Trieste,

More information

Microdosimetry in biological cells with the Geant4 Monte Carlo simulation toolkit

Microdosimetry in biological cells with the Geant4 Monte Carlo simulation toolkit Microdosimetry in biological cells with the Geant4 Monte Carlo simulation toolkit Stéphane CHAUVIE Sébastien INCERTI Philippe MORETTO Maria Grazia PIA Hervé SEZNEC IPB/CENBG NSS / MIC 2007 Oct. 27 Nov.

More information

Geant4-DNA. DNA Physics and biological models

Geant4-DNA. DNA Physics and biological models Geant4-DNA DNA Physics and biological models S. Chauvie, Z. Francis, S. Guatelli, S. Incerti, B. Mascialino, Ph. Moretto, G. Montarou, P. Nieminen, M.G. Pia Topical Seminar on Innovative Particle and Radiation

More information

Geant4 Simulation of Very Low Energy Electromagnetic Interactions

Geant4 Simulation of Very Low Energy Electromagnetic Interactions Geant4 Simulation of Very Low Energy Electromagnetic Interactions R. Capra 1, Z. Francis 2, S. Incerti 3, G. Montarou 2, Ph. Moretto 3, P. Nieminen 4, M. G. Pia 1 1 INFN Sezione di Genova; I-16146 Genova,

More information

Radiation Shielding Simulation For Interplanetary Manned Missions

Radiation Shielding Simulation For Interplanetary Manned Missions Radiation Shielding Simulation For Interplanetary Manned Missions S. Guatelli1, B. Mascialino1, P. Nieminen2, M.G. Pia1 Credit: ESA Credit: ESA 1 INFN Genova, Italy ESA-ESTEC, The Netherlands 2 IPRD 06

More information

Radiation Shielding Simulation For Interplanetary Manned Missions

Radiation Shielding Simulation For Interplanetary Manned Missions Radiation Shielding Simulation For Interplanetary Manned Missions S. Guatelli 1, B. Mascialino 1, P. Nieminen 2, M.G. Pia 1 Credit: ESA 1 INFN Genova, Italy 2 ESA-ESTEC, The Netherlands Credit: ESA IPRD

More information

Geant4 Physics Validation

Geant4 Physics Validation Pablo Cirrone Giacomo Cuttone Francesco Di Rosa Susanna Guatelli Alfonso Mantero Barbara Mascialino Luciano Pandola Andreas Pfeiffer MG Pia Pedro Rodrigues Giorgio Russo Andreia Trindade Valentina Zampichelli

More information

MAGNETIC FIELD EFFECTS ON THE NANOSCOPIC CLUSTER-SIZE DISTRIBUTION FOR THERAPEUTIC PROTON BEAMS

MAGNETIC FIELD EFFECTS ON THE NANOSCOPIC CLUSTER-SIZE DISTRIBUTION FOR THERAPEUTIC PROTON BEAMS MAGNETIC FIELD EFFECTS ON THE NANOSCOPIC CLUSTER-SIZE DISTRIBUTION FOR THERAPEUTIC PROTON BEAMS Danielle Tyrrell 1, Dr Susanna Guatelli 2, Prof. Anatoly Rozenfeld 3 1 SZROS, Mater Centre South Brisbane,

More information

Simulation for LHC Radiation Background

Simulation for LHC Radiation Background Simulation for LHC Radiation Background Optimisation of monitoring detectors and experimental validation M. Glaser1, S. Guatelli2, B. Mascialino2, M. Moll1, M.G. Pia2, F. Ravotti1 1 CERN, Geneva, Switzerland

More information

NANO5 L. Quintieri (Art. 23)

NANO5 L. Quintieri (Art. 23) NANO5 L. Quintieri (Art. 23) 1 NANO5: Description of main objectives NANO5 is a Geant4-related R&D project. It was approved as part of INFN scientific program of Technology Research in September 2008,

More information

Probing the sub-disciplines: what do we know? what do we need to know? The physics The chemistry - Modelling

Probing the sub-disciplines: what do we know? what do we need to know? The physics The chemistry - Modelling Session 3: Probing the sub-disciplines: what do we know? what do we need to know? The physics The chemistry - Modelling Michael Dingfelder Department of Physics, East Carolina University Mailstop #563

More information

Geant4 Low Energy Electromagnetic Physics

Geant4 Low Energy Electromagnetic Physics Geant4 Low Energy Electromagnetic Physics S. Chauvie, S. Guatelli, V. Ivanchenko, F. Longo, A. Mantero, B. Mascialino, P. Nieminen, L. Pandola, S. Parlati, L. Peralta, M. G. Pia, M. Piergentili, P. Rodrigues,

More information

Geant4 simulation for LHC radiation monitoring

Geant4 simulation for LHC radiation monitoring University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2006 Geant4 simulation for LHC radiation monitoring

More information

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH GEANT4 LOW ENERGY ELECTROMAGNETIC MODELS FOR ELECTRONS AND PHOTONS

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH GEANT4 LOW ENERGY ELECTROMAGNETIC MODELS FOR ELECTRONS AND PHOTONS EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN-OPEN-XX 19 August 1999 GEANT4 LOW ENERGY ELECTROMAGNETIC MODELS FOR ELECTRONS AND PHOTONS OPEN-99-034 18/08/99 J. Apostolakis 1,S.Giani 1, M. Maire 5,P.Nieminen

More information

Analysis of radioinduced DNA damages using Monte Carlo calculations at nanometric scale for different irradiation configurations

Analysis of radioinduced DNA damages using Monte Carlo calculations at nanometric scale for different irradiation configurations DOI: 10.15669/pnst.4.413 Progress in Nuclear Science and Technology Volume 4 (2014) pp. 413-417 ARTICLE Analysis of radioinduced DNA damages using Monte Carlo calculations at nanometric scale for different

More information

Simulation Techniques Using Geant4

Simulation Techniques Using Geant4 IEEE Nuclear Science Symposium and Medical Imaging Conference Short Course Simulation Techniques Using Geant4 Maria Grazia Pia (INFN Genova, Italy) MariaGrazia.Pia@ge.infn.it Dresden, 8 October 2008 http://www.ge.infn.it/geant4/events/nss2008/geant4course.html

More information

Geant4 Electromagnetic Physics Updates

Geant4 Electromagnetic Physics Updates Geant4 Electromagnetic Physics Updates V. Ivanchenko, CERN & Geant4 Associates International S. Incerti, CNRS, IN2P3, CENBG, France 12 th Geant4 Space User Workshop 10-12 April 2017 University of Surrey,

More information

Geant4 and its validation

Geant4 and its validation http://geant4.web.cern.ch/geant4/ Geant4 and its validation Luciano Pandola INFN Gran Sasso and University of L Aquila for the Geant4 Collaboration Siena, May 24 th, 2004 What is? OO Toolkit for the simulation

More information

Electromagnetic Physics

Electromagnetic Physics Electromagnetic Physics http://cern.ch/geant4 The full set of lecture notes of this Geant4 Course is available at http://www.ge.infn.it/geant4/events/nss2004/geant4course.html Electromagnetic packages

More information

Geant4 Monte Carlo code application in photon interaction parameter of composite materials and comparison with XCOM and experimental data

Geant4 Monte Carlo code application in photon interaction parameter of composite materials and comparison with XCOM and experimental data Indian Journal of Pure & Applied Physics Vol. 54, Februray 2016, pp. 137-143 Geant4 Monte Carlo code application in photon interaction parameter of composite materials and comparison with XCOM and experimental

More information

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH GEANT4 SIMULATION OF ENERGY LOSSES OF SLOW HADRONS

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH GEANT4 SIMULATION OF ENERGY LOSSES OF SLOW HADRONS EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH 2 September 1999 GEANT4 SIMULATION OF ENERGY LOSSES OF SLOW HADRONS V.N. Ivanchenko Budker Institute for Nuclear Physics, Novosibirsk, Russia S. Giani, M.G. Pia

More information

On the energy deposition by electrons in air and the accurate determination of the air-fluorescence yield

On the energy deposition by electrons in air and the accurate determination of the air-fluorescence yield arxiv:1207.2913v1 [astro-ph.im] 12 Jul 2012 On the energy deposition by electrons in air and the accurate determination of the air-fluorescence yield J. Rosado, P. Gallego, D. García-Pinto, F. Blanco and

More information

Comparison of nanodosimetric parameters of track structure calculated by the Monte Carlo codes Geant4-DNA and PTra

Comparison of nanodosimetric parameters of track structure calculated by the Monte Carlo codes Geant4-DNA and PTra University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 2012 Comparison of nanodosimetric parameters of track structure calculated

More information

Analysis of Statistical Algorithms. Comparison of Data Distributions in Physics Experiments

Analysis of Statistical Algorithms. Comparison of Data Distributions in Physics Experiments for the Comparison of Data Distributions in Physics Experiments, Andreas Pfeiffer, Maria Grazia Pia 2 and Alberto Ribon CERN, Geneva, Switzerland 2 INFN Genova, Genova, Italy st November 27 GoF-Tests (and

More information

The impact of Monte Carlo simulation: a scientometric analysis of scholarly literature

The impact of Monte Carlo simulation: a scientometric analysis of scholarly literature Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 21 (SNA + MC21) Hitotsubashi Memorial Hall, Tokyo, Japan, October 17-21, 21 The impact of Monte Carlo simulation:

More information

INTRODUCTION TO IONIZING RADIATION (Attix Chapter 1 p. 1-5)

INTRODUCTION TO IONIZING RADIATION (Attix Chapter 1 p. 1-5) INTRODUCTION TO IONIZING RADIATION (Attix Chapter 1 p. 1-5) Ionizing radiation: Particle or electromagnetic radiation that is capable of ionizing matter. IR interacts through different types of collision

More information

Simulations in Radiation Therapy

Simulations in Radiation Therapy Simulations in Radiation Therapy D. Sarrut Directeur de recherche CNRS Université de Lyon, France CREATIS-CNRS ; IPNL-CNRS ; Centre Léon Bérard Numerical simulations and random processes treat cancer 2

More information

On the energy deposition by electrons in air and the accurate determination of the air-fluorescence yield

On the energy deposition by electrons in air and the accurate determination of the air-fluorescence yield EPJ Web of Conferences 53, 10001 (2013) DOI: 10.1051/epjconf/20135310001 C Owned by the authors, published by EDP Sciences, 2013 On the energy deposition by electrons in air and the accurate determination

More information

User Documentation and Examples (II) in GEANT p01

User Documentation and Examples (II) in GEANT p01 User Documentation and Examples (II) in GEANT 4.9.3-p01 Michael H. Kelsey SLAC National Accelerator Laboratory GEANT4 Tutorial, BUAF Puebla, Mexico 14 Jun 2010 Advanced User Documentation Toolkit developers

More information

Validation and verification of Geant4 standard electromagnetic physics

Validation and verification of Geant4 standard electromagnetic physics Validation and verification of Geant4 standard electromagnetic physics J Apostolakis 1, A Bagulya 5, S Elles 4, V N Ivanchenko 1,2,8, J Jacquemier 4, M Maire 4,6, T Toshito 3,7 and L Urban 6 1 CERN, 1211

More information

8/1/2017. Introduction to Monte Carlo simulations at the (sub-)cellular scale: Concept and current status

8/1/2017. Introduction to Monte Carlo simulations at the (sub-)cellular scale: Concept and current status MC-ADC ADC TOPAS 8/1/2017 Introduction to Monte Carlo simulations at the (sub-)cellular scale: Concept and current status Jan Schuemann Assistant Professor Head of the Multi-Scale Monte Carlo Modeling

More information

Geant4 Based Space Radiation Application for Planar and Spherical Geometries

Geant4 Based Space Radiation Application for Planar and Spherical Geometries Advances in Applied Sciences 2017; 2(6): 110-114 http://www.sciencepublishinggroup.com/j/aas doi: 10.11648/j.aas.20170206.13 ISSN: 2575-2065 (Print); ISSN: 2575-1514 (Online) Geant4 Based Space Radiation

More information

INCL INTRA-NUCLEAR CASCADE AND ABLA DE-EXCITATION MODELS IN GEANT4

INCL INTRA-NUCLEAR CASCADE AND ABLA DE-EXCITATION MODELS IN GEANT4 Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo (SNA + MC) Hitotsubashi Memorial Hall, Tokyo, Japan, October -, INCL INTRA-NUCLEAR CASCADE AND ABLA DE-EXCITATION

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS CR -2018/225 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland 27 September 2018 (v2, 19 November

More information

Detector Simulation. Mihaly Novak CERN PH/SFT

Detector Simulation. Mihaly Novak CERN PH/SFT Detector Simulation Mihaly Novak CERN PH/SFT CERN Summer Student Program, 1 August 2017 Foreword This lecture is aimed to offer a simple and general introduction to detector simulation. Geant4 will be

More information

COST MP0601 Short Wavelength Laboratory Sources

COST MP0601 Short Wavelength Laboratory Sources Background: Short wavelength radiation has been used in medicine and materials studies since immediately after the 1895 discovery of X-rays. The development of synchrotron sources over the last ~25 years

More information

Research Physicist Field of Nuclear physics and Detector physics. Developing detector for radiation fields around particle accelerators using:

Research Physicist Field of Nuclear physics and Detector physics. Developing detector for radiation fields around particle accelerators using: Christopher Cassell Research Physicist Field of Nuclear physics and Detector physics Developing detector for radiation fields around particle accelerators using: Experimental data Geant4 Monte Carlo Simulations

More information

User Documents and Examples II

User Documents and Examples II User Documents and Examples II John Apostolakis Most slides from Dennis Wright s talk at SLAC Geant4 Tutorial, May 2007 Geant4 V8.3 Outline User Documents Toolkit Developers' Guide Physics Reference Manual

More information

THE LHC, currently under construction at the European Organization

THE LHC, currently under construction at the European Organization IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 5, OCTOBER 2006 2907 Background Radiation Studies at LHCb Using Geant4 G. G. Daquino, G. Corti, and G. Folger Abstract This paper aims to describe the

More information

Physics of Novel Radiation Modalities Particles and Isotopes. Todd Pawlicki, Ph.D. UC San Diego

Physics of Novel Radiation Modalities Particles and Isotopes. Todd Pawlicki, Ph.D. UC San Diego Physics of Novel Radiation Modalities Particles and Isotopes Todd Pawlicki, Ph.D. UC San Diego Disclosure I have no conflicts of interest to disclose. Learning Objectives Understand the physics of proton

More information

Validation of Geant4 atomic relaxation against the NIST Physical Reference Data

Validation of Geant4 atomic relaxation against the NIST Physical Reference Data University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 2007 Validation of Geant4 atomic relaxation against the NIST Physical

More information

GEANT4 LOW ENERGY ELECTROMAGNETIC PHYSICS

GEANT4 LOW ENERGY ELECTROMAGNETIC PHYSICS http://geant4.org 1 GEANT4 LOW ENERGY ELECTROMAGNETIC PHYSICS On behalf of the Geant4 Standard and Low Energy EM Physics working groups Sébastien Incerti (CNRS) & Vladimir Ivantchenko (CERN) Geant4 EM

More information

CHARGED PARTICLE INTERACTIONS

CHARGED PARTICLE INTERACTIONS CHARGED PARTICLE INTERACTIONS Background Charged Particles Heavy charged particles Charged particles with Mass > m e α, proton, deuteron, heavy ion (e.g., C +, Fe + ), fission fragment, muon, etc. α is

More information

Electromagnetic Physics in Geant4

Electromagnetic Physics in Geant4 Electromagnetic Physics in Geant4 Luciano Pandola INFN-LNGS Partially based on presentations by A. Lechner, M.G. Pia, V. Ivanchenko, S. Incerti, M. Maire and A. Howard Part I: EM physics models available

More information

Hans-Herbert Fischer and Klaus Thiel

Hans-Herbert Fischer and Klaus Thiel A simulation tool for the calculation of NIEL in arbitrary materials using GEANT4 - Some new results - Hans-Herbert Fischer and Klaus Thiel Nuclear Chemistry Dept. University of Köln, FRG ESA GSP 2005

More information

Geant4 and Fano cavity : where are we?

Geant4 and Fano cavity : where are we? Geant4 and Fano cavity : where are we? S. Elles, V. Ivanchenko, M. Maire, L. Urban To cite this version: S. Elles, V. Ivanchenko, M. Maire, L. Urban. Geant4 and Fano cavity : where are we?. Third McGill

More information

Simulation of GEM-TPC Prototype for the Super-FRS Beam Diagnostics System at FAIR

Simulation of GEM-TPC Prototype for the Super-FRS Beam Diagnostics System at FAIR Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol. 2, pp.401-405 (2011) ARTICLE Simulation of GEM-TPC Prototype for the Super-FRS Beam Diagnostics System at FAIR Matti KALLIOKOSKI * Helsinki Institute of

More information

Test & Analysis Project

Test & Analysis Project χ 2 N-S =23.2 ν=15 - p=0.08 χ 2 N-L =13.1 ν=20 - p=0.87 Test & Analysis Project Statistical Testing Physics Testing http://www.ge.infn.it/geant4/analysis/tanda on behalf of the T&A team Geant4 Workshop,

More information

R&D of emulsion technology to study fragment interaction to improve ion therapy

R&D of emulsion technology to study fragment interaction to improve ion therapy FJPPL 07 11 May@KEK R&D of emulsion technology to study fragment interaction to improve ion therapy Imad Laktineh (Lyon)/ Kimio Niwa (Nagoya University) Toshiyuki Toshito (KEK) Japanese-French collaboration

More information

Gamma-ray emission by proton beam interaction with injected Boron atoms for medical imaging. Giada Petringa - Laboratori Nazionali del Sud -

Gamma-ray emission by proton beam interaction with injected Boron atoms for medical imaging. Giada Petringa - Laboratori Nazionali del Sud - Gamma-ray emission by proton beam interaction with injected Boron atoms for medical imaging Giada Petringa - Laboratori Nazionali del Sud - Giada Petringa Topical Seminar on Innovative Particle and Radiation

More information

PHYS 5020 Computation and Image Processing

PHYS 5020 Computation and Image Processing PHYS 5020 and Image Processing : Monte Carlo Thursday 2 August 2012 Monte Carlo (MC) is a numerical method that uses random sampling of probability distributions to simulate stochastic processes in nature,

More information

Monte Carlo Simulation concerning Particle Therapy

Monte Carlo Simulation concerning Particle Therapy Monte Carlo Simulation concerning Particle Therapy Masaaki Takashina Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan INTRODUCTION It is well known that the particle therapy has some

More information

Radiosensitization Effect of the Gold Nanoparticle in the Cell Simulated with NASIC Code

Radiosensitization Effect of the Gold Nanoparticle in the Cell Simulated with NASIC Code Radiosensitization Effect of the Gold Nanoparticle in the Cell Simulated with NASIC Code Yizheng Chen 1,2, Chunyan Li 1,3, Junli Li 1,2, * 1. Department of Engineering Physics, Tsinghua University, Beijing,

More information

Radiation background simulation and verification at the LHC: Examples from the ATLAS experiment and its upgrades

Radiation background simulation and verification at the LHC: Examples from the ATLAS experiment and its upgrades at the LHC: Examples from the ATLAS experiment and its upgrades On behalf of the ATLAS Inner Detector University of Sheffield E-mail: Ian.Dawson@cern.ch The high collision rates at the new energy and luminosity

More information

THE mono-energetic hadron beam such as heavy-ions or

THE mono-energetic hadron beam such as heavy-ions or Verification of the Dose Distributions with GEANT4 Simulation for Proton Therapy T.Aso, A.Kimura, S.Tanaka, H.Yoshida, N.Kanematsu, T.Sasaki, T.Akagi Abstract The GEANT4 based simulation of an irradiation

More information

Improvements and developments of physics models in PHITS for radiotherapy and space applications

Improvements and developments of physics models in PHITS for radiotherapy and space applications Improvements and developments of physics models in PHITS for radiotherapy and space applications L. Sihver 1-9, T. Sato 10, S. Hashimoto 10, T. Ogawa 10, K. Niita 11 1 Atominstitut, TU Wien, Austria, 2

More information

Atoms, Radiation, and Radiation Protection

Atoms, Radiation, and Radiation Protection James E. Turner Atoms, Radiation, and Radiation Protection Third, Completely Revised and Enlarged Edition BICENTENNIAL J 0 1 8 0 Q 71 z m z CAVILEY 2007 1 ;Z z ü ; m r B10ENTENNIAL WILEY-VCH Verlag GmbH

More information

Hadron Therapy Medical Applications

Hadron Therapy Medical Applications Hadron Therapy Medical Applications G.A. Pablo Cirrone On behalf of the CATANA GEANT4 Collaboration Qualified Medical Physicist and PhD Student University of Catania and Laboratori Nazionali del Sud -

More information

Physics methods for the simulation of photoionisation

Physics methods for the simulation of photoionisation Physics methods for the simulation of photoionisation T. Basaglia 1, M. Batic 2, M. C. Han 3, G. Hoff 4, C. H. Kim 3, H. S. Kim 3, M. G. Pia 5, P. Saracco 5 1 CERN 2 Sinergise, Ljubljana, Slovenia 3 Hanyang

More information

Radiation Quantities and Units

Radiation Quantities and Units Radiation Quantities and Units George Starkschall, Ph.D. Lecture Objectives Define and identify units for the following: Exposure Kerma Absorbed dose Dose equivalent Relative biological effectiveness Activity

More information

Toward a testable statistical model for radiation effects in DNA

Toward a testable statistical model for radiation effects in DNA Toward a testable statistical model for radiation effects in DNA Kay Kinoshita Department of Physics University of Cincinnati with Ed Merino (Department of Chemistry, A&S) Mike Lamba (Department of Radiology,

More information

Iodine-131, Iodine-125 and heavy charged particles

Iodine-131, Iodine-125 and heavy charged particles lucas heights 1971 Strict limits for exposure to all kinds of radiation are set and applied worldwide in an attempt to ensure the safe use of nuclear energy and nuclear techniques. These limits are kept

More information

Dario Barberis Evaluation of GEANT4 electromagnetic physics in ATLAS

Dario Barberis Evaluation of GEANT4 electromagnetic physics in ATLAS Dario Barberis Evaluation of GEANT4 electromagnetic physics in ATLAS G4 Workshop, Genova, 5 July 2001 Dario Barberis Genova University/INFN 1 The ATLAS detector G4 Workshop, Genova, 5 July 2001 Dario Barberis

More information

TRACKS IN PHYSICS AND BIOLOGY Hooshang Nikjoo Radiation Biophysics Group Department of Oncology pathology Karoloinska Institutet

TRACKS IN PHYSICS AND BIOLOGY Hooshang Nikjoo Radiation Biophysics Group Department of Oncology pathology Karoloinska Institutet TRACKS IN PHYSICS AND BIOLOGY Hooshang Nikjoo Radiation Biophysics Group Department of Oncology pathology Karoloinska Institutet Some Questions in Radiation Physics, Biology, and Protection: How much better

More information

Simulating Gamma-Ray Telescopes in Space Radiation Environments with Geant4: Detector Activation

Simulating Gamma-Ray Telescopes in Space Radiation Environments with Geant4: Detector Activation Simulating Gamma-Ray Telescopes in Space Radiation Environments with Geant4: Detector Activation Andreas Zoglauer University of California at Berkeley, Space Sciences Laboratory, Berkeley, USA Georg Weidenspointner

More information

Calculations of Neutron Yield and Gamma Rays Intensity by GEANT4

Calculations of Neutron Yield and Gamma Rays Intensity by GEANT4 Armenian Journal of Physics, 2016, vol. 9, issue 4, pp. 315-323 Calculations of Neutron Yield and Gamma Rays Intensity by GEANT4 R. Avagyan, R. Avetisyan, V. Ivanyan*, I. Kerobyan A.I. Alikhanyan National

More information

GEANT4 HADRONIC PHYSICS

GEANT4 HADRONIC PHYSICS GEANT4 HADRONIC PHYSICS Training course at International User Conference on Medicine and Biology applications Bordeaux, 8-11 October 2013 V. Ivanchenko Based on lectures developed by Dennis Wright Geant4

More information

Comparative Analysis of Nuclear Cross Sections in Monte Carlo Methods for Medical Physics Applications

Comparative Analysis of Nuclear Cross Sections in Monte Carlo Methods for Medical Physics Applications Comparative Analysis of Nuclear Cross Sections in Monte Carlo Methods for Medical Physics Applications Christopher T. Myers 1 Georgia Institute of Technology Bernadette L. Kirk 2 Luiz C. Leal 2 Oak Ridge

More information

Radiosensitisation by nanoparticles in Proton therapy

Radiosensitisation by nanoparticles in Proton therapy Radiosensitisation by nanoparticles in Proton therapy Reem Ahmad, Kate Ricketts, Gary Royle Dept of medical physics and bioengineering, University College London UCL Division of Surgery and Interventional

More information

Polarised Geant4 Applications at the ILC

Polarised Geant4 Applications at the ILC Polarised Geant4 Applications at the ILC Andreas Schälicke, Karim Laihem 2 and Pavel Starovoitov - DESY Platanenallee 6, 578 Zeuthen - Germany 2- RWTH Aachen - Phys. Inst. IIIB Physikzentrum, 5256 Aachen-

More information

Status of the physics validation studies using Geant4 in ATLAS

Status of the physics validation studies using Geant4 in ATLAS Status of the physics validation studies using Geant4 in ATLAS On behalf of the ATLAS Geant4 Validation Team A.Dell Acqua CERN EP/SFT, Geneva, CH dellacqu@mail.cern.ch The new simulation for the ATLAS

More information

Experimental Methods of Particle Physics

Experimental Methods of Particle Physics Experimental Methods of Particle Physics (PHY461) Fall 015 Olaf Steinkamp 36-J- olafs@physik.uzh.ch 044 63 55763 Overview 1) Introduction / motivation measurement of particle momenta: magnetic field early

More information

INAYA MEDICAL COLLEGE (IMC) RAD LECTURE 1 RADIATION PHYSICS DR. MOHAMMED MOSTAFA EMAM

INAYA MEDICAL COLLEGE (IMC) RAD LECTURE 1 RADIATION PHYSICS DR. MOHAMMED MOSTAFA EMAM INAYA MEDICAL COLLEGE (IMC) RAD 232 - LECTURE 1 RADIATION PHYSICS DR. MOHAMMED MOSTAFA EMAM Radiation: It is defined as the process by which energy is emitted from a source and propagated through the surrounding

More information

Detectors for High Energy Physics

Detectors for High Energy Physics Detectors for High Energy Physics Ingrid-Maria Gregor, DESY DESY Summer Student Program 2017 Hamburg July 26th/27th Disclaimer Particle Detectors are very complex, a lot of physics is behind the detection

More information

CHARACTERIZATION OF A RADIATION DETECTOR FOR AIRCRAFT MEASUREMENTS

CHARACTERIZATION OF A RADIATION DETECTOR FOR AIRCRAFT MEASUREMENTS CHARACTERIZATION OF A RADIATION DETECTOR FOR AIRCRAFT MEASUREMENTS Leonardo de Holanda Mencarini 1,2, Claudio A. Federico 1,2 and Linda V. E. Caldas 1 1 Instituto de Pesquisas Energéticas e Nucleares IPEN,

More information

New Features under Development - 1. Makoto Asai On behalf of the SLAC Geant4 team

New Features under Development - 1. Makoto Asai On behalf of the SLAC Geant4 team New Features under Development - 1 Makoto Asai On behalf of the SLAC Geant4 team Contents Semiconductor energy transport Phonon Electron/hole drift Activation of material We expect to deliver first implementation

More information

A Monte Carlo Study of the Relationship between the Time. Structures of Prompt Gammas and in vivo Radiation Dose in.

A Monte Carlo Study of the Relationship between the Time. Structures of Prompt Gammas and in vivo Radiation Dose in. A Monte Carlo Study of the Relationship between the Time Structures of Prompt Gammas and in vivo Radiation Dose in Proton Therapy Wook-Geun Shin and Chul Hee Min* Department of Radiation Convergence Engineering,

More information

Bhas Bapat MOL-PH Seminar October Ion Matter Interactions and Applications

Bhas Bapat MOL-PH Seminar October Ion Matter Interactions and Applications Ion-matter interactions and applications Bhas Bapat MOL-PH Seminar October 2013 Outline Ion-atom collisions Energy loss in matter Applications Atmospheric Science Astrophysics Material science Medicine

More information

Introduction to Accelerator Physics Part 1

Introduction to Accelerator Physics Part 1 Introduction to Accelerator Physics Part 1 Pedro Castro / Accelerator Physics Group (MPY) Introduction to Accelerator Physics DESY, 28th July 2014 Pedro Castro / MPY Accelerator Physics 28 th July 2014

More information

APPLIED RADIATION PHYSICS

APPLIED RADIATION PHYSICS A PRIMER IN APPLIED RADIATION PHYSICS F A SMITH Queen Mary & Westfield College, London fe World Scientific m Singapore * New Jersey London Hong Kong CONTENTS CHAPTER 1 : SOURCES of RADIATION 1.1 Introduction

More information

Monte Carlo study of medium-energy electron penetration in aluminium and silver

Monte Carlo study of medium-energy electron penetration in aluminium and silver NUKLEONIKA 015;60():361366 doi: 10.1515/nuka-015-0035 ORIGINAL PAPER Monte Carlo study of medium-energy electron penetration in aluminium and silver Asuman Aydın, Ali Peker Abstract. Monte Carlo simulations

More information

Ion-ion Physics in Geant4. Dennis Wright (SLAC) 5 th Geant4 Space Users' Workshop 14 February 2008

Ion-ion Physics in Geant4. Dennis Wright (SLAC) 5 th Geant4 Space Users' Workshop 14 February 2008 Ion-ion Physics in Geant4 Dennis Wright (SLAC) 5 th Geant4 Space Users' Workshop 14 February 2008 Outline Introduction and Motivation Cross sections Existing models New Models Interfaces to external models

More information

Secondary Particles Produced by Hadron Therapy

Secondary Particles Produced by Hadron Therapy Iranian Journal of Medical Physics Vol. 12, No. 2, Spring 2015, 1-8 Received: March 10, 2015; Accepted: July 07, 2015 Original Article Secondary Particles Produced by Hadron Therapy Abdolkazem Ansarinejad

More information

Foundation of Radiological Physics. Preface

Foundation of Radiological Physics. Preface Foundation of Radiological Physics Page Preface v Chapter 1. Radiation 1 1.1 Medical Use of Radiation. 1 1.2 Nature of Radiation. 4 1.3 Quantum Nature of Radiation. 6 1.4 Electromagnetic Radiation Spectrum

More information

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects)

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects) LECTURE 5: INTERACTION OF RADIATION WITH MATTER All radiation is detected through its interaction with matter! INTRODUCTION: What happens when radiation passes through matter? Emphasis on what happens

More information

Irradiation of Living Cells with Single Ions at the Ion Microprobe SNAKE

Irradiation of Living Cells with Single Ions at the Ion Microprobe SNAKE Vol. 109 (2006) ACTA PHYSICA POLONICA A No. 3 Proceedings of the XL Zakopane School of Physics, Zakopane 2005 Irradiation of Living Cells with Single Ions at the Ion Microprobe SNAKE A. Hauptner a, T.

More information

INAYA MEDICAL COLLEGE (IMC) RAD LECTURE 1 RADIATION PHYSICS DR. MOHAMMED MOSTAFA EMAM

INAYA MEDICAL COLLEGE (IMC) RAD LECTURE 1 RADIATION PHYSICS DR. MOHAMMED MOSTAFA EMAM INAYA MEDICAL COLLEGE (IMC) RAD 232 - LECTURE 1 RADIATION PHYSICS DR. MOHAMMED MOSTAFA EMAM LECTURES & CLASS ACTIVITIES https://inayacollegedrmohammedemam.wordpress.com/ Password: drmohammedemam 16-02-2015

More information

Overview of validations at LHC

Overview of validations at LHC G4 Workshop, Bordeaux, 8 November 2005 Overview of validations at LHC Alberto Ribon CERN PH/SFT http://lcgapp.cern.ch/project/simu/validation/ Physics Validation First cycle of electromagnetic physics

More information

Today, I will present the first of two lectures on neutron interactions.

Today, I will present the first of two lectures on neutron interactions. Today, I will present the first of two lectures on neutron interactions. I first need to acknowledge that these two lectures were based on lectures presented previously in Med Phys I by Dr Howell. 1 Before

More information

Physics 100 PIXE F06

Physics 100 PIXE F06 Introduction: Ion Target Interaction Elastic Atomic Collisions Very low energies, typically below a few kev Surface composition and structure Ion Scattering spectrometry (ISS) Inelastic Atomic Collisions

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and Astrophysics PHY-30 Dr. E. Rizvi Lecture 4 - Detectors Binding Energy Nuclear mass MN less than sum of nucleon masses Shows nucleus is a bound (lower energy) state for this configuration

More information

Development of Software Framework for Simulation in Radiotherapy

Development of Software Framework for Simulation in Radiotherapy Development of Software Framework for Simulation in Radiotherapy Status and Plan in 2005 Takashi Sasaki KEK and CREST, JST Takashi.Sasaki@kek.jp The Project The Development of Software Framework for Simulation

More information

Features of PHITS2.82. PHITS development team, Dec. 25, 2015

Features of PHITS2.82. PHITS development team, Dec. 25, 2015 1 Features of PHITS2.82 PHITS development team, Dec. 25, 2015 Map of Models used in PHITS2.82 Low Energy High Neutron Proton, Pion (other hadrons) 1 TeV 1 TeV/n Intra-nuclear cascade (JAM) Evaporation

More information

Prompt gamma measurements for the verification of dose deposition in proton therapy. Contents. Two Proton Beam Facilities for Therapy and Research

Prompt gamma measurements for the verification of dose deposition in proton therapy. Contents. Two Proton Beam Facilities for Therapy and Research Prompt gamma measurements for the verification of dose deposition in proton therapy Two Proton Beam Facilities for Therapy and Research Ion Beam Facilities in Korea 1. Proton therapy facility at National

More information

This is the peer reviewed author accepted manuscript (post print) version of a published work that appeared in final form in:

This is the peer reviewed author accepted manuscript (post print) version of a published work that appeared in final form in: Review of Geant4-DNA applications for micro and nanoscale simulations This is the peer reviewed author accepted manuscript (post print) version of a published work that appeared in final form in: Incerti,

More information

ATHENA Radia+on Environment Models and X-Ray Background Effects Simulators

ATHENA Radia+on Environment Models and X-Ray Background Effects Simulators Low energy proton scattering at glancing angles: new physics implementation and general validation V. Fioretti (INAF/IASF Bologna) +A. Bulgarelli (INAF/IASF Bologna), T. Mineo (INAF/IASF Palermo), C. Macculi,

More information

INTERACTIONS OF RADIATION WITH MATTER

INTERACTIONS OF RADIATION WITH MATTER INTERACTIONS OF RADIATION WITH MATTER Renée Dickinson, MS, DABR Medical Physicist University of Washington Medical Center Department of Radiology Diagnostic Physics Section Outline Describe the various

More information

Spectroscopy on Mars!

Spectroscopy on Mars! Spectroscopy on Mars! Pathfinder Spirit and Opportunity Real World Friday H2A The Mars Pathfinder: Geological Elemental Analysis On December 4th, 1996, the Mars Pathfinder was launched from earth to begin

More information

Medical Neutron Science

Medical Neutron Science Medical Neutron Science 03 Neutron Activation Analysis The use of NAA techniques for medical applications was first reported in 1964 for measurement of sodium in the body J. Anderson, SB S.B. Ob Osborn,

More information

Study of the Neutron Sensitivity for the Double Gap RPC of the CMS/LHC by Using GEANT4

Study of the Neutron Sensitivity for the Double Gap RPC of the CMS/LHC by Using GEANT4 Journal of the Korean Physical Society, Vol. 48, No. 1, January 2006, pp. 33 39 Study of the Neutron Sensitivity for the Double Gap RPC of the CMS/LHC by Using GEANT4 J. T. Rhee and M. Jamil Institute

More information