Experimental Methods of Particle Physics

Size: px
Start display at page:

Download "Experimental Methods of Particle Physics"

Transcription

1 Experimental Methods of Particle Physics (PHY461) Fall 015 Olaf Steinkamp 36-J

2 Overview 1) Introduction / motivation measurement of particle momenta: magnetic field early detectors: cloud chamber, bubble chamber, spark chamber ) Gaseous tracking detectors Multi Wire Proportional Chamber Drift Chambers Micro-Pattern Gaseous Detectors 3) Silicon detectors micro-strip detectors (pixel detectors) 4) Track reconstruction pattern recognition track fitting Introduction ()

3 Literature Main sources used in preparing this lecture: C. Niebuhr, Detektoren für die Teilchenphysik, Vorlesungen Uni Hamburg D. Bortoletto, An Introduction to Semiconductor Detectors, lecture at 004 Vienna Conference on Instrumentation R. Frühwirth et al., Data Analysis Techniques for High Energy Physics Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology, 000 Other useful resources: K. Kleinknecht, Detectors for Particle Radiation, J. Ferbel, Experimental Techniques in High Energy Physics Particle Data Group web page, also: R. K. Bock and A. Vasilescu, Particle Detector Briefbook, Cambridge University Press Introduction (3)

4 Particle Physics Experiments for Dummies Accelerate a beam of (stable & charged) particles to high energies electrons/positrons, protons/antiprotons, heavy ions Bring them into collision with another beam of particles ( collider experiment ) a target at rest ( fixed-target experiment ) Measure properties of the particles created in the collision production & decay vertices position-sensitive detectors (in magnetic field) flight paths momenta speed Cherenkov detectors penetration power muon detectors energy calorimeters charged particles only charged and neutral analyse and interpret data from many collisions (at LHCb: 109 / year) Introduction (4)

5 Particle Physics Detector for Dummies Detection based on interaction of particles in detector material energy deposition mostly due to excitation / ionisation ( Bethe-Bloch) creation of free electric charge carriers or of scintillation light Electronic readout of detector signals: (not discussed in this lecture) apply electric field across detector volume, collect charges on electrodes electronically integrate & amplify signal pulse digitize the signal: discriminator binary information (hit / no hit) analog-to-digital converter (ADC) encode pulse height time-to-digital converter (TDC) encode signal arrival time transfer digital data to a huge computer farm for processing and storage need a trigger signal to decide when to read out the detector ( Lea) Introduction (5)

6 Tracking Detectors Obtain position information from finely segmented readout electrodes granularity determined by particle density and required spatial resolution close to interaction point: small tracking volume but high particle density fine granularity and excellent position resolution further away: lower particle density but large tracking volume coarser granularity, lower position resolution Example: ATLAS experiment at the LHC radius technology cell size area 5-1 cm silicon pixels 50 x 400 μm 1.8 m² cm silicon strips 80 μm x 13 cm 60 m² cm drift tubes (TRT) 4 mm x 75 cm ( 680 m²) cm drift tubes (MDT) 3 cm x 6 m 5500 m² Introduction (6)

7 ATLAS Detector Introduction (7)

8 ATLAS Inner Tracker silicon pixels silicon strips (SCT) straw drift tubes (TRT) all: barrel + endcaps Introduction (8)

9 Additional Requirements rate capability limited by charge collection time and dead-time of read-out electronics must match the expected rate of charged particles in the experiment material budget multiple scattering in detector material limits spatial resolution especially important if particle momenta are low radiation hardness degradation of detector material due to radiation damage detector must survive several (typically 10) years in the experiment cost!!! often dominated by number of electronic readout channels detector granularity as fine as needed but not much finer than that different detector technologies to match different conditions Introduction (9)

10 Momentum Measurement Measure curvature ρ of the particle trajectory in a magnetic field B gives momentum component transverse to magnetic field: p T = q B ρ also: direction of curvature gives sign of the particle charge Typical collider experiment: solenoid magnet p T [GeV ] = 0.3 B [T ] ρ [m] Typical fixed-target experiment: field lines parallel to beam axis barrel and endcap detectors inside magnetic field dipole magnet field lines orthogonal to beam axis planar detection layers before and after the magnet Δθ B-field B-field tracking detectors Introduction (10)

11 Momentum Resolution (I) Determine sagitta of trajectory from three position measurements from geometry: L φ φ L/ = sin ρ ( s = ρ 1 cos φ ) [ ( ρ 1 1 ( ) )] 1 φ = ρ φ 8 x1 x x3 s ρ from deflection in magnetic field: L 0.3 B L φ = ρ = pt B-field (for φ not too large) 0.3 L B s = 8 pt for position measurements with resolution σx: x +x s = x σ = σ x s Introduction (11) σ (p T ) σs = = pt s 8 pt 3 σ x 0.3 B L

12 Momentum Resolution (II) For N equidistant measurements (N 10): σ (p T ) σ = κκ = pt pt 70 σ x N B L with κ = 1/ρ = curvature [Gluckstern, NIM 4 (1963) 381] Relative momentum resolution deteriorates linearly with transverse momentum improves linearly with the strength of B-field improves quadratically with the length of the measured track segment large size of high-energy particle physics experiments e.g. ATLAS magnetic field: overall diameter: 5 m overall length: T 46 m Introduction (1)

13 Momentum Resolution (III) Additional uncertainty from multiple scattering average deflection angle in bending plane ϑ rms ( L' L' = z ln β p [GeV ] X0 X0 ( )) X0 = radiation length of detector material L' = L / sin θ = passlength through detector material ( Katharina ) B L' θ L Total uncertainty on momentum measurement σp p ( ) = ( ( σ x p sinθ 70 N B L β B L sinθ X 0 + ( σ θ cot θ ) ) ) spatial resolution multiple scattering θ resolution Introduction (13)

14 Early Tracking Detectors (I) Cloud Chamber (Wilson, 191) vessel filled with supersaturated water vapour (created by rapid adiabatic expansion) charged particle creates ionisation clusters ionisation clusters act as condensation nuclei trail of water droplets along particle trajectory photograph trails through windows in the vessel spatial resolution ~ 100 μm estimate particle energy from density of droplets most important experimental tool until 1950s main disadvantages: large dead time of the order of seconds need to compress/expand vessel to remove droplets after each exposure photographs need to be analysed manually Introduction (14) discovery of positron (Anderson, 193)

15 Early Tracking Detectors (II) Bubble Chamber (Glaser, 195) vessel filled with superheated transparent liquid (created by rapid adiabatic expansion) energy deposition brings liquid to boil trail of bubbles along particle trajectory photograph trails through windows in the vessel spatial resolution ~ 100 μm estimate particle energy from density of bubbles advantage compared to Cloud Chamber: higher density of detection medium detection medium can serve as target material for fixed-target experiments at particle beams gives higher sensitivity to rare processes disadvantages: same as for Cloud Chamber discovery of neutral currents (Gargamelle, CERN 1973) Introduction (15)

16 Early Tracking Detectors (III) Spark Chamber (Fukui/Myamoto, 1959) stack of thin metal plates filled with He/Ne gas apply high voltage between alternate layers just below the break-down voltage charged particle ionizes gas molecules in gap causes discharge in between adjacent plates creates trail of sparks along particle trajectory reduce high voltage to stop discharges readout mostly optical (also: acoustic/electronic) advantage: detector dead-time only ~ ms factor 100 faster than Bubble chambers disadvantage: spatial resolution only ~ mm factor 10 worse than Cloud and Bubble chambers Introduction (16) discovery of muon neutrino (BNL, 196)

Last Lecture 1) Silicon tracking detectors 2) Reconstructing track momenta

Last Lecture 1) Silicon tracking detectors 2) Reconstructing track momenta Last Lecture 1) Silicon tracking detectors 2) Reconstructing track momenta Today s Lecture: 1) Electromagnetic and hadronic showers 2) Calorimeter design Absorber Incident particle Detector Reconstructing

More information

What detectors measure

What detectors measure What detectors measure As a particle goes through matter, it releases energy Detectors collect the released energy and convert it to electric signals recorded by DAQ Raw event record is a collection of

More information

Interaction of particles in matter

Interaction of particles in matter Interaction of particles in matter Particle lifetime : N(t) = e -t/ Particles we detect ( > 10-10 s, c > 0.03m) Charged particles e ± (stable m=0.511 MeV) μ ± (c = 659m m=0.102 GeV) ± (c = 7.8m m=0.139

More information

pp physics, RWTH, WS 2003/04, T.Hebbeker

pp physics, RWTH, WS 2003/04, T.Hebbeker 3. PP TH 03/04 Accelerators and Detectors 1 pp physics, RWTH, WS 2003/04, T.Hebbeker 2003-12-16 1.2.4. (Inner) tracking and vertexing As we will see, mainly three types of tracking detectors are used:

More information

The LHC Experiments. TASI Lecture 2 John Conway

The LHC Experiments. TASI Lecture 2 John Conway The LHC Experiments TASI 2006 - Lecture 2 John Conway Outline A. Interactions of Particles With Matter B. Tracking Detectors C. Calorimetry D. CMS and ATLAS Design E. The Mystery of Triggering F. Physics

More information

Particle detection 1

Particle detection 1 Particle detection 1 Recall Particle detectors Detectors usually specialize in: Tracking: measuring positions / trajectories / momenta of charged particles, e.g.: Silicon detectors Drift chambers Calorimetry:

More information

Tracking detectors for the LHC. Peter Kluit (NIKHEF)

Tracking detectors for the LHC. Peter Kluit (NIKHEF) Tracking detectors for the LHC Peter Kluit (NIKHEF) Overview lectures part I Principles of gaseous and solid state tracking detectors Tracking detectors at the LHC Drift chambers Silicon detectors Modeling

More information

Experimental Particle Physics

Experimental Particle Physics Experimental Particle Physics Particle Interactions and Detectors Lecture 2 17th February 2010 Fergus Wilson, RAL 1/31 How do we detect particles? Particle Types Charged (e - /K - /π - ) Photons (γ) Electromagnetic

More information

Experimental Particle Physics

Experimental Particle Physics Experimental Particle Physics Particle Interactions and Detectors Lecture 2 2nd May 2014 Fergus Wilson, RAL 1/31 How do we detect particles? Particle Types Charged (e - /K - /π - ) Photons (γ) Electromagnetic

More information

7 Particle Identification. Detectors for Particle Physics Manfred Krammer Institute of High Energy Physics, Vienna, Austria

7 Particle Identification. Detectors for Particle Physics Manfred Krammer Institute of High Energy Physics, Vienna, Austria 7 Particle Identification Detectors for Particle Physics Manfred Krammer Institute of High Energy Physics, Vienna, Austria 7.0 Content 7.1 Methods for Particle Identification 7.2 Mass of Charged Particles

More information

AIM AIM. Study of Rare Interactions. Discovery of New High Mass Particles. Energy 500GeV High precision Lots of events (high luminosity) Requirements

AIM AIM. Study of Rare Interactions. Discovery of New High Mass Particles. Energy 500GeV High precision Lots of events (high luminosity) Requirements AIM AIM Discovery of New High Mass Particles Requirements Centre-of-Mass energy > 1000GeV High Coverage Study of Rare Interactions Requirements Energy 500GeV High precision Lots of events (high luminosity)

More information

Detectors & Beams. Giuliano Franchetti and Alberica Toia Goethe University Frankfurt GSI Helmholtzzentrum für Schwerionenforschung

Detectors & Beams. Giuliano Franchetti and Alberica Toia Goethe University Frankfurt GSI Helmholtzzentrum für Schwerionenforschung Detectors & Beams Giuliano Franchetti and Alberica Toia Goethe University Frankfurt GSI Helmholtzzentrum für Schwerionenforschung Pro-seminar Winter Semester 2015-16 DPG Spring Meeting Giuliano Franchetti

More information

Detectors for Particle Physics. Lecture 2: Drift detectors Muon detectors MWPC, CSC, RPC, TRT, TPC, Cherenkov

Detectors for Particle Physics. Lecture 2: Drift detectors Muon detectors MWPC, CSC, RPC, TRT, TPC, Cherenkov Detectors for Particle Physics Lecture 2: Drift detectors Muon detectors MWPC, CSC, RPC, TRT, TPC, Cherenkov Outline Lecture 1: Collider detectors Charged particles in a magnetic field Silicon detectors

More information

Nuclear and Particle Physics 4b Physics of the Quark Gluon Plasma

Nuclear and Particle Physics 4b Physics of the Quark Gluon Plasma Nuclear and Particle Physics 4b Physics of the Quark Gluon Plasma Goethe University Frankfurt GSI Helmholtzzentrum für Schwerionenforschung Lectures and Exercise Summer Semester 2016 1 Organization Language:

More information

EP228 Particle Physics

EP228 Particle Physics EP8 Particle Physics Topic 4 Particle Detectors Department of Engineering Physics University of Gaziantep Course web page www.gantep.edu.tr/~bingul/ep8 Oct 01 Page 1 Outline 1. Introduction. Bubble Chambers

More information

Experimental Particle Physics

Experimental Particle Physics Experimental Particle Physics Particle Interactions and Detectors 20th February 2007 Fergus Wilson, RAL 1 How do we detect Particles? Particle Types Charged (e - /K - /π - ) Photons (γ) Electromagnetic

More information

Identifying Particle Trajectories in CMS using the Long Barrel Geometry

Identifying Particle Trajectories in CMS using the Long Barrel Geometry Identifying Particle Trajectories in CMS using the Long Barrel Geometry Angela Galvez 2010 NSF/REU Program Physics Department, University of Notre Dame Advisor: Kevin Lannon Abstract The Compact Muon Solenoid

More information

Components of a generic collider detector

Components of a generic collider detector Lecture 24 Components of a generic collider detector electrons - ionization + bremsstrahlung photons - pair production in high Z material charged hadrons - ionization + shower of secondary interactions

More information

The ATLAS Detector - Inside Out Julia I. Hofmann

The ATLAS Detector - Inside Out Julia I. Hofmann The ATLAS Detector - Inside Out Julia I. Hofmann KIP Heidelberg University Outline: 1st lecture: The Detector 2nd lecture: The Trigger 3rd lecture: The Analysis (mine) Motivation Physics Goals: Study Standard

More information

Tracking at the LHC. Pippa Wells, CERN

Tracking at the LHC. Pippa Wells, CERN Tracking at the LHC Aims of central tracking at LHC Some basics influencing detector design Consequences for LHC tracker layout Measuring material before, during and after construction Pippa Wells, CERN

More information

CMS: Tracking in a State of Art Experiment

CMS: Tracking in a State of Art Experiment Novel Tracking Detectors CMS: Tracking in a State of Art Experiment Luigi Moroni INFN Milano-Bicocca Introduction to Tracking at HE Will try to give you some ideas about Tracking in a modern High Energy

More information

Detection methods in particle physics

Detection methods in particle physics Detection methods in particle physics in most modern experiments look for evidence of quite rare events - creation of new particles - decays particles have short life times and move rapidly need detectors

More information

Part II: Detectors. Peter Schleper Universität Hamburg

Part II: Detectors. Peter Schleper Universität Hamburg Part II: Detectors Peter Schleper Universität Hamburg 30.05.2018 Outline of the lecture: 1. Overview on detectors 2. Particle interactions with matter 3. Scintillators and photon detectors 4. Semiconductor

More information

08 - Miscellaneous and historical detectors

08 - Miscellaneous and historical detectors 08 - Miscellaneous and historical detectors Jaroslav Adam Czech Technical University in Prague Version 2 Jaroslav Adam (CTU, Prague) DPD_08, Miscellaneous and historical detectors Version 2 1 / 25 Streamer

More information

Particle Detectors A brief introduction with emphasis on high energy physics applications

Particle Detectors A brief introduction with emphasis on high energy physics applications Particle Detectors A brief introduction with emphasis on high energy physics applications TRIUMF Summer Institute 2006 July 10-21 2006 Lecture I measurement of ionization and position Lecture II scintillation

More information

PERFORMANCE OF THE ATLAS MUON TRIGGER IN RUN 2

PERFORMANCE OF THE ATLAS MUON TRIGGER IN RUN 2 PERFORMANCE OF THE ATLAS MUON TRIGGER IN RUN 2 M.M. Morgenstern On behalf of the ATLAS collaboration Nikhef, National institute for subatomic physics, Amsterdam, The Netherlands E-mail: a marcus.matthias.morgenstern@cern.ch

More information

electrons out of, or ionize, material in their paths as they pass. Such radiation is known as

electrons out of, or ionize, material in their paths as they pass. Such radiation is known as Detecting radiation It is always possible to detect charged particles moving through matter because they rip electrons out of, or ionize, material in their paths as they pass. Such radiation is known as

More information

Signals in Particle Detectors (1/2?)

Signals in Particle Detectors (1/2?) Signals in Particle Detectors (1/2?) Werner Riegler, CERN CERN Detector Seminar, 5.9.2008 The principle mechanisms and formulas for signal generation in particle detectors are reviewed. As examples the

More information

Muon reconstruction performance in ATLAS at Run-2

Muon reconstruction performance in ATLAS at Run-2 2 Muon reconstruction performance in ATLAS at Run-2 Hannah Herde on behalf of the ATLAS Collaboration Brandeis University (US) E-mail: hannah.herde@cern.ch ATL-PHYS-PROC-205-2 5 October 205 The ATLAS muon

More information

Part II. Momentum Measurement in B Field. Contribution from Multiple Scattering. Relative Momentum Error

Part II. Momentum Measurement in B Field. Contribution from Multiple Scattering. Relative Momentum Error Part II Momentum Measurement in B Field Momentum is determined by measurement of track curvature κ = 1 ρ in B field: Use of Track Detectors for Momentum Measurement Gas Detectors - Proportional Chamber

More information

The Physics of Particle Detectors

The Physics of Particle Detectors The Physics of Particle Detectors Lecture Notes WS 2010/11 Erika Garutti (DESY) Heinz Graafsma (XFEL) 1 On tools and instrumentation New directions in science are launched by new tools much more often

More information

Particle Detectors : an introduction. Erik Adli/Are Strandlie, University of Oslo, August 2017, v2.3

Particle Detectors : an introduction. Erik Adli/Are Strandlie, University of Oslo, August 2017, v2.3 Particle Detectors : an introduction Erik Adli/Are Strandlie, University of Oslo, August 2017, v2.3 Experimental High-Energy Particle Physics Event rate in ATLAS : N = L x (pp) 10 9 interactions/s Mostly

More information

PHY492: Nuclear & Particle Physics. Lecture 25. Particle Detectors

PHY492: Nuclear & Particle Physics. Lecture 25. Particle Detectors PHY492: Nuclear & Particle Physics Lecture 25 Particle Detectors http://pdg.lbl.gov/2006/reviews/contents_sports.html S(T ) = dt dx nz = ρa 0 Units for energy loss Minimum ionization in thin solids Z/A

More information

Particle Acceleration

Particle Acceleration Nuclear and Particle Physics Junior Honours: Particle Physics Lecture 4: Accelerators and Detectors February 19th 2007 Particle Beams and Accelerators Particle Physics Labs Accelerators Synchrotron Radiation

More information

4. LHC experiments Marcello Barisonzi LHC experiments August

4. LHC experiments Marcello Barisonzi LHC experiments August 4. LHC experiments 1 Summary from yesterday: Hadron colliders play an important role in particle physics discory but also precision measurements LHC will open up TeV energy range new particles with 3-5

More information

Future prospects for the measurement of direct photons at the LHC

Future prospects for the measurement of direct photons at the LHC Future prospects for the measurement of direct photons at the LHC David Joffe on behalf of the and CMS Collaborations Southern Methodist University Department of Physics, 75275 Dallas, Texas, USA DOI:

More information

Momentum Measurement in B Field. Part II. Relative Momentum Error. Contribution from Multiple Scattering

Momentum Measurement in B Field. Part II. Relative Momentum Error. Contribution from Multiple Scattering Part II Momentum Measurement in B Field Momentum is determined by measurement of track curvature κ = 1 ρ in B field: Use of Track Detectors for Momentum Measurement Gas Detectors - Proportional Chamber

More information

Study of the Optimum Momentum Resolution in the. CMS Muon System

Study of the Optimum Momentum Resolution in the. CMS Muon System Study of the Optimum Momentum Resolution in the CMS Muon System T. McDonald Oklahoma Baptist University, Shawnee, OK D. Acosta University of Florida, Gainesville, FL July 24, 2000 Abstract This project

More information

Detectors for High Energy Physics

Detectors for High Energy Physics Detectors for High Energy Physics Ingrid-Maria Gregor, DESY DESY Summer Student Program 2017 Hamburg July 26th/27th Disclaimer Particle Detectors are very complex, a lot of physics is behind the detection

More information

Information about the T9 beam line and experimental facilities

Information about the T9 beam line and experimental facilities Information about the T9 beam line and experimental facilities The incoming proton beam from the PS accelerator impinges on the North target and thus produces the particles for the T9 beam line. The collisions

More information

etectors for High Energy Physics

etectors for High Energy Physics 3rd WORKSHOP ON PARTICLE PHYSICS NATIONAL CENTRE FOR PHYSICS (QUAID-I-AZAM UNIVERSITY) etectors for High Energy Physics Lecture II General Detector Concepts Gigi Rolandi Cern Geneva - Switzerland http://rolandi.home.cern.ch/rolandi/

More information

Event Reconstruction: Tracking

Event Reconstruction: Tracking Event Reconstruction: Tracking Few points Most everyone did not get the randomness part of homework one correctly. If you want to generate a random number from a distribution you can just generate a random

More information

Experimental Particle Physics Informal Lecture & Seminar Series Lecture 1 Detectors Overview

Experimental Particle Physics Informal Lecture & Seminar Series Lecture 1 Detectors Overview Experimental Particle Physics Informal Lecture & Seminar Series 2013 Lecture 1 Detectors Overview Detectors in Particle Physics Let s talk about detectors for a bit. Let s do this with Atlas and CMS in

More information

Tracking properties of the ATLAS Transition Radiation Tracker (TRT)

Tracking properties of the ATLAS Transition Radiation Tracker (TRT) 2 racking properties of the ALAS ransition Radiation racker (R) 3 4 5 6 D V Krasnopevtsev on behalf of ALAS R collaboration National Research Nuclear University MEPhI (Moscow Engineering Physics Institute),

More information

Calorimeter for detection of the high-energy photons

Calorimeter for detection of the high-energy photons Calorimeter for detection of the high-energy photons 26.06.2012 1 1. Introduction 2 1. Introduction 2. Theory of Electromagnetic Showers 3. Types of Calorimeters 4. Function Principle of Liquid Noble Gas

More information

arxiv: v1 [hep-ex] 6 Jul 2007

arxiv: v1 [hep-ex] 6 Jul 2007 Muon Identification at ALAS and Oliver Kortner Max-Planck-Institut für Physik, Föhringer Ring, D-005 München, Germany arxiv:0707.0905v1 [hep-ex] Jul 007 Abstract. Muonic final states will provide clean

More information

2 ATLAS operations and data taking

2 ATLAS operations and data taking The ATLAS experiment: status report and recent results Ludovico Pontecorvo INFN - Roma and CERN on behalf of the ATLAS Collaboration 1 Introduction The ATLAS experiment was designed to explore a broad

More information

The Why, What, and How? of the Higgs Boson

The Why, What, and How? of the Higgs Boson Modern Physics The Why, What, and How? of the Higgs Boson Sean Yeager University of Portland 10 April 2015 Outline Review of the Standard Model Review of Symmetries Symmetries in the Standard Model The

More information

Lecture 2 & 3. Particles going through matter. Collider Detectors. PDG chapter 27 Kleinknecht chapters: PDG chapter 28 Kleinknecht chapters:

Lecture 2 & 3. Particles going through matter. Collider Detectors. PDG chapter 27 Kleinknecht chapters: PDG chapter 28 Kleinknecht chapters: Lecture 2 & 3 Particles going through matter PDG chapter 27 Kleinknecht chapters: 1.2.1 for charged particles 1.2.2 for photons 1.2.3 bremsstrahlung for electrons Collider Detectors PDG chapter 28 Kleinknecht

More information

FATRAS. A Novel Fast Track Simulation Engine for the ATLAS Experiment. Sebastian Fleischmann on behalf of the ATLAS Collaboration

FATRAS. A Novel Fast Track Simulation Engine for the ATLAS Experiment. Sebastian Fleischmann on behalf of the ATLAS Collaboration A Novel Fast Track Engine for the ATLAS Experiment on behalf of the ATLAS Collaboration Physikalisches Institut University of Bonn February 26th 2010 ACAT 2010 Jaipur, India 1 The ATLAS detector Fast detector

More information

Compact Muon Solenoid Surapat Ek-In École Polytechnique Fédérale de Lausanne

Compact Muon Solenoid Surapat Ek-In École Polytechnique Fédérale de Lausanne Compact Muon Solenoid Surapat Ek-In École Polytechnique Fédérale de Lausanne Outline Introduction Electromagnetic Calorimeter Muon Chamber Application Conclusion Outline 2 LHC Experiments ~ 100 m https://cms.cern.ch/

More information

Expected Performance of the ATLAS Inner Tracker at the High-Luminosity LHC

Expected Performance of the ATLAS Inner Tracker at the High-Luminosity LHC Expected Performance of the ATLAS Inner Tracker at the High-Luminosity LHC Matthias Hamer on behalf of the ATLAS collaboration Introduction The ATLAS Phase II Inner Tracker Expected Tracking Performance

More information

Modern Accelerators for High Energy Physics

Modern Accelerators for High Energy Physics Modern Accelerators for High Energy Physics 1. Types of collider beams 2. The Tevatron 3. HERA electron proton collider 4. The physics from colliders 5. Large Hadron Collider 6. Electron Colliders A.V.

More information

Particle Physics Design Group Studies Worksheet. Particle Physics Experiments: Colliders vs Fixed Targets

Particle Physics Design Group Studies Worksheet. Particle Physics Experiments: Colliders vs Fixed Targets January 2016 1 Particle Physics Design Group Studies Worksheet Introduction In this worksheet a number of topics are introduced which are relevant to the design study you will be performing in group studies.

More information

Photons: Interactions

Photons: Interactions Photons: Interactions Photons appear in detector systems as primary photons, created in Bremsstrahlung and de-excitations Photons are also used for medical applications, both imaging and radiation treatment.

More information

Outline, measurement of position

Outline, measurement of position Outline, measurement of position Proportional and drift chambers: issues: field shape, geometry of the chamber, gas mixture, gas gain, resolution, drift velocity and drift time, Lorentz angle. Cathode

More information

Dario Barberis Evaluation of GEANT4 Electromagnetic and Hadronic Physics in ATLAS

Dario Barberis Evaluation of GEANT4 Electromagnetic and Hadronic Physics in ATLAS Dario Barberis Evaluation of GEANT4 Electromagnetic and Hadronic Physics in ATLAS LC Workshop, CERN, 15 Nov 2001 Dario Barberis Genova University/INFN 1 The ATLAS detector LC Workshop, CERN, 15 Nov 2001

More information

Commissioning of the ATLAS LAr Calorimeter

Commissioning of the ATLAS LAr Calorimeter Commissioning of the ATLAS LAr Calorimeter S. Laplace (CNRS/LAPP) on behalf of the ATLAS Liquid Argon Calorimeter Group Outline: ATLAS in-situ commissioning steps Introduction to the ATLAS LAr Calorimeter

More information

Detectors for High Energy Physics

Detectors for High Energy Physics Detectors for High Energy Physics Ingrid-Maria Gregor, DESY DESY Summer Student Program 2017 Hamburg July 26th/27th Overview I. Detectors for Particle Physics II. Interaction with Matter } Wednesday III.

More information

Performance of muon and tau identification at ATLAS

Performance of muon and tau identification at ATLAS ATL-PHYS-PROC-22-3 22/2/22 Performance of muon and tau identification at ATLAS On behalf of the ATLAS Collaboration University of Oregon E-mail: mansoora.shamim@cern.ch Charged leptons play an important

More information

Appendix A2. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France.

Appendix A2. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France. Appendix A. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France. Prepared by: Arash Akbari-Sharbaf Why Build Accelerators? Probe deeper From

More information

Introduction. Tau leptons. SLHC. Summary. Muons. Scott S. Snyder Brookhaven National Laboratory ILC Physics and Detector workshop Snowmass, Aug 2005

Introduction. Tau leptons. SLHC. Summary. Muons. Scott S. Snyder Brookhaven National Laboratory ILC Physics and Detector workshop Snowmass, Aug 2005 Leptons and Photons at the (S)LHC Scott S. Snyder Brookhaven National Laboratory ILC Physics and Detector workshop Snowmass, Aug 2005 Outline: Introduction. e/γ. Muons. Tau leptons. SLHC. Summary. Leptons

More information

Design of the new ATLAS Inner Tracker for the High Luminosity LHC era

Design of the new ATLAS Inner Tracker for the High Luminosity LHC era Design of the new ATLAS Inner Tracker for the High Luminosity LHC era Trevor Vickey on behalf of the ATLAS Collaboration University of Sheffield, United Kingdom July 3, 2017 19th iworid Krakow, Poland

More information

Alignment of the ATLAS Inner Detector

Alignment of the ATLAS Inner Detector Alignment of the ATLAS Inner Detector Roland Härtel - MPI für Physik on behalf of the ATLAS inner detector alignment group Outline: LHC / ATLAS / Inner Detector Alignment approaches Results Large Hadron

More information

PHYS 3446 Lecture #12

PHYS 3446 Lecture #12 PHYS 3446 Lecture #12 Wednesday, Oct. 18, 2006 Dr. 1. Particle Detection Ionization Detectors MWPC Scintillation Counters Time of Flight 1 Announcements Next LPCC Workshop Preparation work Each group to

More information

Measurement of Tritium in Helium

Measurement of Tritium in Helium detect and identify Measurement of Tritium in Helium Dr. Alfred Klett Berthold Technologies, Bad Wildbad, Germany 22 nd Annual Air Monitoring Users Group (AMUG) Meeting Palace Station Hotel, Las Vegas,

More information

PARTICLE ACCELERATORS

PARTICLE ACCELERATORS VISUAL PHYSICS ONLINE PARTICLE ACCELERATORS Particle accelerators are used to accelerate elementary particles to very high energies for: Production of radioisotopes Probing the structure of matter There

More information

Particle Energy Loss in Matter

Particle Energy Loss in Matter Particle Energy Loss in Matter Charged particles loose energy when passing through material via atomic excitation and ionization These are protons, pions, muons, The energy loss can be described for moderately

More information

Detectors in Nuclear and High Energy Physics. RHIG summer student meeting June 2014

Detectors in Nuclear and High Energy Physics. RHIG summer student meeting June 2014 Detectors in Nuclear and High Energy Physics RHIG summer student meeting June 2014 Physics or Knowledge of Nature Experimental Data Analysis Theory ( application) Experimental Data Initial Conditions /

More information

Particle Energy Loss in Matter

Particle Energy Loss in Matter Particle Energy Loss in Matter Charged particles, except electrons, loose energy when passing through material via atomic excitation and ionization These are protons, pions, muons, The energy loss can

More information

Alignment of the ATLAS Inner Detector. Oscar Estrada Pastor (IFIC-CSIC)

Alignment of the ATLAS Inner Detector. Oscar Estrada Pastor (IFIC-CSIC) Alignment of the ATLAS Inner Detector Oscar Estrada Pastor (IFIC-CSIC) 1 Summary table Introduction. ATLAS: the detector. Alignment of the Inner Detector. Weak modes. Weak modes using J/Psi resonance.

More information

Physics potential of ATLAS upgrades at HL-LHC

Physics potential of ATLAS upgrades at HL-LHC M.Testa on behalf of the ATLAS Collaboration INFN LNF, Italy E-mail: marianna.testa@lnf.infn.it ATL-PHYS-PROC-207-50 22 September 207 The High Luminosity-Large Hadron Collider (HL-LHC) is expected to start

More information

Recent CMS results on heavy quarks and hadrons. Alice Bean Univ. of Kansas for the CMS Collaboration

Recent CMS results on heavy quarks and hadrons. Alice Bean Univ. of Kansas for the CMS Collaboration Recent CMS results on heavy quarks and hadrons Alice Bean Univ. of Kansas for the CMS Collaboration July 25, 2013 Outline CMS at the Large Hadron Collider Cross section measurements Search for state decaying

More information

Ionization Energy Loss of Charged Projectiles in Matter. Steve Ahlen Boston University

Ionization Energy Loss of Charged Projectiles in Matter. Steve Ahlen Boston University Ionization Energy Loss of Charged Projectiles in Matter Steve Ahlen Boston University Almost all particle detection and measurement techniques in high energy physics are based on the energy deposited by

More information

CMS Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

CMS Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS NOTE 1996/005 The Compact Muon Solenoid Experiment CMS Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Performance of the Silicon Detectors for the

More information

Risultati dell esperimento ATLAS dopo il run 1 di LHC. C. Gemme (INFN Genova), F. Parodi (INFN/University Genova) Genova, 28 Maggio 2013

Risultati dell esperimento ATLAS dopo il run 1 di LHC. C. Gemme (INFN Genova), F. Parodi (INFN/University Genova) Genova, 28 Maggio 2013 Risultati dell esperimento ATLAS dopo il run 1 di LHC C. Gemme (INFN Genova), F. Parodi (INFN/University Genova) Genova, 28 Maggio 2013 1 LHC physics Standard Model is a gauge theory based on the following

More information

Status and Performance of the ATLAS Experiment

Status and Performance of the ATLAS Experiment Status and Performance of the ATLAS Experiment P. Iengo To cite this version: P. Iengo. Status and Performance of the ATLAS Experiment. 15th International QCD Conference (QCD 10), Jun 2010, Montpellier,

More information

Fall Quarter 2010 UCSB Physics 225A & UCSD Physics 214 Homework 1

Fall Quarter 2010 UCSB Physics 225A & UCSD Physics 214 Homework 1 Fall Quarter 2010 UCSB Physics 225A & UCSD Physics 214 Homework 1 Problem 2 has nothing to do with what we have done in class. It introduces somewhat strange coordinates called rapidity and pseudorapidity

More information

ATLAS Experiment at Large Hadron Collider. Richard Stroynowski SMU

ATLAS Experiment at Large Hadron Collider. Richard Stroynowski SMU ATLAS Experiment at Large Hadron Collider Richard Stroynowski SMU Fundamental particles and forces Standard Model Glashow, Salam, Weinberg Nobel Prize 1979 Matter - 3 families of quarks and leptons Forces

More information

A NEW TECHNIQUE FOR DETERMINING CHARGE AND MOMENTUM OF ELECTRONS AND POSITRONS USING CALORIMETRY AND SILICON TRACKING. Qun Fan & Arie Bodek

A NEW TECHNIQUE FOR DETERMINING CHARGE AND MOMENTUM OF ELECTRONS AND POSITRONS USING CALORIMETRY AND SILICON TRACKING. Qun Fan & Arie Bodek A NEW TECHNIQUE FOR DETERMINING CHARGE AND MOMENTUM OF ELECTRONS AND POSITRONS USING CALORIMETRY AND SILICON TRACKING Qun Fan & Arie Bodek Department of Physics and Astronomy University of Rochester Rochester,

More information

Neutrino Detectors for future facilities - III

Neutrino Detectors for future facilities - III Neutrino Detectors for future facilities - III Mark Messier Indiana University NUFACT Summer school Benasque, Spain June 16-18, 2008 1 Neutrino detectors optimized for muons reconstruction νμ νμ and the

More information

Particle Detectors. Summer Student Lectures 2010 Werner Riegler, CERN, History of Instrumentation History of Particle Physics

Particle Detectors. Summer Student Lectures 2010 Werner Riegler, CERN, History of Instrumentation History of Particle Physics Particle Detectors Summer Student Lectures 2010 Werner Riegler, CERN, werner.riegler@cern.ch History of Instrumentation History of Particle Physics The Real World of Particles Interaction of Particles

More information

Discovery of the W and Z 0 Bosons

Discovery of the W and Z 0 Bosons Discovery of the W and Z 0 Bosons Status of the Standard Model ~1980 Planning the Search for W ± and Z 0 SppS, UA1 and UA2 The analyses and the observed events First measurements of W ± and Z 0 masses

More information

A glance at LHC Detector Systems. Burkhard Schmidt, CERN PH-DT

A glance at LHC Detector Systems. Burkhard Schmidt, CERN PH-DT A glance at LHC Detector Systems Burkhard Schmidt, CERN PH-DT The Enter LHC a New accelerator Era in Fundamental and the detectors Science Start-up of the Large Hadron Collider (LHC), one of the largest

More information

Particle Identification: Computer reconstruction of a UA1 event with an identified electron as a candidate for a W >eν event

Particle Identification: Computer reconstruction of a UA1 event with an identified electron as a candidate for a W >eν event Particle Identification: Computer reconstruction of a UA1 event with an identified electron as a candidate for a W >eν event Valuable particles at hadron colliders are the electron e ± for W ±! e ± & Z

More information

Alignment of the ATLAS Inner Detector tracking system

Alignment of the ATLAS Inner Detector tracking system Alignment of the ALAS Inner Detector tracking system Oleg BRAND University of Oxford and University of Göttingen E-mail: oleg.brandt@cern.ch he Large Hadron Collider (LHC) at CERN is the world largest

More information

Building a Tracking Detector for the P2 Experiment

Building a Tracking Detector for the P2 Experiment Building a Tracking Detector for the P Experiment DPG Frühjahrstagung, Hamburg 016 Marco Zimmermann Institute for Nuclear Physics March 3, 016 The P Experiment: Overview The Idea Precision measurement

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and Astrophysics PHY-30 Dr. E. Rizvi Lecture 4 - Detectors Binding Energy Nuclear mass MN less than sum of nucleon masses Shows nucleus is a bound (lower energy) state for this configuration

More information

Analysis of a Potential Tracking Algorithm for the SLHC Upgrade

Analysis of a Potential Tracking Algorithm for the SLHC Upgrade Analysis of a Potential Tracking Algorithm for the SLHC Upgrade Rachael Creager Michael Swift 2012 NSF/REU Program Physics Department, University of Notre Dame Advisors: Professor Michael Hildreth Professor

More information

Content. Complex Detector Systems. Calorimeters Velocity Determination. Semiconductor detectors. Scintillation detectors. Cerenkov detectors

Content. Complex Detector Systems. Calorimeters Velocity Determination. Semiconductor detectors. Scintillation detectors. Cerenkov detectors Semiconductor detectors Semiconductor basics Sensor concepts Readout electronics Scintillation detectors General characteristics Organic materials Inorganic materials Light output response Calorimeters

More information

Status of the physics validation studies using Geant4 in ATLAS

Status of the physics validation studies using Geant4 in ATLAS Status of the physics validation studies using Geant4 in ATLAS On behalf of the ATLAS Geant4 Validation Team A.Dell Acqua CERN EP/SFT, Geneva, CH dellacqu@mail.cern.ch The new simulation for the ATLAS

More information

A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.)

A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.) Physics 557 Lecture 7 A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.) First came the study of the debris from cosmic rays (the God-given particle

More information

Instrumentation for Flavor Physics - Lesson I

Instrumentation for Flavor Physics - Lesson I Instrumentation for Flavor Physics - Lesson I! Fisica delle Particelle Università di Milano a.a 2013/2014 Outline Lesson I Introduction Basics for detector design Vertex detectors Lesson II Tracking detectors

More information

Electromagnetic Calorimeter Calibration: Getting Rid of the Trash

Electromagnetic Calorimeter Calibration: Getting Rid of the Trash Gamble 1 Electromagnetic Calorimeter Calibration: Getting Rid of the Trash A Senior Project presented to the Faculty of the Department of Physics California Polytechnic State University, San Luis Obispo

More information

Walter Hopkins. February

Walter Hopkins. February B s µ + µ Walter Hopkins Cornell University February 25 2010 Walter Hopkins (Cornell University) Bs µ + µ February 25 2010 1 / 14 Motivation B s µ + µ can only occur through higher order diagrams in Standard

More information

Efficiency of the CMS Level-1 Trigger to. Selected Physics Channels

Efficiency of the CMS Level-1 Trigger to. Selected Physics Channels Efficiency of the CMS Level-1 Trigger to Selected Physics Channels C. Sulkko University of Colorado, Boulder, CO D. Acosta University of Florida, Gainesville, FL Abstract The efficiency of the Compact

More information

The achievements of the CERN proton antiproton collider

The achievements of the CERN proton antiproton collider The achievements of the CERN proton antiproton collider Luigi DiLella Scuola Normale Superiore, Pisa, Italy Motivation of the project The proton antiproton collider UA1 and UA2 detectors Discovery of the

More information

Examples for experiments that can be done at the T9 beam line

Examples for experiments that can be done at the T9 beam line Examples for experiments that can be done at the T9 beam line Example 1: Use muon tomography to look for hidden chambers in pyramids (2016 winning proposal, Pyramid hunters) You may know computer tomography

More information

Chapter 2 Experimental Apparatus

Chapter 2 Experimental Apparatus Chapter 2 Experimental Apparatus 2.1 The Large Hadron Collider 2.1.1 Design The Large Hadron Collider (LHC) [1] was constructed between 1998 2008 at CERN, the European Centre for Nuclear Research. It occupies

More information

7. Particle identification

7. Particle identification 7. Particle identification in general, momentum of a particle measured in a spectrometer and another observable is used to identity the species velocity time-of-flight Cherenkov threshold transition radiation

More information