Calorimeter for detection of the high-energy photons

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Calorimeter for detection of the high-energy photons"

Transcription

1 Calorimeter for detection of the high-energy photons

2 1. Introduction 2 1. Introduction 2. Theory of Electromagnetic Showers 3. Types of Calorimeters 4. Function Principle of Liquid Noble Gas Calorimeters 5. Energy Resolution of Sampling Calorimeters 6. ATLAS ECAL 7. Summary 8. References

3 1. Introduction 3 Calorimetry = Energie measurement using total absorption Calorimeter = Total absorptive shower counter With their help one can measure Energy, Location, Direction of high-energy Particles

4 1. Introduction 4 Calorimetry = Energie measurement using total Absorption Calorimeter = Total absorptive shower counter With their help one can measure Energy, Location, Direction of high-energy Particles Calorimetry can be used for detection of: charged particles (e ±, hadrons) neutral particles (γ, n ) Sole direct possibility to receive any kinematic information about neutral particles

5 1. Introduction 5 Energy loss of photons in matter : Photo effect (E γ < 1 MeV) Compton effect (1-10 MeV) Pair production (E γ >> 5 MeV) For high-energy photons is practically only pair production important

6 1. Introduction 6 Energy loss of e + and e - in matter: Cherenkov radiation Pb Bremsstrahlung Ionization For high-energy e - and e + is practically only Bremsstrahlung important

7 2. Theory of Electromagnetic Showers 7 Basic mechanisms of Calorimetry: (e ±, γ) (Hadrons) electromagnetic shower hadronic shower Particle shower in Calorimeter: Electromagnetic Shower (Monte Carlo Simulation)

8 2. Theory of Electromagnetic Showers 8 Basic mechanisms of Calorimetry: (e ±, γ) (Hadrons) electromagnetic shower hadronic shower Responsible processes: Pair production [γ] Bremsstrahlung [e ± ] Responsible process: Strong interaction (Inelastic collisions of Hadrons with nuclei of absorber material)

9 2. Theory of Electromagnetic Showers 9 Basic mechanisms of Calorimetry: (e ±, γ) (Hadrons) electromagnetic shower hadronic shower Responsible processes: Pair production [γ] Bremsstrahlung [e ± ] Responsible process: Strong interaction (Inelastic collisions of hadrons with nuclei of absorber material) eˉ- γ shower counter (ECAL) Hadron shower counter (HCAL)

10 2. Theory of Electromagnetic Showers Basic mechanisms of Calorimetry: 10 (e ±, γ) electromagnetic shower Responsible processes: Pair production [γ] Bremsstrahlung [e ± ] IMPORTANT FOR: H γ γ One important signature for the Higgs-Boson is a pair of high-energy photons eˉ- γ shower counter (ECAL)

11 2. Theory of Electromagnetic Showers 11 Simple shower model: alternately: Pair production Bremsstrahlung.. Process repeats until particle energies falls below E C Afterwards energy loss only through ionization Shower ceases rapidly Energy measurement principle: Shower particles are detected Sum of signals produced by all particles is proportional to the energy of the incident particle

12 2. Theory of Electromagnetic Showers 12 E 0 Shower maximum (at E E C ) n max n(x 0 )

13 2. Theory of Electromagnetic Showers 13 E 0 Shower maximum (at E E C ) Radiation length X 0 : X 0 1 n max ~ 2 2 ρ 4α Z r0 ln ρ After passage of one X 0 the e ± has only 1 e 1 1/3 2 ( Z ) Z Withal it emits on average one γ Brems with energy n(x 0 ) of its primary energy E 1 E < E γ < brems e E

14 2. Theory of Electromagnetic Showers 14 E 0 Shower maximum (at E E C ) Radiation length X 0 : X 0 1 n max ~ 2 2 ρ 4α Z r0 ln ρ 1 1/3 2 ( Z ) Z n(x 0 ) 1 After passage of one X 0 the e ± has only of its primary energy E e 1 Withal it emits on average one γ Brems with energy E < E γ < E brems e 9 High-energy photon in matter produces e + - e - pair after X 0 X 0 7

15 2. Theory of Electromagnetic Showers 15 E 0 Shower maximum (at E E C ) n(x 0 ) n max Critical Energy E C : de dx Ion de = dx Brems E c 580 ~ MeV Z Energy by which for e ± the energy loss via ionization and Bremsstrahlung will be equal. The shower begins to cease.

16 2. Theory of Electromagnetic Showers 16 E 0 Shower maximum (at E E C ) n max = ln E 0 ln ln 2 E c Critical Energy E C : de dx n max Brems Longitudinal shower depth => Calorimeter size increases only logarithmically with the primary energy of the incident particle! Ion de = dx E c 580 ~ Energy by which for e ± the energy loss via ionization and Bremsstrahlung will be equal. The shower begins to cease. Z n(x 0 ) MeV

17 2. Theory of Electromagnetic Showers 17 E 0 Shower maximum (at E E C ) n max = ln E 0 ln ln 2 E c n max n(x 0 ) Another characteristic parameter Average energy perparticle after n generations of X 0 : E E 2 0 ( n) = n Number of particles at shower maximum: E N ( n ) = 0 max E c Total number of particles in shower after n generations: N( n) = 2 n

18 2. Theory of Electromagnetic Showers 18 Transverse shower development: Longitudinal shower development: e-m particle in Pb R M 21MeV E c X 0 R(90%) = 1 R M R(95%) = 2 R M R(99%) = 3 R M R L L(95%) = n max Z (X0)

19 2. Theory of Electromagnetic Showers 19 Typical values for X 0, E C and R M of materials used in calorimeter

20 3. Types of Calorimeters 20 Homogeneous Calorimeters: absorber is simultaneously active medium Crystal and plastic scintillators Liquid scintillator detectors Lead glass Cherenkov counter + Good energy resolution Not optimal spatial resolution Difficult segmentation (detection principle is light)

21 3. Types of Calorimeters 21 Sampling Calorimeters: Alternating layers of absorber and active material Sandwich of absorbers and scintillators Sandwich of absorbers and gas ionization chambers Liquid noble gas calorimeters Reduced energy resolution + More flexible in design trough segmentation + More compact dimensions Only part of the deposited energy is actually detected => sampling

22 3. Types of Calorimeters 22 detection principle is light Possible setups of Sampling-Calorimeters detection principle is ionization

23 4. Liquid Noble Gas Calorimeters 23 Basic principle Zählgas Ionization chamber two conducting electrodes with high voltage between filled with electric neutral gas E 0 gas ionized by incident radiation created ions and dissociated electrons move to the electrodes

24 4. Liquid Noble Gas Calorimeters 24 Liquid Gas Calorimeter A row of Ionization chambers Liquid Gas as active medium Absorber plates used as electrodes Advantage: good spatial resolution Biggest disadvantage : long accumulation time prevention of high count rates Solution?

25 4. Liquid Noble Gas Calorimeters 25 Accordion Calorimeter Short charge accumulation time (nsrange) short drift ways => short delay times, high count rates Various segmentation possible. => gathering of all solid angles Very good spatial resolution Readout on the end, direct on elektrodes => minimisation of electronic noise => no dead zones

26 σ E E = 5. Energy Resolution 26 a E b c E Energy resolution of sampling calorimeters Stochastic term a statistical fluctuations of the number of shower particles fluctuations of the number of electrons crossing active layer (sampling-fluctuations) Constant term b Longitudinal leakage and transversal leakage influence Reactions before particle enter into calorimeter Inhomogeneities of detector sensitivity Calibration bugs between individual cells(it is very difficult to perfectly synchronize thousands of detector cells between them) Rauschterm c Noise of the electronic (dominates at low energies).

27 Weight: 7000 ton Magnetic field: 2T 6. ATLAS OVERVIEW 27

28 6. ATLAS CAL. SYSTEM 28 HCAL ECAL ECAL: Liquid Argon (LAr) HCAL: Lead absorbers + Plastic scintillators

29 47cm 6. ATLAS ECAL read out channels

30 6. ATLAS ECAL 30 Energy Resolution σ E E = 10,6% E[ GeV ] 170MeV 0,4% E[ GeV ] Corresponds very good with expectations from simulation Good linearity between 20 GeV and 250 GeV. Better than 0.2 %

31 7. Summary 31 Electromagnetic calorimeters measure the energy of high-energy photons, electrons and positrons via total absorption. There is two types of calorimeters: homogeneous- and samplingcalorimeters. Absorbers: lead, steel. Active mediums: scintillators, lead glass counter, gases, liquid noble gases. In ATLAS detector (at LHC) is deployed the liquid argon sampling ECAL with an accordion geometry. With help of ATLAS ECAL one tries to detect Higgs Boson via searching for two high-energy photons (because of H γ γ )

32 8. References 32 Konrad Kleinknecht: Detektoren für die Teilchenstrahlung, 4. Auflage 2005 Claus Grupen: "Teilchendetektoren", 1993 Lecture: Teilchenphysik mit höchstenergetischen Beschleunigern Prof. Dr. Siegfried Bethke TU München Lecture: "The Physics of Particle Detectors" Prof. H.-C. Schultz-Coulon, Uni Heidelberg Particle Data Group Images:

33 Thank you 6. for ATLAS your attention!

ATLAS Hadronic Calorimeters 101

ATLAS Hadronic Calorimeters 101 ATLAS Hadronic Calorimeters 101 Hadronic showers ATLAS Hadronic Calorimeters Tile Calorimeter Hadronic Endcap Calorimeter Forward Calorimeter Noise and Dead Material First ATLAS Physics Meeting of the

More information

Experimental Methods of Particle Physics

Experimental Methods of Particle Physics Experimental Methods of Particle Physics (PHY461) Fall 015 Olaf Steinkamp 36-J- olafs@physik.uzh.ch 044 63 55763 Overview 1) Introduction / motivation measurement of particle momenta: magnetic field early

More information

Compact Muon Solenoid Surapat Ek-In École Polytechnique Fédérale de Lausanne

Compact Muon Solenoid Surapat Ek-In École Polytechnique Fédérale de Lausanne Compact Muon Solenoid Surapat Ek-In École Polytechnique Fédérale de Lausanne Outline Introduction Electromagnetic Calorimeter Muon Chamber Application Conclusion Outline 2 LHC Experiments ~ 100 m https://cms.cern.ch/

More information

Hadronic Calorimetry

Hadronic Calorimetry Hadronic Calorimetry Urs Langenegger (Paul Scherrer Institute) Fall 2014 ALEPH hadronic showers compensation detector effects neutron detection Hadronic showers simulations 50 GeV proton into segmented

More information

Hadronic Calorimetry

Hadronic Calorimetry Hadronic Calorimetry Urs Langenegger (Paul Scherrer Institute) Fall 2015 ALEPH Hadronic showers Compensation Neutron detection Hadronic showers simulations 50 GeV proton into segmented iron (simulation)

More information

Particle Detectors : an introduction. Erik Adli/Are Strandlie, University of Oslo, August 2017, v2.3

Particle Detectors : an introduction. Erik Adli/Are Strandlie, University of Oslo, August 2017, v2.3 Particle Detectors : an introduction Erik Adli/Are Strandlie, University of Oslo, August 2017, v2.3 Experimental High-Energy Particle Physics Event rate in ATLAS : N = L x (pp) 10 9 interactions/s Mostly

More information

Hadron Calorimetry at the LHC

Hadron Calorimetry at the LHC Hadron Calorimetry at the LHC 1 One of My Hats These Guys are Good 2 Hadron Calorimeters are ESSENTIAL to Measure Jets AND Jets are ESSENTIAL for Much of the LHC Physics Program Top Mass Compositeness/SUSY

More information

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. Lecture 4

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. Lecture 4 Physics 736 Experimental Methods in Nuclear-, Particle-, and Astrophysics Lecture 4 Karsten Heeger heeger@wisc.edu Homework Homework is posted on course website http://neutrino.physics.wisc.edu/teaching/phys736/

More information

The rejection of background to the H γγ process using isolation criteria based on information from the electromagnetic calorimeter and tracker.

The rejection of background to the H γγ process using isolation criteria based on information from the electromagnetic calorimeter and tracker. Available on CMS information server CMS NOTE 22/3 The Compact Muon Solenoid Experiment CMS Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland September 9, 22 The rejection of background to

More information

Information about the T9 beam line and experimental facilities

Information about the T9 beam line and experimental facilities Information about the T9 beam line and experimental facilities The incoming proton beam from the PS accelerator impinges on the North target and thus produces the particles for the T9 beam line. The collisions

More information

The reaction p(e,e'p)π 0 to calibrate the Forward and the Large Angle Electromagnetic Shower Calorimeters

The reaction p(e,e'p)π 0 to calibrate the Forward and the Large Angle Electromagnetic Shower Calorimeters The reaction p(e,e'p)π 0 to calibrate the Forward and the Large Angle Electromagnetic Shower Calorimeters M.Battaglieri, M.Anghinolfi, P.Corvisiero, A.Longhi, M.Ripani, M.Taiuti Istituto Nazionale di Fisica

More information

ATLAS E-M Calorimeter Resolution and Neural Network Based Particle Classification

ATLAS E-M Calorimeter Resolution and Neural Network Based Particle Classification ATLAS E-M Calorimeter Resolution and Neural Network Based Particle Classification Summer 2004 REU Igor Vaynman Undergraduate California Institute of Technology John Parsons Kamal Benslama Mentors Columbia

More information

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects)

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects) LECTURE 5: INTERACTION OF RADIATION WITH MATTER All radiation is detected through its interaction with matter! INTRODUCTION: What happens when radiation passes through matter? Emphasis on what happens

More information

Future prospects for the measurement of direct photons at the LHC

Future prospects for the measurement of direct photons at the LHC Future prospects for the measurement of direct photons at the LHC David Joffe on behalf of the and CMS Collaborations Southern Methodist University Department of Physics, 75275 Dallas, Texas, USA DOI:

More information

2 Particle Interaction with Matter

2 Particle Interaction with Matter Particle Interaction with Matter Detectors for Particle Physics Thomas Bergauer Institute of High Energy Physics, Vienna, Austria (slides by Manfred Krammer) .0 Content.0 Introduction.1 Charged particles.1.1

More information

LHCb Calorimetry Impact

LHCb Calorimetry Impact LHCb Calorimetry Impact Preema Pais! On behalf of the LHCb Collaboration! Workshop on the physics of HL-LHC, and perspectives at HE-LHC! November 1, 2017! THE LHCb DETECTOR Calorimetry! Located ~12.5 m

More information

Combined Calorimeters Properties Part 1.

Combined Calorimeters Properties Part 1. Combined Calorimeter Combined Calorimeters Properties Part. V. L. Morgunov DESY and ITEP HCAL meeting, DESY, July. V.L. Morgunov HCAL meeting, DESY, July. Combined Calorimeter Introduction Combined calorimeter

More information

Introduction. Tau leptons. SLHC. Summary. Muons. Scott S. Snyder Brookhaven National Laboratory ILC Physics and Detector workshop Snowmass, Aug 2005

Introduction. Tau leptons. SLHC. Summary. Muons. Scott S. Snyder Brookhaven National Laboratory ILC Physics and Detector workshop Snowmass, Aug 2005 Leptons and Photons at the (S)LHC Scott S. Snyder Brookhaven National Laboratory ILC Physics and Detector workshop Snowmass, Aug 2005 Outline: Introduction. e/γ. Muons. Tau leptons. SLHC. Summary. Leptons

More information

HIGH RESOLUTION HADRON CALORIMETRY

HIGH RESOLUTION HADRON CALORIMETRY HIGH RESOLUTION HADRON CALORIMETRY Adam Para, Fermilab Tsinghua University May 30, 2012 PART 1: Why is Hadron Calorimetry Important? Interesting? 2 1.A Recent Past: Di-jet Mass Distribution in CDF Notice:

More information

NuSOnG Detector Resolution, Calibration, and Event Separation

NuSOnG Detector Resolution, Calibration, and Event Separation NuSOnG Detector Resolution, Calibration, and Event Separation Christina Ignarra July 31, 2008 Abstract This paper presents the methods and results for the NuSOnG[2] detector calibration and energy resolution

More information

Neutrino detection. Kate Scholberg, Duke University International Neutrino Summer School Sao Paulo, Brazil, August 2015

Neutrino detection. Kate Scholberg, Duke University International Neutrino Summer School Sao Paulo, Brazil, August 2015 Neutrino detection Kate Scholberg, Duke University International Neutrino Summer School Sao Paulo, Brazil, August 2015 Sources of wild neutrinos The Big Bang The Atmosphere (cosmic rays) Super novae AGN's,

More information

The Electromagnetic Calorimeter of the HERA-B Experiment

The Electromagnetic Calorimeter of the HERA-B Experiment 1 The Electromagnetic Calorimeter of the HERA-B Experiment B.Giacobbe a a I.N.F.N Bologna, Via Irnerio 46, 40127 Bologna, Italy At the end of the HERA-B data taking, an overview of the experiment s Electromagnetic

More information

The PRIMEX Experiment: A Fundamental Test of the Chiral Anomaly Prediction in QCD. Erik Minges April 23 rd, 2010

The PRIMEX Experiment: A Fundamental Test of the Chiral Anomaly Prediction in QCD. Erik Minges April 23 rd, 2010 The PRIMEX Experiment: A Fundamental Test of the Chiral Anomaly Prediction in QCD Erik Minges April 23 rd, 2010 Outline Symmetry and conservation Laws Overview and examples PRIMEX physics motivation The

More information

Calorimetry. Content. Sunanda Banerjee. 2 nd CERN School (03/05/12) Nachon Ratchasiama, Thailand

Calorimetry. Content. Sunanda Banerjee. 2 nd CERN School (03/05/12) Nachon Ratchasiama, Thailand Calorimetry Content Introduction Interaction of particles with matter EM and hadronic showers Calorimeter designs Example from CMS Electromagnetic Calorimeter Hadron Calorimeter Experience with Collision

More information

The Why, What, and How? of the Higgs Boson

The Why, What, and How? of the Higgs Boson Modern Physics The Why, What, and How? of the Higgs Boson Sean Yeager University of Portland 10 April 2015 Outline Review of the Standard Model Review of Symmetries Symmetries in the Standard Model The

More information

QCD and jets physics at the LHC with CMS during the first year of data taking. Pavel Demin UCL/FYNU Louvain-la-Neuve

QCD and jets physics at the LHC with CMS during the first year of data taking. Pavel Demin UCL/FYNU Louvain-la-Neuve QCD and jets physics at the LHC with CMS during the first year of data taking Pavel Demin UCL/FYNU Louvain-la-Neuve February 8, 2006 Bon appétit! February 8, 2006 Pavel Demin UCL/FYNU 1 Why this seminar?

More information

READINESS OF THE CMS DETECTOR FOR FIRST DATA

READINESS OF THE CMS DETECTOR FOR FIRST DATA READINESS OF THE CMS DETECTOR FOR FIRST DATA E. MESCHI for the CMS Collaboration CERN - CH1211 Geneva 23 - Switzerland The Compact Muon Solenoid Detector (CMS) completed the first phase of commissioning

More information

4. LHC experiments Marcello Barisonzi LHC experiments August

4. LHC experiments Marcello Barisonzi LHC experiments August 4. LHC experiments 1 Summary from yesterday: Hadron colliders play an important role in particle physics discory but also precision measurements LHC will open up TeV energy range new particles with 3-5

More information

Analysis of Top Quarks Using a Kinematic Likelihood Method

Analysis of Top Quarks Using a Kinematic Likelihood Method The Ohio State University Undergraduate Research Thesis Presented in Partial Fulfillment of the Requirements for Graduation with Research Distinction in Physics in the Undergraduate Colleges of The Ohio

More information

Performance of muon and tau identification at ATLAS

Performance of muon and tau identification at ATLAS ATL-PHYS-PROC-22-3 22/2/22 Performance of muon and tau identification at ATLAS On behalf of the ATLAS Collaboration University of Oregon E-mail: mansoora.shamim@cern.ch Charged leptons play an important

More information

Calorimetry in particle physics experiments

Calorimetry in particle physics experiments Calorimetry in particle physics experiments Universita' degli Studi di Torino Scuola di Dottorato Roberta Arcidiacono Universita' degli Studi del Piemonte Orientale INFN Torino Program 1.The relevance

More information

Threshold photoproduction of J/y with the GlueX experiment. Lubomir Pentchev Jefferson Lab for the GlueX collaboration

Threshold photoproduction of J/y with the GlueX experiment. Lubomir Pentchev Jefferson Lab for the GlueX collaboration Threshold photoproduction of J/y with the GlueX experiment Lubomir Pentchev Jefferson Lab for the GlueX collaboration 7 th Workshop of the APS Topical Group on Hadron Physics, Washington, DC February 1-3

More information

arxiv: v1 [physics.ins-det] 10 Apr 2013

arxiv: v1 [physics.ins-det] 10 Apr 2013 On behalf of the CMS collaboration 41 st ITEP Physics School, Moscow 2013 arxiv:1304.2943v1 [physics.ins-det] 10 Apr 2013 The CASTOR calorimeter at the CMS experiment P. Gunnellini a1 1 Deutsches Elektronen

More information

MEASUREMENT AND DETECTION OF RADIATION

MEASUREMENT AND DETECTION OF RADIATION MEASUREMENT AND DETECTION OF RADIATION Second Edition Nicholas Tsoulfanidis University of Missouri-Rolla Ж Taylor &Francis * Publishers since I79H CONTENTS Preface to the First Edition Preface to the Second

More information

GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY

GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY ABSORBED DOSE: The amount of energy absorbed, as a result of radiation passing through a material, per unit mass of material. Measured in rads (1 rad

More information

Introduction to Particle Physics I. particle detection. Risto Orava Spring 2017

Introduction to Particle Physics I. particle detection. Risto Orava Spring 2017 Introduction to Particle Physics I particle detection Risto Orava Spring 2017 Lecture II particle detection outline Lecture I: Introduction, the Standard Model Lecture II: Particle detection Lecture III:

More information

Measurement of the associated production of direct photons and jets with the Atlas experiment at LHC. Michele Cascella

Measurement of the associated production of direct photons and jets with the Atlas experiment at LHC. Michele Cascella Measurement of the associated production of direct photons and jets with the Atlas experiment at LHC Michele Cascella Graduate Course in Physics University of Pisa The School of Graduate Studies in Basic

More information

Muon reconstruction performance in ATLAS at Run-2

Muon reconstruction performance in ATLAS at Run-2 2 Muon reconstruction performance in ATLAS at Run-2 Hannah Herde on behalf of the ATLAS Collaboration Brandeis University (US) E-mail: hannah.herde@cern.ch ATL-PHYS-PROC-205-2 5 October 205 The ATLAS muon

More information

Search for a Z at an e + e - Collider Thomas Walker

Search for a Z at an e + e - Collider Thomas Walker Search for a Z at an e + e - Collider Thomas Walker Significance: Many theories predict that another neutral gauge boson (Z ) may exist. In order to detect this Z, I would use an e + e - linear collider

More information

Collider Physics Analysis Procedures

Collider Physics Analysis Procedures Collider Physics Analysis Procedures Alex Tapper Slides available at: http://www.hep.ph.ic.ac.uk/~tapper/lecture.html Aim Overview of analysis techniques at CMS Contrast with Tevatron (see DØ lecture)

More information

Digital Hadron Calorimetry for the Linear Collider using GEM Technology

Digital Hadron Calorimetry for the Linear Collider using GEM Technology Digital Hadron Calorimetry for the Linear Collider using GEM Technology University of Texas at Arlington Andrew Brandt, Kaushik De, Shahnoor Habib, Venkat Kaushik, Jia Li, Mark Sosebee, Andy White* 1,

More information

Passage of particles through matter

Passage of particles through matter Passage of particles through matter Alexander Khanov PHYS6260: Experimental Methods is HEP Oklahoma State University September 11, 2017 Delta rays During ionization, the energy is transferred to electrons

More information

2nd-Meeting. Ionization energy loss. Multiple Coulomb scattering (plural and single scattering, too) Tracking chambers

2nd-Meeting. Ionization energy loss. Multiple Coulomb scattering (plural and single scattering, too) Tracking chambers 2nd-Meeting Ionization energy loss Multiple Coulomb scattering (plural and single scattering, too) Tracking chambers #2 -Particle Physics Experiments at High Energy Colliders John Hauptman, Kyungpook National

More information

PERFORMANCE GOALS AND DESIGN CONSIDERATIONS FOR A LINEAR COLLIDER CALORIMETER*

PERFORMANCE GOALS AND DESIGN CONSIDERATIONS FOR A LINEAR COLLIDER CALORIMETER* LC-DET-2004-022 PERFORMANCE GOALS AND DESIGN CONSIDERATIONS FOR A LINEAR COLLIDER CALORIMETER* FELIX SEFKOW DESY Notkestr. 85, D-22607 Hamburg, Germany We demonstrate that the physics potential at a future

More information

Physics with Jets at the LHC

Physics with Jets at the LHC XXXIV Int. Symp. on Multiparticle Dynamics, Sonoma County, July 29, 2004 ISMD Rohlf p.1/50 Physics with Jets at the LHC Jim Rohlf Boston University Outline Introduction Detectors and expected performance

More information

Interaction of particles with matter - 2. Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017

Interaction of particles with matter - 2. Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017 Interaction of particles with matter - 2 Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017 Energy loss by ionization (by heavy particles) Interaction of electrons with

More information

DETECTORS. I. Charged Particle Detectors

DETECTORS. I. Charged Particle Detectors DETECTORS I. Charged Particle Detectors A. Scintillators B. Gas Detectors 1. Ionization Chambers 2. Proportional Counters 3. Avalanche detectors 4. Geiger-Muller counters 5. Spark detectors C. Solid State

More information

Les Premières Données dans ATLAS et le Calorimètre à Argon Liquide

Les Premières Données dans ATLAS et le Calorimètre à Argon Liquide Les Premières Données dans ATLAS et le Calorimètre à Argon Liquide Des muons cosmiques aux premières collisions S. Laplace, P. Iengo Pour le groupe ATLAS-LAPP Plan: Introduction Commissioning du calo Lar

More information

Oliver Stelzer-Chilton University of Oxford High Energy Physics Seminar Michigan State University

Oliver Stelzer-Chilton University of Oxford High Energy Physics Seminar Michigan State University First Run II Measurement of the W Boson Mass by CDF Oliver Stelzer-Chilton University of Oxford High Energy Physics Seminar Michigan State University April 3 rd, 2007 1. Motivation Outline 2. W Production

More information

PoS(DIS 2010)190. Diboson production at CMS

PoS(DIS 2010)190. Diboson production at CMS (on behalf of the CMS collaboration) INFN-Napoli & University of Basilicata E-mail: fabozzi@na.infn.it We present an analysis strategy based on Monte Carlo simulations for measuring the WW and WZ production

More information

LHC State of the Art and News

LHC State of the Art and News LHC State of the Art and News ATL-GEN-SLIDE-2010-139 16 June 2010 Arno Straessner TU Dresden on behalf of the ATLAS Collaboration FSP 101 ATLAS Vulcano Workshop 2010 Frontier Objects in Astrophysics and

More information

Modern Accelerators for High Energy Physics

Modern Accelerators for High Energy Physics Modern Accelerators for High Energy Physics 1. Types of collider beams 2. The Tevatron 3. HERA electron proton collider 4. The physics from colliders 5. Large Hadron Collider 6. Electron Colliders A.V.

More information

SiPM & Plastic Scintillator

SiPM & Plastic Scintillator SiPM & Plastic Scintillator Silicon photomultiplier coupled to plastic scintillator Lodovico Lappetito SiPM_PlasticScint_ENG - 28/04/2016 Pag. 1 Table of contents Introduction... 3 Plastic Scintillators...

More information

Evaluating ATLAS LAr Front End Board Performance

Evaluating ATLAS LAr Front End Board Performance Evaluating ATLAS LAr Front End Board Performance Nevis Laboratories, Summer EU 2003 J. Gregson, Carnegie Mellon W. Pontius, Columbia ABSTACT The ATLAS experiment is scheduled to begin operation at the

More information

Physics at Hadron Colliders

Physics at Hadron Colliders Physics at Hadron Colliders Part 2 Standard Model Physics Test of Quantum Chromodynamics - Jet production - W/Z production - Production of Top quarks Precision measurements -W mass - Top-quark mass QCD

More information

Study of TileCal Sampling Fraction for Improvement of Monte-Carlo Data Reconstruction

Study of TileCal Sampling Fraction for Improvement of Monte-Carlo Data Reconstruction Study of Cal Sampling Fraction for Improvement of Monte-Carlo Data Reconstruction J.Budagov 1), G.Khoriauli 1), ), J.Khubua 1), ), A.Khukhunaishvili 1), Y.Kulchitsky 1), 4), A.Solodkov 5) 1) JINR, Dubna

More information

ABSTRACT RESULTS OF BEAM TESTS OF A PROTOTYPE CALORIMETER FOR A LINEAR COLLIDER

ABSTRACT RESULTS OF BEAM TESTS OF A PROTOTYPE CALORIMETER FOR A LINEAR COLLIDER ABSTRACT RESULTS OF BEAM TESTS OF A PROTOTYPE CALORIMETER FOR A LINEAR COLLIDER Kurt Francis, Ph.D. Department of Physics Northern Illinois University, 2010 Gerald C. Blazey, Director The proposed International

More information

Luminosity measurement in ATLAS with Diamond Beam Monitor

Luminosity measurement in ATLAS with Diamond Beam Monitor University of Ljubljana Faculty of Mathematics and Physics Luminosity measurement in ATLAS with Diamond Beam Monitor PhD topic defense Supervisor Candidate Prof. dr. Marko Mikuž Luka Kanjir October 14th,

More information

Status of the CALICE analog calorimeter technological prototypes

Status of the CALICE analog calorimeter technological prototypes Status of the CALICE analog calorimeter technological prototypes Mark Terwort on behalf of the CALICE collaboration DESY, Notkestrasse 85, 22607 Hamburg, Germany E-mail: mark.terwort@desy.de Abstract.

More information

Seminario finale di dottorato

Seminario finale di dottorato Seminario finale di dottorato Search for new physics in dielectron and diphoton final states at CMS 17/05/2017 Giuseppe Fasanella La Sapienza University of Rome & INFN Roma 1 Co-supervision with ULB Université

More information

Gamma and X-Ray Detection

Gamma and X-Ray Detection Gamma and X-Ray Detection DETECTOR OVERVIEW The kinds of detectors commonly used can be categorized as: a. Gas-filled Detectors b. Scintillation Detectors c. Semiconductor Detectors The choice of a particular

More information

Accelerators and Colliders

Accelerators and Colliders Accelerators and Colliders References Robert Mann: An introduction to particle physics and the standard model Tao Han, Collider Phenomenology, http://arxiv.org/abs/hep-ph/0508097 Particle Data Group, (J.

More information

The first Z boson measurement in the dimuon channel in PbPb collisions at s = 2.76 TeV at CMS

The first Z boson measurement in the dimuon channel in PbPb collisions at s = 2.76 TeV at CMS The first Z boson measurement in the dimuon channel in PbPb collisions at s = 2.76 TeV at CMS Lamia Benhabib On behalf of CMS collaboration We present the first measurement of Z bosons in the di-muon channel

More information

Interaction of Ionizing Radiation with Matter

Interaction of Ionizing Radiation with Matter Type of radiation charged particles photonen neutronen Uncharged particles Charged particles electrons (β - ) He 2+ (α), H + (p) D + (d) Recoil nuclides Fission fragments Interaction of ionizing radiation

More information

Detectors in Nuclear and High Energy Physics. RHIG summer student meeting June 2014

Detectors in Nuclear and High Energy Physics. RHIG summer student meeting June 2014 Detectors in Nuclear and High Energy Physics RHIG summer student meeting June 2014 Physics or Knowledge of Nature Experimental Data Analysis Theory ( application) Experimental Data Initial Conditions /

More information

Extending the Calibration of the ATLAS Hadronic Calorimeter to High P t Chris Sears, University of Chicago May 16 th, 2002 Advisor: James Pilcher

Extending the Calibration of the ATLAS Hadronic Calorimeter to High P t Chris Sears, University of Chicago May 16 th, 2002 Advisor: James Pilcher Extending the Calibration of the ATLAS Hadronic Calorimeter to High P t Chris Sears, University of Chicago May 16 th, 2002 Advisor: James Pilcher Abstract: The ATLAS detector set to run at the CERN LHC

More information

A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.)

A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.) Physics 557 Lecture 7 A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.) First came the study of the debris from cosmic rays (the God-given particle

More information

ATLAS Experiment at Large Hadron Collider. Richard Stroynowski SMU

ATLAS Experiment at Large Hadron Collider. Richard Stroynowski SMU ATLAS Experiment at Large Hadron Collider Richard Stroynowski SMU Fundamental particles and forces Standard Model Glashow, Salam, Weinberg Nobel Prize 1979 Matter - 3 families of quarks and leptons Forces

More information

Study of Quark compositeness in pp q * at CMS

Study of Quark compositeness in pp q * at CMS Study of Quark compositeness in pp q * at CMS + Jets Brajesh Choudhary, Debajyoti Choudhury, Varun Sharma University of Delhi, Delhi Sushil Singh Chauhan, Mani Tripathi University of California, Davis

More information

The ATLAS Detector at the LHC

The ATLAS Detector at the LHC The ATLAS Detector at the LHC Results from the New Energy Frontier Cristina Oropeza Barrera Experimental Particle Physics University of Glasgow Somewhere near the Swiss Alps... A Toroidal LHC ApparatuS

More information

Theory English (Official)

Theory English (Official) Q3-1 Large Hadron Collider (10 points) Please read the general instructions in the separate envelope before you start this problem. In this task, the physics of the particle accelerator LHC (Large Hadron

More information

Novel Measurements of Proton Structure at HERA

Novel Measurements of Proton Structure at HERA Introduction Combined Cross Sections & QCD Fits NC & CC Cross Section Measurements F L Summary Novel Measurements of Proton Structure at HERA Katie Oliver University of Oxford On behalf of the H1 and ZEUS

More information

Top Physics in Hadron Collisions

Top Physics in Hadron Collisions Top Physics in Hadron Collisions Dirk Dammann DESY 2010-02-04 1 / 44 Outline 1 2 3 4 2 / 44 Outline Motivation Top Production Top Decay Top Physics 1 Motivation Top Production Top Decay Top Physics 2 3

More information

Lecture 4. Detectors for Ionizing Particles

Lecture 4. Detectors for Ionizing Particles Lecture 4 Detectors for Ionizing Particles Introduction Overview of detector systems Sources of radiation Radioactive decay Cosmic Radiation Accelerators Content Interaction of Radiation with Matter General

More information

ATLAS HLT Steering. Andrey Belkin Johannes Gutenberg Universität Mainz

ATLAS HLT Steering. Andrey Belkin Johannes Gutenberg Universität Mainz ATLAS HLT Steering Johannes Gutenberg Universität Mainz 36. Herbstschule für Hochenergiephysik Maria Laach, Overview ATLAS detector Trigger system Steering Performance tests Status and outlook Johannes

More information

Il Calorimetro Elettromagnetico di CMS

Il Calorimetro Elettromagnetico di CMS Il Calorimetro Elettromagnetico di CMS Riccardo Paramatti CERN & INFN Roma1 IFAE 2005 Catania 31/03/2005 Outline Caratteristiche del calorimetro Stato della costruzione Precalibrazione del calorimetro

More information

Measurement of the transverse diffusion coefficient of charge in liquid xenon

Measurement of the transverse diffusion coefficient of charge in liquid xenon Measurement of the transverse diffusion coefficient of charge in liquid xenon W.-T. Chen a, H. Carduner b, J.-P. Cussonneau c, J. Donnard d, S. Duval e, A.-F. Mohamad-Hadi f, J. Lamblin g, O. Lemaire h,

More information

Appendix A2. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France.

Appendix A2. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France. Appendix A. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France. Prepared by: Arash Akbari-Sharbaf Why Build Accelerators? Probe deeper From

More information

ATLAS EXPERIMENT : HOW THE DATA FLOWS. (Trigger, Computing, and Data Analysis)

ATLAS EXPERIMENT : HOW THE DATA FLOWS. (Trigger, Computing, and Data Analysis) ATLAS EXPERIMENT : HOW THE DATA FLOWS (Trigger, Computing, and Data Analysis) In order to process large volumes of data within nanosecond timescales, the trigger system is designed to select interesting

More information

LC Calorimeter Ideas and R&D Opportunities

LC Calorimeter Ideas and R&D Opportunities LC Calorimeter Ideas and R&D Opportunities Ray Frey, U. Oregon Cornell, Apr 19, 2002 Physics implications The environment The energy flow concept Current ideas and plans Europe Asia N. America Critical

More information

Measurements of e + e hadrons at VEPP-2M

Measurements of e + e hadrons at VEPP-2M Measurements of e + e hadrons at VEPP-2M B.Khazin Budker Institute of Nuclear Physics Novosibirsk Centerville, Cape Cod, MA 19-22 June 2006 Cross-section section e + e - hadrons VEPP-2M energy range :

More information

Semiconductor Detectors

Semiconductor Detectors Semiconductor Detectors Summary of Last Lecture Band structure in Solids: Conduction band Conduction band thermal conductivity: E g > 5 ev Valence band Insulator Charge carrier in conductor: e - Charge

More information

ELECTROMAGNETIC SHOWERS. Paolo Lipari. Lecture 2

ELECTROMAGNETIC SHOWERS. Paolo Lipari. Lecture 2 ELECTROMAGNETIC SHOWERS Paolo Lipari Lecture 2 Corsika school 26/Nov/2008 Bremsstrahlung Pair Creation BREMSSTRAHLUNG Fully ionized free nucleus (approximation of infinite mass) High Energy Limit (Full

More information

AIRFLY: Measurement of the Air Fluorescence induced by electrons

AIRFLY: Measurement of the Air Fluorescence induced by electrons AIRFLY: Measurement of the Air Fluorescence induced by electrons Valerio Verzi INFN Sezione di Roma II For the Airfly collaboration 9 th Topical Seminar on Innovative Particle and Radiation Detectors 23-26

More information

Chapter NP-4. Nuclear Physics. Particle Behavior/ Gamma Interactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 IONIZATION

Chapter NP-4. Nuclear Physics. Particle Behavior/ Gamma Interactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 IONIZATION Chapter NP-4 Nuclear Physics Particle Behavior/ Gamma Interactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 IONIZATION 2.0 ALPHA PARTICLE INTERACTIONS 3.0 BETA INTERACTIONS 4.0 GAMMA INTERACTIONS

More information

EEE4101F / EEE4103F Radiation Interactions & Detection

EEE4101F / EEE4103F Radiation Interactions & Detection EEE4101F / EEE4103F Radiation Interactions & Detection 1. Interaction of Radiation with Matter Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za March

More information

High-energy Gamma Rays detection with the AMS-02 electromagnetic calorimeter. F. Pilo for the AMS-02 ECAL Group INFN Sezione di Pisa, Italy

High-energy Gamma Rays detection with the AMS-02 electromagnetic calorimeter. F. Pilo for the AMS-02 ECAL Group INFN Sezione di Pisa, Italy Frascati Physics Series Vol. 58 (2014) Frontier Objects in Astrophysics and Particle Physics May 18-24, 2014 High-energy Gamma Rays detection with the AMS-02 electromagnetic calorimeter F. Pilo for the

More information

PoS(EPS-HEP2015)565. Study of the radiative tau decays τ γlνν with the BABAR detector. Roger Barlow

PoS(EPS-HEP2015)565. Study of the radiative tau decays τ γlνν with the BABAR detector. Roger Barlow Study of the radiative tau decays τ γlνν with the BABAR detector University of Huddersfield (GB) E-mail: roger.barlow@cern.ch We present measurements of the branching fraction for the radiative τ leptonic

More information

B. Sitar G. I. Merso n V. A. Chechin Yu. A. Budagov. Ionization Measurement s in High Energy Physics

B. Sitar G. I. Merso n V. A. Chechin Yu. A. Budagov. Ionization Measurement s in High Energy Physics B. Sitar G. I. Merso n V. A. Chechin Yu. A. Budagov Ionization Measurement s in High Energy Physics Springer Tracts in modern physics ; v. 124) 0. Introduction 1 References 6 1. Ionization Effects in a

More information

The Compton Effect. Martha Buckley MIT Department of Physics, Cambridge, MA (Dated: November 26, 2002)

The Compton Effect. Martha Buckley MIT Department of Physics, Cambridge, MA (Dated: November 26, 2002) The Compton Effect Martha Buckley MIT Department of Physics, Cambridge, MA 02139 marthab@mit.edu (Dated: November 26, 2002) We measured the angular dependence of the energies of 661.6 kev photons scattered

More information

Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na. Ellen Simmons

Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na. Ellen Simmons Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na Ellen Simmons 1 Contents Introduction Review of the Types of Radiation Charged Particle Radiation Detection Review of Semiconductor

More information

Detection of X-Rays. Solid state detectors Proportional counters Microcalorimeters Detector characteristics

Detection of X-Rays. Solid state detectors Proportional counters Microcalorimeters Detector characteristics Detection of X-Rays Solid state detectors Proportional counters Microcalorimeters Detector characteristics Solid State X-ray Detectors X-ray interacts in material to produce photoelectrons which are collected

More information

ATLAS Tile Calorimeter performance for single particles in beam tests

ATLAS Tile Calorimeter performance for single particles in beam tests Journal of Physics: Conference Series ATLAS Tile Calorimeter performance for single particles in beam tests To cite this article: T Davidek and the Atlas Tilecal system 2009 J. Phys.: Conf. Ser. 160 012057

More information

Radionuclide Imaging MII Detection of Nuclear Emission

Radionuclide Imaging MII Detection of Nuclear Emission Radionuclide Imaging MII 3073 Detection of Nuclear Emission Nuclear radiation detectors Detectors that are commonly used in nuclear medicine: 1. Gas-filled detectors 2. Scintillation detectors 3. Semiconductor

More information

Experiment 6 1. The Compton Effect Physics 2150 Experiment No. 6 University of Colorado

Experiment 6 1. The Compton Effect Physics 2150 Experiment No. 6 University of Colorado Experiment 6 1 Introduction The Compton Effect Physics 2150 Experiment No. 6 University of Colorado In some situations, electromagnetic waves can act like particles, carrying energy and momentum, which

More information

Content. Complex Detector Systems. Calorimeters Velocity Determination. Semiconductor detectors. Scintillation detectors. Cerenkov detectors

Content. Complex Detector Systems. Calorimeters Velocity Determination. Semiconductor detectors. Scintillation detectors. Cerenkov detectors Semiconductor detectors Semiconductor basics Sensor concepts Readout electronics Scintillation detectors General characteristics Organic materials Inorganic materials Light output response Calorimeters

More information

Absolute energy calibration

Absolute energy calibration E coeffs 1 Absolute energy calibration V. Morgunov DESY, Hamburg and ITEP, Moscow HCAL main meeting, DESY, January 19, 26 The copy of this talk one can find at the http://www.desy.de/ morgunov Jan 19,

More information

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland CMS CR - he Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH- GENEVA 3, Switzerland 8/5/6 Charmonium production measured in and pp collisions by CMS arxiv:7.5v [nucl-ex]

More information

Radiation Detection and Measurement

Radiation Detection and Measurement Radiation Detection and Measurement June 2008 Tom Lewellen Tkldog@u.washington.edu Types of radiation relevant to Nuclear Medicine Particle Symbol Mass (MeV/c 2 ) Charge Electron e-,! - 0.511-1 Positron

More information

Jet Data Quality at ATLAS. Ian Moult IPP Summer Student May 2010-September 2010

Jet Data Quality at ATLAS. Ian Moult IPP Summer Student May 2010-September 2010 Jet Data Quality at ATLAS Ian Moult IPP Summer Student May 2010-September 2010 Abstract The application of automated checks for offline jet data quality based on the comparison of jet variables with reference

More information