Problems from the last lecture

Size: px
Start display at page:

Download "Problems from the last lecture"

Transcription

1 Problems from the last lecture Problem 2.5 Use the Kelvn equaton to calculate the radus of an openended tube wthn whch capllary condensaton of ntrogen at 77 K and a relatve pressure of 0.75 mght be expected. Assume that pror adsorpton of ntrogen has formed a layer 0.9 nm thck coatng the nsde of the tube. For ntrogen at 77 K the surface tenson s 8.85 mn m -1 and the molar volume s 34.7 cm 3 mol -1. Answer: 2.57nm Problem 2.6 A jet arcraft s flyng through a regon where the ar s 10% supersaturated wth water vapour (.e. the relatve humdty s 110%). After coolng, the sold smoke partcles emtted by the jet engnes adsorb water vapour and can then be consdered as mnute sphercal droplets. What s the mnmum radus of these droplets f condensaton s to occur on them and a vapour tral form? Data: γ(h 2 O) = 75.2 mn m -1, M(H 2 O) = kg mol -1, ρ(h 2 O) = 1030 kg m -3, T = 275 K. Answer: 12nm

2 Lecture 2 Adsorpton and the thermodynamcs of surfaces Adsorpton at gas lqud nterface

3 Adsorpton Adsorpton - a tendency of one component to have a hgher or lower concentraton at the nterface n comparson to adjacent phase.

4 Models of the nterface A system contanng an nterface can be dvded nto 3 regons for an extensve property B: α β σ B= B + B + B 1. Surface phase approach nterfacal regon has fnte thckness; propertes n the bulk phases are unform

5 Models of the nterface 1. Surface excess propertes approach nterface s nfntely thn; propertes of bulk phases assumed to extend tll the nterface; dfference between the real property B and the model value s called excess extensve property: B = B = B B σ excess real model α β σ V = V + V, V = 0 ntensve property: b = B / V Example: concentraton excess n = c V + c V α α β β,model ( ) n = n c V + c V σ α α β β

6 surface excess: Adsorpton ( ) n = n c V + c V σ α α β β Γ = adsorpton n σ / A the value of adsorpton depends of the nterface poston! so, we need to agree on a conventon. Gbbs conventon: adsorpton of a major component s zero: σ Γ = n / A= 0 A A

7 relatve adsorpton Adsorpton ( ) ( ) n = n c V + c V = n c V + c c V σ α α β β α α β β ( ) n = n c V + c c V σ α α β β A A A A A elmnatng V b : Γ c c α β A =Γ ΓA α β ca ca Gbbs conventon: A Γ A = 0, Γ =Γ( Gbbs) adsorpton sotherm: dependence of the adsorpton vs. bulk concentraton at constant temperature

8 Thermodynamc propertes of nterfaces Other thermodynamcs excess propertes can be defned smlarly α α β β δwmech = P dv P dv + γda α α β β δw= P dv P dv + γ da+ µ dn α α β β du = δq + δw = TdS P dv P dv + γ da + µ dn α α β β H = U + PV, dh = TdS + P dv + P dv + γ da + µ dn α α β β G = H TS, dg = SdT + P dv + P dv + γ da + µ dn G A α β T, P, P, n = γ

9 Thermodynamc propertes of nterfaces α α β β dg = SdT + P dv + P dv + γ da + µ dn surface excess dg = dg + dg + dg dg = S dt + P dv + µ dn α α α α α dg = S dt + P dv + µ dn β β β β β dg = S dt + γ da + µ dn G A σ α β σ σ σ σ = γ + µ dγ σ σ σ σ U H TS σ = = + γ + µ dγ A A A σ σ σ α β

10 Measurement of adsorpton adsorpton from concentraton change ( ) n σ = n n = c c V 0 0 adsorpton from surface analyss (samplng at the surface) n = c V + c V + c V L L S S G G real, ( ) n = n n = c c V σ S L S, real,model adsorpton from surface tenson change Gbbs equaton: for 2 component system: dγ = Γ RT Γ = B ( dln( a )) ab dγ RT d( a ) B

11 Probelms Problem 3.2 From surface tenson measurements on aqueous solutons of butanol, t was found that the slope of the graph of surface tenson aganst concentraton was mn m 2 mol -1 at a bulk concentraton of 6.40 mol m -3. Calculate the adsorpton at ths concentraton and state any assumptons made. Problem 3.3 An aqueous soluton of acetc acd (50 cm3) was shaken wth charcoal (2.5 g) untl equlbrum was reached. The concentraton of the orgnal soluton was mol dm -3, whle after adsorpton the concentraton had fallen to mol dm -3. Calculate the amount of acetc acd adsorbed on 1.0 g of charcoal.

12 Adsorpton at Gas-Lqud nterface Measurements of equlbrum adsorpton surface tenson measurements (Wlhelmy plate) surface analyss rado-labelled solutes neutron reflectometry (deuterated solutes) X-ray reflectometry formaton and collecton of foam

13 Adsorpton at Gas-Lqud nterface Observaton of adsorpton knetcs adsorpton at freshly formed nterfaces surface waves: transverse capllary waves (rpples generated by an oscllatng hydrophobc knfe edge, f= Hz). Energy dsspaton caused by compressonexpanson cycle. longtudnal waves (horzontal movement of barrer, <0.1 Hz)

14 Adsorpton of non-electrolyte solutes expermental: surface tenson vs. butanol concentraton n aqueous soluton ab dγ Γ B = RT da ( ) calculated: adsorpton B

15 Adsorpton of non-electrolyte solutes Szyszkowsk-Langmur adsorpton * γ = γ bγ * ln(1 + c / a) A A B constants Szyszkowsk-Langmur sotherm a dγ a bγ / a Γ αc Γ B = = = RT da ( ) RT1 + c / a 1+ αc * B B A B B cb 1 c = + Γ Γ α Γ B B B B B B B vald at low concentratons

16 Adsorpton of non-electrolyte solutes Equaton of state (Schonfeld and Rdeal) Π Aˆ Aˆ = qkt 0 ( ), where surface pressure Π= γ γ, Aˆ = 1/ Γ, solvent soluton q measure of the affnty of the adsorbed molecules Negatve adsorpton observed n dlute aqueous solutons of e.g. glycne and sucrose Knetcs of adsorbton n case of no strrng and no energy barrer: 1/2 1/2 d Γ D ct 1/2, 2ct D = Γ= dt π π

17 Adsorpton of onzed solute n case onzed solute the Gbbs equaton must nclude contrbuton of all ons: from electro neutralty: dγ =Γ + dln c + +Γ dln c M M X X RT c = c = c and Γ =Γ =Γ + + M X M X 1 dγ Γ= 2RT dc

18 Absorpton of surfactants surfactants (stands for: surface actve agents) belong to a class of amphphles Gbbs monolayers

19 Absorpton of surfactants Surfactants can be: anonc, catonc, non-onc

20 Absorpton of surfactants Surface tenson of surfactant usually falls to a lower lmt and becomes a constant after saturaton adsorpton

21 Absorpton of surfactants Gbbs equaton occasonaly reveals dscrepances wth expermentally measured values. surface hydrolyss: one of the ons s not adsorbed by the surface and replaced by H +. dγ =Γ + dln( c + ) +Γ dln( c ) +Γ + dln( c + ) M M X X H H RT =0 =const dγ =Γ RT X dln( c ) X ndfferent electrolyte: same stuaton can be created artfcally to avod ambgutes that mght arse due to surface hydrolyss by addng large amounts of M + Y - : dγ dγ =Γ + dln( c + ) +Γ dln( c ) +Γ dln( c ) =Γ dln( c ) M M X X Y Y X X RT RT =0 =const

22 Mcelles above certan crtcal concentraton the surface tenson becomes ndependent of concentraton: crtcal mcelle concentraton (cmc). dγ =Γ X dln( c ) ln( ) S X +Γ S X d c M XM RT not all amphphles form mcelles. at cmc other propertes show dstnct changes as well (e.g. osmotc pressure ndcate that the number of solute partcles stays the same above cmc). formaton of mcelles means decrease n G, prmarly due to large ncrease n entropy: hydrophobc nteracton.

23 Mcelles solublty of surfactants: there s a sharp rse n solublty of onc surfactant above a certan temperature: Krafft temperature for non-onc surfactants rasng temperature appears to decrease solublty, so above cloud pont large aggregates of surfactant appear

24 Mcelle structure at low concentratons mcelles are sphercal wth dameter slghtly less than twce the length of the molecule at hgher concentraton, more complex structures are formed f organc solvent are used, reverse (nverted) mcelles wll be formed

25 Mcelle structure

26 Solublzaton mcelles can ncrease solublty of otherwse sparngly soluble substances, as the centre of a mcelle s a lqud hydrocarbon

27 Factors affectng cmc cmc s affected by factors changng solublty and nteracton n the soluton: Amphphle chan length (l): longer chan means lower solublty. ln( cmc) = a bλ Salt concentraton: as onc strength ncrease the nteracton between the charged head groups of onc surfactants wll decrease,.e. cmc wll decrease. Head group structure: cmc can be affected (but not much) Structure of the alkyl chan: ncrease n bulkness rases cmc, addton of benzene rng lowers cmc Other surfactants Polar addtves: long-chan materals wth polar group lower cmc and ncorporate n the mcelles.

28 Impurty effects mpurtes can lead to a mnmum on surface tenson vs. concentraton curve. another (better) test for mpurtes s based on varaton of surface tenson when area of the surface s changed.

29 Applcaton of surfactants Wettng: contact angle s reduced. Detergency: detergent: mxture of surfactants wth other addtves for effectve cleansng (bulders, brghteners and bleaches, electrolyte fller) cleansng effcency grows wth the concentraton up to cmc Water repulson hydrophlc surface can be made hydrophobc Emulsfcaton Froth flotaton n ore treatment: partcles wth hydrophobc surface stck to bubbles and are carred upwards when foam s formed (lead and copper sulfde ores, oxdes, coal etc.) Ol recovery Membrane dsrupton absorpton on the nterface emulsfyng sol

30 Flms and Foams Structure of a foam layer: Foam layer has a surface tenson, therefore foam flm tres to mnmze the area: Laplace equaton s applcable as well: when a foam thckness decreases due to lqud dranage t forms black flms: common black flm (lqud core) and Newton black flm (no lqud core)

31 Flms and Foams Permeablty to gases monolayer permeaton: J = km cm dffuson through the soluton: J 1 zb = c km DH km J DH = c z b b k

32 Flms and Foams Foam formaton (by bubblng)

33 Flms and Foams the Plateau border as the curvature radus s smaller at the trple pont, the pressure wll be lower and the lqud wll flow there druptng the foam foam can be stablzed by repulsve pressure between the adsorbed layers: dsjonng pressure

34 Tears of wne Flms and Foams

35 Flms and Foams The Marangon effect buoyancy-drven convecton presence of surfactant s mpedng convecton

36 Aerosols Formaton: dsperson method aggregaton methods monodsperse sze dstrbuton can be created by controlled nucleaton Precptaton, e.g. electrostatc

37 Problems 3.2 From surface tenson measurements on aqueous solutons of butanol, t was found that the slope of the graph of surface tenson aganst concentraton was mn m 2 mol -1 at a bulk concentraton of 6.40 mol m -3. Calculate the adsorpton at ths concentraton and state any assumptons made. 4.1 A surfactant soluton of sodum dodecyl sulfonate (concentraton 1.7 mmol kg -1 ) s found to have a surface tenson of 63 mn m -1 at 25ºC. Calculate the adsorpton of the surfactant at the ar/soluton nterface and state the two assumptons that are requred. The surface tenson of pure water at ths temperature s 72.0 mn m -1.

3) Thermodynamic equation to characterize interfaces

3) Thermodynamic equation to characterize interfaces 3) Thermodynamc equaton to characterze nterfaces 3.1) Gbbs Model Realty: rapd contnuous change of chemcal and thermodynamc propertes Replaced by model (constant propertes up to the surface) uv bulk uv

More information

Lecture 3. Phenomena at Liquid-gas and Liquid-Liquid interfaces. I

Lecture 3. Phenomena at Liquid-gas and Liquid-Liquid interfaces. I Lecture 3 Phenomena at Liquid-gas and Liquid-Liquid interfaces. I Adsorption at Gas-Liquid interface Measurements of equilibrium adsorption surface tension measurements (Wilhelmy plate) surface analysis

More information

Lecture. Polymer Thermodynamics 0331 L Chemical Potential

Lecture. Polymer Thermodynamics 0331 L Chemical Potential Prof. Dr. rer. nat. habl. S. Enders Faculty III for Process Scence Insttute of Chemcal Engneerng Department of Thermodynamcs Lecture Polymer Thermodynamcs 033 L 337 3. Chemcal Potental Polymer Thermodynamcs

More information

Chapter 18, Part 1. Fundamentals of Atmospheric Modeling

Chapter 18, Part 1. Fundamentals of Atmospheric Modeling Overhead Sldes for Chapter 18, Part 1 of Fundamentals of Atmospherc Modelng by Mark Z. Jacobson Department of Cvl & Envronmental Engneerng Stanford Unversty Stanford, CA 94305-4020 January 30, 2002 Types

More information

Gouy-Chapman model (1910) The double layer is not as compact as in Helmholtz rigid layer.

Gouy-Chapman model (1910) The double layer is not as compact as in Helmholtz rigid layer. CHE465/865, 6-3, Lecture 1, 7 nd Sep., 6 Gouy-Chapman model (191) The double layer s not as compact as n Helmholtz rgd layer. Consder thermal motons of ons: Tendency to ncrease the entropy and make the

More information

Mass Transfer Processes

Mass Transfer Processes Mass Transfer Processes S. Majd Hassanzadeh Department of Earth Scences Faculty of Geoscences Utrecht Unversty Outlne: 1. Measures of Concentraton 2. Volatlzaton and Dssoluton 3. Adsorpton Processes 4.

More information

Chapter 2. Electrode/electrolyte interface: ----Structure and properties

Chapter 2. Electrode/electrolyte interface: ----Structure and properties Chapter 2 Electrode/electrolyte nterface: ----Structure and propertes Electrochemcal reactons are nterfacal reactons, the structure and propertes of electrode / electrolytc soluton nterface greatly nfluences

More information

...Thermodynamics. If Clausius Clapeyron fails. l T (v 2 v 1 ) = 0/0 Second order phase transition ( S, v = 0)

...Thermodynamics. If Clausius Clapeyron fails. l T (v 2 v 1 ) = 0/0 Second order phase transition ( S, v = 0) If Clausus Clapeyron fals ( ) dp dt pb =...Thermodynamcs l T (v 2 v 1 ) = 0/0 Second order phase transton ( S, v = 0) ( ) dp = c P,1 c P,2 dt Tv(β 1 β 2 ) Two phases ntermngled Ferromagnet (Excess spn-up

More information

Energy, Entropy, and Availability Balances Phase Equilibria. Nonideal Thermodynamic Property Models. Selecting an Appropriate Model

Energy, Entropy, and Availability Balances Phase Equilibria. Nonideal Thermodynamic Property Models. Selecting an Appropriate Model Lecture 4. Thermodynamcs [Ch. 2] Energy, Entropy, and Avalablty Balances Phase Equlbra - Fugactes and actvty coeffcents -K-values Nondeal Thermodynamc Property Models - P-v-T equaton-of-state models -

More information

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 10 - Phase Equilibria and Polymer Blends February 7, 2001

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 10 - Phase Equilibria and Polymer Blends February 7, 2001 Checal Engneerng 60/60 Polyer Scence and Engneerng Lecture 0 - Phase Equlbra and Polyer Blends February 7, 00 Therodynacs of Polyer Blends: Part Objectves! To develop the classcal Flory-Huggns theory for

More information

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential Open Systems: Chemcal Potental and Partal Molar Quanttes Chemcal Potental For closed systems, we have derved the followng relatonshps: du = TdS pdv dh = TdS + Vdp da = SdT pdv dg = VdP SdT For open systems,

More information

Thermodynamics General

Thermodynamics General Thermodynamcs General Lecture 1 Lecture 1 s devoted to establshng buldng blocks for dscussng thermodynamcs. In addton, the equaton of state wll be establshed. I. Buldng blocks for thermodynamcs A. Dmensons,

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014 Lecture 12 7/25/14 ERD: 7.1-7.5 Devoe: 8.1.1-8.1.2, 8.2.1-8.2.3, 8.4.1-8.4.3 Unversty o Washngton Department o Chemstry Chemstry 452/456 Summer Quarter 2014 A. Free Energy and Changes n Composton: The

More information

Chemical Equilibrium. Chapter 6 Spontaneity of Reactive Mixtures (gases) Taking into account there are many types of work that a sysem can perform

Chemical Equilibrium. Chapter 6 Spontaneity of Reactive Mixtures (gases) Taking into account there are many types of work that a sysem can perform Ths chapter deals wth chemcal reactons (system) wth lttle or no consderaton on the surroundngs. Chemcal Equlbrum Chapter 6 Spontanety of eactve Mxtures (gases) eactants generatng products would proceed

More information

a for save as PDF Chemistry 163B Introduction to Multicomponent Systems and Partial Molar Quantities

a for save as PDF Chemistry 163B Introduction to Multicomponent Systems and Partial Molar Quantities a for save as PDF Chemstry 163B Introducton to Multcomponent Systems and Partal Molar Quanttes 1 the problem of partal mmolar quanttes mx: 10 moles ethanol C 2 H 5 OH (580 ml) wth 1 mole water H 2 O (18

More information

Review of Classical Thermodynamics

Review of Classical Thermodynamics Revew of Classcal hermodynamcs Physcs 4362, Lecture #1, 2 Syllabus What s hermodynamcs? 1 [A law] s more mpressve the greater the smplcty of ts premses, the more dfferent are the knds of thngs t relates,

More information

Lecture 3 Electrostatic effects November 6, 2009

Lecture 3 Electrostatic effects November 6, 2009 The stablty of thn (soft) flms Lecture 3 Electrostatc effects November 6, 009 Ian Morrson 009 Revew of Lecture The dsjonng pressure s a jump n pressure at the boundary. It does not vary between the plates.

More information

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law: CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2013

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2013 Lecture 8/8/3 Unversty o Washngton Departent o Chestry Chestry 45/456 Suer Quarter 3 A. The Gbbs-Duhe Equaton Fro Lecture 7 and ro the dscusson n sectons A and B o ths lecture, t s clear that the actvty

More information

V T for n & P = constant

V T for n & P = constant Pchem 365: hermodynamcs -SUMMARY- Uwe Burghaus, Fargo, 5 9 Mnmum requrements for underneath of your pllow. However, wrte your own summary! You need to know the story behnd the equatons : Pressure : olume

More information

Lecture 12. Transport in Membranes (2)

Lecture 12. Transport in Membranes (2) Lecture 12. Transport n embranes (2) odule Flow Patterns - Perfect mxng - Countercurrent flow - Cocurrent flow - Crossflow embrane Cascades External ass-transfer Resstances Concentraton Polarzaton and

More information

If two volatile and miscible liquids are combined to form a solution, Raoult s law is not obeyed. Use the experimental data in Table 9.

If two volatile and miscible liquids are combined to form a solution, Raoult s law is not obeyed. Use the experimental data in Table 9. 9.9 Real Solutons Exhbt Devatons from Raoult s Law If two volatle and mscble lquds are combned to form a soluton, Raoult s law s not obeyed. Use the expermental data n Table 9.3: Physcal Chemstry 00 Pearson

More information

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer Prncples of Food and Boprocess Engneerng (FS 31) Solutons to Example Problems on Heat Transfer 1. We start wth Fourer s law of heat conducton: Q = k A ( T/ x) Rearrangng, we get: Q/A = k ( T/ x) Here,

More information

Thermodynamics II. Department of Chemical Engineering. Prof. Kim, Jong Hak

Thermodynamics II. Department of Chemical Engineering. Prof. Kim, Jong Hak Thermodynamcs II Department of Chemcal Engneerng Prof. Km, Jong Hak Soluton Thermodynamcs : theory Obectve : lay the theoretcal foundaton for applcatons of thermodynamcs to gas mxture and lqud soluton

More information

Adsorption: A gas or gases from a mixture of gases or a liquid (or liquids) from a mixture of liquids is bound physically to the surface of a solid.

Adsorption: A gas or gases from a mixture of gases or a liquid (or liquids) from a mixture of liquids is bound physically to the surface of a solid. Searatons n Chemcal Engneerng Searatons (gas from a mxture of gases, lquds from a mxture of lquds, solds from a soluton of solds n lquds, dssolved gases from lquds, solvents from gases artally/comletely

More information

and Statistical Mechanics Material Properties

and Statistical Mechanics Material Properties Statstcal Mechancs and Materal Propertes By Kuno TAKAHASHI Tokyo Insttute of Technology, Tokyo 15-855, JAPA Phone/Fax +81-3-5734-3915 takahak@de.ttech.ac.jp http://www.de.ttech.ac.jp/~kt-lab/ Only for

More information

Temperature. Chapter Heat Engine

Temperature. Chapter Heat Engine Chapter 3 Temperature In prevous chapters of these notes we ntroduced the Prncple of Maxmum ntropy as a technque for estmatng probablty dstrbutons consstent wth constrants. In Chapter 9 we dscussed the

More information

Outline. Unit Eight Calculations with Entropy. The Second Law. Second Law Notes. Uses of Entropy. Entropy is a Property.

Outline. Unit Eight Calculations with Entropy. The Second Law. Second Law Notes. Uses of Entropy. Entropy is a Property. Unt Eght Calculatons wth Entropy Mechancal Engneerng 370 Thermodynamcs Larry Caretto October 6, 010 Outlne Quz Seven Solutons Second law revew Goals for unt eght Usng entropy to calculate the maxmum work

More information

Mass transfer in multi-component mixtures

Mass transfer in multi-component mixtures Chapters -0 ex. 7, of 5 of boo See also Krshna & Wesselngh Chem. Eng. Sc. 5(6) 997 86-9 Mass transfer n mult-component mxtures Ron Zevenhoven Åbo Aadem Unversty Thermal and Flow Engneerng Laboratory tel.

More information

Ph.D. Qualifying Examination in Kinetics and Reactor Design

Ph.D. Qualifying Examination in Kinetics and Reactor Design Knetcs and Reactor Desgn Ph.D.Qualfyng Examnaton January 2006 Instructons Ph.D. Qualfyng Examnaton n Knetcs and Reactor Desgn January 2006 Unversty of Texas at Austn Department of Chemcal Engneerng 1.

More information

CHEMICAL REACTIONS AND DIFFUSION

CHEMICAL REACTIONS AND DIFFUSION CHEMICAL REACTIONS AND DIFFUSION A.K.A. NETWORK THERMODYNAMICS BACKGROUND Classcal thermodynamcs descrbes equlbrum states. Non-equlbrum thermodynamcs descrbes steady states. Network thermodynamcs descrbes

More information

Problem Points Score Total 100

Problem Points Score Total 100 Physcs 450 Solutons of Sample Exam I Problem Ponts Score 1 8 15 3 17 4 0 5 0 Total 100 All wor must be shown n order to receve full credt. Wor must be legble and comprehensble wth answers clearly ndcated.

More information

Appendix II Summary of Important Equations

Appendix II Summary of Important Equations W. M. Whte Geochemstry Equatons of State: Ideal GasLaw: Coeffcent of Thermal Expanson: Compressblty: Van der Waals Equaton: The Laws of Thermdynamcs: Frst Law: Appendx II Summary of Important Equatons

More information

2.If the concentration is of bulk phenomenon, it is absorption. (e.g) Absorption of Ink on the surface of a chalk.

2.If the concentration is of bulk phenomenon, it is absorption. (e.g) Absorption of Ink on the surface of a chalk. 183101 EGIEERIG CHEMISTRY UIT 3 SURFACE CHEMISTRY TERMS AD DEFIITIOS: 1. Adsorpton: Concentraton of lqud or gaseous molecules over the surface of a sold materal s known as adsorpton. It s a surface phenomenon.

More information

Electrical double layer: revisit based on boundary conditions

Electrical double layer: revisit based on boundary conditions Electrcal double layer: revst based on boundary condtons Jong U. Km Department of Electrcal and Computer Engneerng, Texas A&M Unversty College Staton, TX 77843-318, USA Abstract The electrcal double layer

More information

4.2 Chemical Driving Force

4.2 Chemical Driving Force 4.2. CHEMICL DRIVING FORCE 103 4.2 Chemcal Drvng Force second effect of a chemcal concentraton gradent on dffuson s to change the nature of the drvng force. Ths s because dffuson changes the bondng n a

More information

1st Year Thermodynamic Lectures Dr Mark R. Wormald BIBLIOGRAPHY

1st Year Thermodynamic Lectures Dr Mark R. Wormald BIBLIOGRAPHY M.R.W. -- Thermodynamcs 5 1st Year Thermodynamc Lectures Dr Mark R. Wormald Soluton thermodynamcs :- Lecture 1. Behavour of deal solutons (and solvents). Defnton of dealty. Solvent n dlute solutons, collgatve

More information

Supplementary Notes for Chapter 9 Mixture Thermodynamics

Supplementary Notes for Chapter 9 Mixture Thermodynamics Supplementary Notes for Chapter 9 Mxture Thermodynamcs Key ponts Nne major topcs of Chapter 9 are revewed below: 1. Notaton and operatonal equatons for mxtures 2. PVTN EOSs for mxtures 3. General effects

More information

NAME and Section No. it is found that 0.6 mol of O

NAME and Section No. it is found that 0.6 mol of O NAME and Secton No. Chemstry 391 Fall 7 Exam III KEY 1. (3 Ponts) ***Do 5 out of 6***(If 6 are done only the frst 5 wll be graded)*** a). In the reacton 3O O3 t s found that.6 mol of O are consumed. Fnd

More information

CHEMICAL ENGINEERING

CHEMICAL ENGINEERING Postal Correspondence GATE & PSUs -MT To Buy Postal Correspondence Packages call at 0-9990657855 1 TABLE OF CONTENT S. No. Ttle Page no. 1. Introducton 3 2. Dffuson 10 3. Dryng and Humdfcaton 24 4. Absorpton

More information

Osmotic pressure and protein binding

Osmotic pressure and protein binding Osmotc pressure and proten bndng Igor R. Kuznetsov, KochLab Symposum talk 5/15/09 Today we take a closer look at one of the soluton thermodynamcs key ponts from Steve s presentaton. Here t s: d[ln(k off

More information

Crystal nucleation in sub-microemulsions

Crystal nucleation in sub-microemulsions Crystal nucleaton n sub-mcroemulsons Zdeněk Kožíšek Insttute of Physcs AS CR, Praha, Czech Republc kozsek@fzu.cz Hroshma Unversty, Japan, October 13, 211 Web page: http://www.fzu.cz/ kozsek/lectures/mcro211.pdf

More information

General Thermodynamics for Process Simulation. Dr. Jungho Cho, Professor Department of Chemical Engineering Dong Yang University

General Thermodynamics for Process Simulation. Dr. Jungho Cho, Professor Department of Chemical Engineering Dong Yang University General Thermodynamcs for Process Smulaton Dr. Jungho Cho, Professor Department of Chemcal Engneerng Dong Yang Unversty Four Crtera for Equlbra μ = μ v Stuaton α T = T β α β P = P l μ = μ l1 l 2 Thermal

More information

Solution Thermodynamics

Solution Thermodynamics Soluton hermodynamcs usng Wagner Notaton by Stanley. Howard Department of aterals and etallurgcal Engneerng South Dakota School of nes and echnology Rapd Cty, SD 57701 January 7, 001 Soluton hermodynamcs

More information

Number Average Molar Mass. Mass Average Molar Mass. Z-Average Molar Mass

Number Average Molar Mass. Mass Average Molar Mass. Z-Average Molar Mass 17 Molar mass: There are dfferent ways to report a molar mass lke (a) Number average molar mass, (b) mass average molar mass, (c) Vscosty average molar mass, (d) Z- Average molar mass Number Average Molar

More information

1) Silicon oxide has a typical surface potential in an aqueous medium of ϕ,0

1) Silicon oxide has a typical surface potential in an aqueous medium of ϕ,0 1) Slcon oxde has a typcal surface potental n an aqueous medum of ϕ, = 7 mv n 5 mm l at ph 9. Whch concentraton of catons do you roughly expect close to the surface? What s the average dstance between

More information

( ) 1/ 2. ( P SO2 )( P O2 ) 1/ 2.

( ) 1/ 2. ( P SO2 )( P O2 ) 1/ 2. Chemstry 360 Dr. Jean M. Standard Problem Set 9 Solutons. The followng chemcal reacton converts sulfur doxde to sulfur troxde. SO ( g) + O ( g) SO 3 ( l). (a.) Wrte the expresson for K eq for ths reacton.

More information

Thermo-Calc Software. Modelling Multicomponent Precipitation Kinetics with CALPHAD-Based Tools. EUROMAT2013, September 8-13, 2013 Sevilla, Spain

Thermo-Calc Software. Modelling Multicomponent Precipitation Kinetics with CALPHAD-Based Tools. EUROMAT2013, September 8-13, 2013 Sevilla, Spain Modellng Multcomponent Precptaton Knetcs wth CALPHAD-Based Tools Kasheng Wu 1, Gustaf Sterner 2, Qng Chen 2, Åke Jansson 2, Paul Mason 1, Johan Bratberg 2 and Anders Engström 2 1 Inc., 2 AB EUROMAT2013,

More information

modeling of equilibrium and dynamic multi-component adsorption in a two-layered fixed bed for purification of hydrogen from methane reforming products

modeling of equilibrium and dynamic multi-component adsorption in a two-layered fixed bed for purification of hydrogen from methane reforming products modelng of equlbrum and dynamc mult-component adsorpton n a two-layered fxed bed for purfcaton of hydrogen from methane reformng products Mohammad A. Ebrahm, Mahmood R. G. Arsalan, Shohreh Fatem * Laboratory

More information

Introduction to Statistical Methods

Introduction to Statistical Methods Introducton to Statstcal Methods Physcs 4362, Lecture #3 hermodynamcs Classcal Statstcal Knetc heory Classcal hermodynamcs Macroscopc approach General propertes of the system Macroscopc varables 1 hermodynamc

More information

Assignment 4. Adsorption Isotherms

Assignment 4. Adsorption Isotherms Insttute of Process Engneerng Assgnment 4. Adsorpton Isotherms Part A: Compettve adsorpton of methane and ethane In large scale adsorpton processes, more than one compound from a mxture of gases get adsorbed,

More information

Thermal-Fluids I. Chapter 18 Transient heat conduction. Dr. Primal Fernando Ph: (850)

Thermal-Fluids I. Chapter 18 Transient heat conduction. Dr. Primal Fernando Ph: (850) hermal-fluds I Chapter 18 ransent heat conducton Dr. Prmal Fernando prmal@eng.fsu.edu Ph: (850) 410-6323 1 ransent heat conducton In general, he temperature of a body vares wth tme as well as poston. In

More information

Physics 181. Particle Systems

Physics 181. Particle Systems Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

More information

Vapor-Liquid Equilibria for Water+Hydrochloric Acid+Magnesium Chloride and Water+Hydrochloric Acid+Calcium Chloride Systems at Atmospheric Pressure

Vapor-Liquid Equilibria for Water+Hydrochloric Acid+Magnesium Chloride and Water+Hydrochloric Acid+Calcium Chloride Systems at Atmospheric Pressure Chnese J. Chem. Eng., 4() 76 80 (006) RESEARCH OES Vapor-Lqud Equlbra for Water+Hydrochlorc Acd+Magnesum Chlorde and Water+Hydrochlorc Acd+Calcum Chlorde Systems at Atmospherc Pressure ZHAG Yng( 张颖 ) and

More information

5.62 Physical Chemistry II Spring 2008

5.62 Physical Chemistry II Spring 2008 MIT OpenCourseWare http://ocw.mt.edu 5.62 Physcal Chemstry II Sprng 2008 For nformaton about ctng these materals or our Terms of Use, vst: http://ocw.mt.edu/terms. 5.62 Sprng 2008 Lecture 34 Page Transton

More information

Week 9 Chapter 10 Section 1-5

Week 9 Chapter 10 Section 1-5 Week 9 Chapter 10 Secton 1-5 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

CHE-201. I n t r o d u c t i o n t o Chemical E n g i n e e r i n g. C h a p t e r 6. Multiphase Systems

CHE-201. I n t r o d u c t i o n t o Chemical E n g i n e e r i n g. C h a p t e r 6. Multiphase Systems I n t r o d u c t o n t o Chemcal E n g n e e r n g CHE-201 I N S T R U C T O R : D r. N a b e e l S a l m b o - G h a n d e r C h a t e r 6 Multhase Systems Introductory Statement: Phase s a state of

More information

1. Mean-Field Theory. 2. Bjerrum length

1. Mean-Field Theory. 2. Bjerrum length 1. Mean-Feld Theory Contnuum models lke the Posson-Nernst-Planck equatons are mean-feld approxmatons whch descrbe how dscrete ons are affected by the mean concentratons c and potental φ. Each on mgrates

More information

3. Be able to derive the chemical equilibrium constants from statistical mechanics.

3. Be able to derive the chemical equilibrium constants from statistical mechanics. Lecture #17 1 Lecture 17 Objectves: 1. Notaton of chemcal reactons 2. General equlbrum 3. Be able to derve the chemcal equlbrum constants from statstcal mechancs. 4. Identfy how nondeal behavor can be

More information

Lecture 3. Interaction of radiation with surfaces. Upcoming classes

Lecture 3. Interaction of radiation with surfaces. Upcoming classes Radaton transfer n envronmental scences Lecture 3. Interacton of radaton wth surfaces Upcomng classes When a ray of lght nteracts wth a surface several nteractons are possble: 1. It s absorbed. 2. It s

More information

THE CURRENT BALANCE Physics 258/259

THE CURRENT BALANCE Physics 258/259 DSH 1988, 005 THE CURRENT BALANCE Physcs 58/59 The tme average force between two parallel conductors carryng an alternatng current s measured by balancng ths force aganst the gravtatonal force on a set

More information

Name: SID: Discussion Session:

Name: SID: Discussion Session: Name: SID: Dscusson Sesson: Chemcal Engneerng Thermodynamcs 141 -- Fall 007 Thursday, November 15, 007 Mdterm II SOLUTIONS - 70 mnutes 110 Ponts Total Closed Book and Notes (0 ponts) 1. Evaluate whether

More information

Gasometric Determination of NaHCO 3 in a Mixture

Gasometric Determination of NaHCO 3 in a Mixture 60 50 40 0 0 5 15 25 35 40 Temperature ( o C) 9/28/16 Gasometrc Determnaton of NaHCO 3 n a Mxture apor Pressure (mm Hg) apor Pressure of Water 1 NaHCO 3 (s) + H + (aq) Na + (aq) + H 2 O (l) + CO 2 (g)

More information

Statistics Chapter 4

Statistics Chapter 4 Statstcs Chapter 4 "There are three knds of les: les, damned les, and statstcs." Benjamn Dsrael, 1895 (Brtsh statesman) Gaussan Dstrbuton, 4-1 If a measurement s repeated many tmes a statstcal treatment

More information

Chapter 11 Structure of Matter 133 Answers to the Conceptual Questions

Chapter 11 Structure of Matter 133 Answers to the Conceptual Questions hapter 11 Structure of Matter 1 Answers to the onceptual Questons 1. These models gave detaled explanatons for events that had already occurred but lacked any predctve power.. Many examples apply.. Although

More information

Lecture 17. Membrane Separations [Ch. 14]

Lecture 17. Membrane Separations [Ch. 14] Lecture 17. embrane Separatons [Ch. 14] embrane Separaton embrane aterals embrane odules Transport n embranes -Bulk flow - Lqud dffuson n pores - Gas dffuson - onporous membranes embrane Separaton Separaton

More information

Introduction to Interfacial Segregation. Xiaozhe Zhang 10/02/2015

Introduction to Interfacial Segregation. Xiaozhe Zhang 10/02/2015 Introducton to Interfacal Segregaton Xaozhe Zhang 10/02/2015 Interfacal egregaton Segregaton n materal refer to the enrchment of a materal conttuent at a free urface or an nternal nterface of a materal.

More information

STATISTICAL MECHANICS

STATISTICAL MECHANICS STATISTICAL MECHANICS Thermal Energy Recall that KE can always be separated nto 2 terms: KE system = 1 2 M 2 total v CM KE nternal Rgd-body rotaton and elastc / sound waves Use smplfyng assumptons KE of

More information

Course Notes: Thermodynamics and the Nernst-Planck Eqn. Reading: Johnston and Wu, chapts 2, 3, 5; Hille, chapts 10, 13, 14.

Course Notes: Thermodynamics and the Nernst-Planck Eqn. Reading: Johnston and Wu, chapts 2, 3, 5; Hille, chapts 10, 13, 14. 580.439 Course Notes: Thermodynamcs and the Nernst-Planck Eqn. Readng: Johnston and Wu, chapts 2, 3, 5; Hlle, chapts 10, 13, 14. In these lectures, the nature of on flux n free soluton and n dffuse membranes

More information

The ChemSep Book. Harry A. Kooijman Consultant. Ross Taylor Clarkson University, Potsdam, New York University of Twente, Enschede, The Netherlands

The ChemSep Book. Harry A. Kooijman Consultant. Ross Taylor Clarkson University, Potsdam, New York University of Twente, Enschede, The Netherlands The ChemSep Book Harry A. Koojman Consultant Ross Taylor Clarkson Unversty, Potsdam, New York Unversty of Twente, Enschede, The Netherlands Lbr Books on Demand www.bod.de Copyrght c 2000 by H.A. Koojman

More information

Problem Set #6 solution, Chem 340, Fall 2013 Due Friday, Oct 11, 2013 Please show all work for credit

Problem Set #6 solution, Chem 340, Fall 2013 Due Friday, Oct 11, 2013 Please show all work for credit Problem Set #6 soluton, Chem 340, Fall 2013 Due Frday, Oct 11, 2013 Please show all work for credt To hand n: Atkns Chap 3 Exercses: 3.3(b), 3.8(b), 3.13(b), 3.15(b) Problems: 3.1, 3.12, 3.36, 3.43 Engel

More information

Measurement of Radiation: Exposure. Purpose. Quantitative description of radiation

Measurement of Radiation: Exposure. Purpose. Quantitative description of radiation Measurement of Radaton: Exposure George Starkschall, Ph.D. Department of Radaton Physcs U.T. M.D. Anderson Cancer Center Purpose To ntroduce the concept of radaton exposure and to descrbe and evaluate

More information

Design Equations. ν ij r i V R. ν ij r i. Q n components. = Q f c jf Qc j + Continuous Stirred Tank Reactor (steady-state and constant phase)

Design Equations. ν ij r i V R. ν ij r i. Q n components. = Q f c jf Qc j + Continuous Stirred Tank Reactor (steady-state and constant phase) Desgn Equatons Batch Reactor d(v R c j ) dt = ν j r V R n dt dt = UA(T a T) r H R V R ncomponents V R c j C pj j Plug Flow Reactor d(qc j ) dv = ν j r 2 dt dv = R U(T a T) n r H R Q n components j c j

More information

Nucleation kinetics in closed systems

Nucleation kinetics in closed systems Nucleaton knetcs n closed systems COST Acton CM142: From molecules to crystals how do organc molecules form crystals? Zdeněk Kožíšek Insttute of Physcs of the Czech Academy of Scences, Prague, Czech Republc

More information

SCALE UP OF HEAP AND DUMP LEACHING RESULTS

SCALE UP OF HEAP AND DUMP LEACHING RESULTS SCALE UP OF HEAP AND DUMP LEACHING RESULTS J. M. Menacho and F. J. Troncoso, DRM Consultants, drm@drm.cl COPPER 2013 Conference, Hydrometallurgy Chapter, December 2013. 1 Antecedentes OUTLINE Current Scale

More information

Lecture 8 Modal Analysis

Lecture 8 Modal Analysis Lecture 8 Modal Analyss 16.0 Release Introducton to ANSYS Mechancal 1 2015 ANSYS, Inc. February 27, 2015 Chapter Overvew In ths chapter free vbraton as well as pre-stressed vbraton analyses n Mechancal

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014 Lecture 16 8/4/14 Unversty o Washngton Department o Chemstry Chemstry 452/456 Summer Quarter 214. Real Vapors and Fugacty Henry s Law accounts or the propertes o extremely dlute soluton. s shown n Fgure

More information

Physics Nov The Direction of a Reaction A + B C,

Physics Nov The Direction of a Reaction A + B C, Physcs 301 12-Nov-2003 21-1 Suppose we have a reacton such as The Drecton of a Reacton A + B C whch has come to equlbrum at some temperature τ. Now we rase the temperature. Does the equlbrum shft to the

More information

Fundamental Considerations of Fuel Cells for Mobility Applications

Fundamental Considerations of Fuel Cells for Mobility Applications Fundamental Consderatons of Fuel Cells for Moblty Applcatons Davd E. Foster Engne Research Center Unversty of Wsconsn - Madson Future Engnes and Ther Fuels ERC 2011 Symposum June 9, 2011 Motvaton Reducng

More information

Chapters 18 & 19: Themodynamics review. All macroscopic (i.e., human scale) quantities must ultimately be explained on the microscopic scale.

Chapters 18 & 19: Themodynamics review. All macroscopic (i.e., human scale) quantities must ultimately be explained on the microscopic scale. Chapters 18 & 19: Themodynamcs revew ll macroscopc (.e., human scale) quanttes must ultmately be explaned on the mcroscopc scale. Chapter 18: Thermodynamcs Thermodynamcs s the study o the thermal energy

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Hghly monodsperse core-shell partcles created by sold-state reactons Supplementary Materals Velmr Radmlovc 1,2, Coln Ophus 1,, Emmanuelle A Marqus 3, Marta D Rossell 4, Alfredo Tolley 1,5, Abhay Gautam

More information

1. Mathematical models of the chromatographic process

1. Mathematical models of the chromatographic process 1. athematcal models of the chromatographc process - What determnes retenton tme n L? - What causes pea broadenng n L? - Why are the L peas often asymmetrc? - Why s partton chromatography much more popular

More information

Physics 114 Exam 2 Fall 2014 Solutions. Name:

Physics 114 Exam 2 Fall 2014 Solutions. Name: Physcs 114 Exam Fall 014 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem Answer each of the followng questons. Ponts for each queston are ndcated n red. Unless otherwse ndcated,

More information

Supplementary Information. Fundamental Growth Principles of Colloidal Metal Nanoparticles

Supplementary Information. Fundamental Growth Principles of Colloidal Metal Nanoparticles Electronc Supplementary Materal (ESI) for CrystEngComm. Ths journal s The Royal Socety of Chemstry 2015 Supplementary Informaton Fundamental Growth Prncples of Collodal Metal Nanopartcles Jörg Polte* a

More information

Electrochemical Equilibrium Electromotive Force

Electrochemical Equilibrium Electromotive Force CHM465/865, 24-3, Lecture 5-7, 2 th Sep., 24 lectrochemcal qulbrum lectromotve Force Relaton between chemcal and electrc drvng forces lectrochemcal system at constant T and p: consder Gbbs free energy

More information

Solution Thermodynamics

Solution Thermodynamics CH2351 Chemcal Engneerng Thermodynamcs II Unt I, II www.msubbu.n Soluton Thermodynamcs www.msubbu.n Dr. M. Subramanan Assocate Professor Department of Chemcal Engneerng Sr Svasubramanya Nadar College of

More information

ME 300 Exam 2 November 18, :30 p.m. to 7:30 p.m.

ME 300 Exam 2 November 18, :30 p.m. to 7:30 p.m. CICLE YOU LECTUE BELOW: Frst Name Last Name 1:3 a.m. 1:3 p.m. Nak Gore ME 3 Exam November 18, 14 6:3 p.m. to 7:3 p.m. INSTUCTIONS 1. Ths s a closed book and closed notes examnaton. You are provded wth

More information

Temperature. Chapter Temperature Scales

Temperature. Chapter Temperature Scales Chapter 12 Temperature In prevous chapters of these notes we ntroduced the Prncple of Maxmum Entropy as a technque for estmatng probablty dstrbutons consstent wth constrants. In Chapter 8 we dscussed the

More information

Introduction to geochemical modeling

Introduction to geochemical modeling Introducton to geochemcal modelng Prof. Dr. Broder J. Merkel Char of Hydrogeology Technsche Unverstät Bergakademe Freberg Germany What determnes the dstrbuton of aquatc speces? Interactons of aquatc speces

More information

Relaxation in water /spin ice models

Relaxation in water /spin ice models Relaxaton n water /spn ce models Ivan A. Ryzhkn Insttute of Sold State Physcs of Russan Academy of Scences, Chernogolovka, Moscow Dstrct, 1443 Russa Outlne specfcty of approach quaspartcles Jaccard s theory

More information

SOLUTION/EXAMPLES. Contact during the exam: phone: , EXAM TBT4135 BIOPOLYMERS. 14 December Time:

SOLUTION/EXAMPLES. Contact during the exam: phone: , EXAM TBT4135 BIOPOLYMERS. 14 December Time: 1 NRWEGIN UNIVERSITY F SCIENCE ND TECHNLGY DEPRTMENT F BITECHNLGY Professor Bjørn E. Chrstensen, Department of Botechnology Contact durng the exam: phone: 73593327, 92634016 EXM TBT4135 BIPLYMERS 14 December

More information

Recovery of metal ion from micellar solution

Recovery of metal ion from micellar solution Indan Journal of Chemcal Technology Vol. 14, July 2007, pp. 362-370 Recovery of metal on from mcellar soluton Rahul Gawale & K V Marathe * Department of Chemcal Engneerng, Insttute of Chemcal Technology,

More information

Modeling Interfacial Tension in Liquid Liquid Systems Containing Electrolytes

Modeling Interfacial Tension in Liquid Liquid Systems Containing Electrolytes Artcle pubs.acs.org/iecr Modelng Interfacal Tenson n Lqud Lqud Systems Contanng Electrolytes Pemng Wang* and Andrzej Anderko OLI Systems Inc., 240 Cedar Knolls Road, Sute 3, Cedar Knolls, New Jersey 07927,

More information

CHEMISTRY Midterm #2 answer key October 25, 2005

CHEMISTRY Midterm #2 answer key October 25, 2005 CHEMISTRY 123-01 Mdterm #2 answer key October 25, 2005 Statstcs: Average: 70 pts (70%); Hghest: 97 pts (97%); Lowest: 33 pts (33%) Number of students performng at or above average: 62 (63%) Number of students

More information

An Improved Model for the Droplet Size Distribution in Sprays Developed From the Principle of Entropy Generation maximization

An Improved Model for the Droplet Size Distribution in Sprays Developed From the Principle of Entropy Generation maximization ILASS Amercas, 9 th Annual Conference on Lqud Atomzaton and Spray Systems, oronto, Canada, May 6 An Improved Model for the Droplet Sze Dstrbuton n Sprays Developed From the Prncple of Entropy Generaton

More information

Frequency dependence of the permittivity

Frequency dependence of the permittivity Frequency dependence of the permttvty February 7, 016 In materals, the delectrc constant and permeablty are actually frequency dependent. Ths does not affect our results for sngle frequency modes, but

More information

PES 1120 Spring 2014, Spendier Lecture 6/Page 1

PES 1120 Spring 2014, Spendier Lecture 6/Page 1 PES 110 Sprng 014, Spender Lecture 6/Page 1 Lecture today: Chapter 1) Electrc feld due to charge dstrbutons -> charged rod -> charged rng We ntroduced the electrc feld, E. I defned t as an nvsble aura

More information

ˆ (0.10 m) E ( N m /C ) 36 ˆj ( j C m)

ˆ (0.10 m) E ( N m /C ) 36 ˆj ( j C m) 7.. = = 3 = 4 = 5. The electrc feld s constant everywhere between the plates. Ths s ndcated by the electrc feld vectors, whch are all the same length and n the same drecton. 7.5. Model: The dstances to

More information

Solutions Review Worksheet

Solutions Review Worksheet Solutons Revew Worksheet NOTE: Namng acds s ntroduced on pages 163-4 and agan on pages 208-9.. You learned ths and were quzzed on t, but snce acd names are n the Data Booklet you wll not be tested on ths

More information