Biological Electron Transfer and Catalysis

Size: px
Start display at page:

Download "Biological Electron Transfer and Catalysis"

Transcription

1 Biological Electron Transfer and Catalysis The mission of the BETCy EFRC is to define BETCy EFRC uses advanced physical the molecular mechanisms controlling techniques to delineate the molecular electron flow in coupling electrochemical and atomic determinants of factors that potential energy to chemical bond formation. support highly efficient electron transfer reactions. The studies provide a framework of design principles to advance the development of next generation catalysts. Research Team 12 PIs & 34 research personnel John Peters Montana State University & Washington State University (Director) Structure/ Biochemistry Mike Adams University of Georgia (Assoc. Director) - Biochemistry Pin-Ching Maness (Assoc. Director) Biochemistry / Physiology Paul King National Renewable Energy Laboratory - Spectroscopy Carrie Harwood University of Washington Biochemistry / Genetics Lance Seefeldt Utah State University Nitrogenase Biochemistry Anne Jones Arizona State University Direct Electrochemistry David Beratan Duke University Electron Transfer Theory Anne-Frances Miller University of Kentucky Optical Spectroscopy / Mechanism Brian Bothner - Montana State University Mass Spectrometry Eric Boyd Montana State University Informatics Ross Carlson Montana State University Modeling

2 BETCy Scientific Organization Research Thrusts Elucidating catalytic mechanisms for efficient interconversion of electrochemical potential and chemical bond energy Thrust 1 Electron Bifurcation Mechanism of coupling exergonic and endergonic electron transfer reactions by electron. Spontaneous electron transfer reaction coupled to thermodynamically unfavorable (non-spontaneous) electron transfer reaction Thrust Leaders Adams King Light Organics Thrust 2 Chemical Bond Driven Redox Chemistry Coupling chemical bond energy and electrochemical potential to achieve very low potential reductions. Harwood Seefeldt Thrust 3 Catalytic Bias Atomic level determinants of enzymatic redox properties and their relationship to catalytic bias. Preference for the forward or reverse catalytic reaction. Jones Beratan 2

3 Bifurcating Nfn NADH Dependent Ferredoxin NADP Oxidoreductase More Reduced Nfn reactions Overall reaction: -500 E (mv) e - Ferredoxin mv 2NADPH + 2Fd ox + NAD + + 2NADP + + 2Fd red + NADH NfnS NfnA e - More Oxidized NADP + /NADPH mv e - NAD + /NADH mv FAD [2Fe-2S] NfnL NfnB FAD [4Fe-4S] -200 [4Fe-4S] Bifurcating Enzymes Couple Spontaneous and Non-Spontaneous Reactions

4 Mechanism of flavin based bifurcation The site where 2-electron pairs from NADPH are bifurcated to form electrons of widely different potentials (~1 V) was identified. A short-lived (picoseconds), high energy, flavin anionic semiquinone intermediate is key to driving the endergonic reduction of ferredoxin. 1 st Ox Standard Potentials 2 nd Ox Crossed Potentials 1 st Ox 2 nd Ox 2 e - Reducing Oxidizing King Peters Jones Miller Bothner Adams Mechanistic insights into energy conservation by flavin-based electron bifurcation. Lubner et al., Nat. Chem. Biol. 13:655. DOI: /nchembio

5 A role for Marcus inversion in gating electron flow -E 2 nd electron L-FAD 7.5 Å ASQ [4Fe-4S] 9.6 Å NAD + S-FAD 8.6 Å [2Fe-2S] 14.1Å 1 st electron L-FAD HQ [4Fe-4S] Fd Beratan

6 Building Synergy - Exploiting Technical Capabilities (ETC) Innovation Award BETCy established the ETC Innovation Award to catalyze high risk/high reward research collaborations within BETCy, which in combination with monthly face-to-face videoconference meetings and technical workshops act to drive research forward. ETC award has stimulated team building and interaction and encourages proposal and idea generation from grad students and postdocs. Established in Spring 2015 by internal BETCy Progress Review Panel, Awards of supplementary travel assistance/year, open to all grad students and post docs Applicants write a 1 page proposal, awardees give a 10 minute summary talk of their work during the BETCy all hands meeting Exploiting Technical Capabilities a b John Hoben (UK/Miller) and Cara Lubner (NREL/King) investigated electron donor/acceptor pairs of flavin sites in bifurcating enzymes using transient absorption spectroscopy Data obtained to probe the mechanism of electron transfer at flavin sites of bifurcating enzymes The short-lived transient species at 365 nm (assigned to anionic semiquinone) may be a signature of bifurcating flavin sites (a). Global analysis has been initiated to aid spectral assignments using NR as a non-bifurcating model (b). Equilibrium and ultrafast kinetic studies manipulating electron transfer: a short-lived flavin semiquinone is not sufficient for electron bifurcation. Hoben, et al. J. Biol. Chem., DOI: /jbc.M

7 Light driven nitrogenase:cds hybrid turnover (min -1 ) mol MoFe protein Electrochemical potential required for N 2 activation is provided by Fe protein mediated hydrolysis of ~16 ATP ( 488 kj mol -1 or 5 ev, or ~0.62 ev/e ). CdS Nanorod e - MoFe Protein β Under illumination photoexcited CdS nanorods (orange) provide activated electrons to MoFe protein for the catalytic synthesis of NH 3. D D ox h + [8Fe-7S] 1e - N 2+ nh + FeMo-co 2NH 3 + H 2 ½ MoFe protein α mol NH 3 15x King Seefeldt illumination time (min) 0 10% 10% H2 10% 100% N 2 C 2 H 2 CO H 2 Ar 100% 90% N 2 Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid. Brown, et al. Science 352:448 DOI: /science.aaf2091

8 Building Technical Capabilities Laser Integrated EPR Enables light triggered transient spectroscopic measurements For BETCy, this unique capability provides new ways through photochemical reactions to capture reaction intermediates and measure in real time how redox active centers function in electron-transfer and energy catalysis. Enables in-situ controlled and timed optical excitation of EPR samples EPR with integrated OpoTek Radiant 355 LD pulsed laser Nanosecond pulses up to 30mJ/pulse Wavelengths from 400 to 2100 nm Synchronization of light and microwave pulses up to 10 Hz repetition rates NREL and BETCy scientists Dave Bobela and David Mulder talk about EPR and light-triggered processes at an open house showcasing the new capabilities. Photo: Dennis Schroeder, NREL

9 BETCy Talks Speaker(s) Title ID Day Time Carolyn E. Lubner NREL Electron Bifurcation Mechanistic First Principles C-I-4 Mon 4:00-4:20 pm Lubner Nguyen Yuly Diep Nguyen UGA Jonathan Yuly Duke Mechanistic insights into energy conservation by flavin-based electron bifurcation Team Science Competition A-III-1 Tue 10:40-11:00 am Jones King Anne K. Jones ASU Paul W. King NREL Oxidative Inactivation of [FeFe]-Hydrogenase as a Model for Redox Tuning of Enzyme Active Site Reactivity A-III-3 Tue 11:20-11:40 am Lance C. Seefeldt USU Caroline S. Harwood UW Light Driven N-H and C-H Bond Formation by Nitrogenase C-IV-2 Tue 1:50-2:10 pm Seefeldt Harwood 9

10 BETCy Posters Presenters Title ID Day Time Lubner Nguyen Beratan Carolyn E. Lubner, Diep M.N. Nguyen, David Beratan Physical and Thermodynamic Determinants of Flavin-Based Electron Bifurcation PI-A-4 Mon 5:00-6:30 pm Tokmina- Lukaszewska Peters Monika Tokmina- Lukaszewska, John W. Peters Nitrogenase Fe Protein Cycle PI-C-2 Mon 5:00-6:30 pm Yanning Zheng, Rhesa N. Ledbetter Fe-Nitrogenase: C-H and N-H Bond Formation PI-C-10 Mon 5:00-6:30 pm Zheng Ledbetter Artz Yuly Adams Jacob H. Artz, Jonathan L. Yuly, Michael W.W. Adams Physical and Thermodynamic Determinants of Non-Flavin Based Electron Bifurcation PII-A-2 Tue 3:30-5:00 pm S. Garrett Williams, Paul W. King Energetics of [FeS] Cluster Assemblies and Influence on Catalysis PII-C-6 Tue 3:30-5:00 pm Williams King 10

Lecture 7: Enzymes and Energetics

Lecture 7: Enzymes and Energetics Lecture 7: Enzymes and Energetics I. Biological Background A. Biological work requires energy 1. Energy is the capacity to do work a. Energy is expressed in units of work (kilojoules) or heat energy (kilocalories)

More information

2 nd Penn State Bioinorganic Workshop - May 31 st June 9 th 2012

2 nd Penn State Bioinorganic Workshop - May 31 st June 9 th 2012 Thursday May 31 2 nd Penn State Bioinorganic Workshop - May 31 st June 9 th 2012 6 pm Registration and reception Arboretum (see map) Friday June 1 9:00 10:30 Principles of coordination chemistry 100 Berg

More information

Chapter 8: Energy and Metabolism

Chapter 8: Energy and Metabolism Chapter 8: Energy and Metabolism Why do organisms need energy? How do organisms manage their energy needs? Defining terms and issues: energy and thermodynamics metabolic reactions and energy transfers

More information

2054, Chap. 8, page 1

2054, Chap. 8, page 1 2054, Chap. 8, page 1 I. Metabolism: Energetics, Enzymes, and Regulation (Chapter 8) A. Energetics and work 1. overview a. energy = ability to do work (1) chemical, transport, mechanical (2) ultimate source

More information

Basic Concepts of Metabolism. Stages of Catabolism. Key intermediates 10/12/2015. Chapter 15, Stryer Short Course

Basic Concepts of Metabolism. Stages of Catabolism. Key intermediates 10/12/2015. Chapter 15, Stryer Short Course Basic Concepts of Metabolism Chapter 15, Stryer Short Course Digestion Formation of key intermediate small molecules Formation of ATP Stages of Catabolism Key intermediates 1 Fundamental Needs for Energy

More information

Enzyme Enzymes are proteins that act as biological catalysts. Enzymes accelerate, or catalyze, chemical reactions. The molecules at the beginning of

Enzyme Enzymes are proteins that act as biological catalysts. Enzymes accelerate, or catalyze, chemical reactions. The molecules at the beginning of Enzyme Enzyme Enzymes are proteins that act as biological catalysts. Enzymes accelerate, or catalyze, chemical reactions. The molecules at the beginning of the process are called substrates and the enzyme

More information

UNC EFRC: CENTER for SOLAR FUELS

UNC EFRC: CENTER for SOLAR FUELS UNC EFRC: CENTER for SOLAR FUELS Catalysis Spectroscopy Materials Fabrication Stabilization Theory, Devices T. Meyer, G. Meyer Papanikolas, Atkin Brookhart, Cahoon Dempsey, Kanai Lopez, Miller, Moran Schauer,

More information

Principles of Bioenergetics. Lehninger 3 rd ed. Chapter 14

Principles of Bioenergetics. Lehninger 3 rd ed. Chapter 14 1 Principles of Bioenergetics Lehninger 3 rd ed. Chapter 14 2 Metabolism A highly coordinated cellular activity aimed at achieving the following goals: Obtain chemical energy. Convert nutrient molecules

More information

Department of Chemistry and Biochemistry University of Lethbridge. Biochemistry II. Bioenergetics

Department of Chemistry and Biochemistry University of Lethbridge. Biochemistry II. Bioenergetics Department of Chemistry and Biochemistry University of Lethbridge II. Bioenergetics Slide 1 Bioenergetics Bioenergetics is the quantitative study of energy relationships and energy conversion in biological

More information

Ground Rules of Metabolism CHAPTER 6

Ground Rules of Metabolism CHAPTER 6 Ground Rules of Metabolism CHAPTER 6 Antioxidants You ve heard the term. What s the big deal? Found naturally in many fruits and vegetables Added to many products What do they actually do? Antioxidants

More information

Activity: Identifying forms of energy

Activity: Identifying forms of energy Activity: Identifying forms of energy INTRODUCTION TO METABOLISM Metabolism Metabolism is the sum of all chemical reactions in an organism Metabolic pathway begins with a specific molecule and ends with

More information

Energy and Cells. Appendix 1. The two primary energy transformations in plants are photosynthesis and respiration.

Energy and Cells. Appendix 1. The two primary energy transformations in plants are photosynthesis and respiration. Energy and Cells Appendix 1 Energy transformations play a key role in all physical and chemical processes that occur in plants. Energy by itself is insufficient to drive plant growth and development. Enzymes

More information

Chapter 6: Energy and Metabolism

Chapter 6: Energy and Metabolism Chapter 6: Energy and Metabolism Student: 1. Oxidation and reduction reactions are chemical processes that result in a gain or loss in A) atoms. B) neutrons. C) electrons. D) molecules. E) protons. 2.

More information

BIOLOGICAL SCIENCE. Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge. FIFTH EDITION Freeman Quillin Allison

BIOLOGICAL SCIENCE. Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge. FIFTH EDITION Freeman Quillin Allison BIOLOGICAL SCIENCE FIFTH EDITION Freeman Quillin Allison 8 Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge Roadmap 8 In this chapter you will learn how Enzymes use

More information

2. The study of is the study of behavior (capture, storage, usage) of energy in living systems.

2. The study of is the study of behavior (capture, storage, usage) of energy in living systems. Cell Metabolism 1. Each of the significant properties of a cell, its growth, reproduction, and responsiveness to its environment requires. 2. The study of is the study of behavior (capture, storage, usage)

More information

I. Flow of Energy in Living Things II. Laws of Thermodynamics & Free Energy III. Activation Energy IV. Enzymes V. Reaction Coupling VI.

I. Flow of Energy in Living Things II. Laws of Thermodynamics & Free Energy III. Activation Energy IV. Enzymes V. Reaction Coupling VI. Chapter 6 Energy & Metabolism I. Flow of Energy in Living Things II. Laws of Thermodynamics & Free Energy III. Activation Energy IV. Enzymes V. Reaction Coupling VI. Metabolism I. Flow of Energy in Living

More information

BIOCHEMISTRY. František Vácha. JKU, Linz.

BIOCHEMISTRY. František Vácha. JKU, Linz. BIOCHEMISTRY František Vácha http://www.prf.jcu.cz/~vacha/ JKU, Linz Recommended reading: D.L. Nelson, M.M. Cox Lehninger Principles of Biochemistry D.J. Voet, J.G. Voet, C.W. Pratt Principles of Biochemistry

More information

(kilo ) or heat energy (kilo ) C. Organisms carry out conversions between potential energy and kinetic energy 1. Potential energy is energy;

(kilo ) or heat energy (kilo ) C. Organisms carry out conversions between potential energy and kinetic energy 1. Potential energy is energy; I. Biological work requires energy A. Energy is the to do work B. Energy is expressed in units of work (kilo ) or heat energy (kilo ) C. Organisms carry out conversions between potential energy and kinetic

More information

PHOTOSYNTHESIS. Light Reaction Calvin Cycle

PHOTOSYNTHESIS. Light Reaction Calvin Cycle PHOTOSYNTHESIS Light Reaction Calvin Cycle Photosynthesis Purpose: use energy from light to convert inorganic compounds into organic fuels that have stored potential energy in their carbon bonds Carbon

More information

Chapter 13 Principles of Bioenergetics

Chapter 13 Principles of Bioenergetics Chapter 13 Principles of Bioenergetics 1. Cells need energy to do all their work To generate and maintain its highly ordered structure (biosynthesis of macromolecules) To generate all kinds of movement

More information

Chapter 6- An Introduction to Metabolism*

Chapter 6- An Introduction to Metabolism* Chapter 6- An Introduction to Metabolism* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. The Energy of Life

More information

What Is Energy? Energy is the capacity to do work. First Law of Thermodynamics. Types of energy

What Is Energy? Energy is the capacity to do work. First Law of Thermodynamics. Types of energy What Is Energy? Energy is the capacity to do work. Synthesizing molecules Moving objects Generating heat and light Types of Kinetic: of movement otential: stored First Law of Thermodynamics Energy cannot

More information

Free Energy. because H is negative doesn't mean that G will be negative and just because S is positive doesn't mean that G will be negative.

Free Energy. because H is negative doesn't mean that G will be negative and just because S is positive doesn't mean that G will be negative. Biochemistry 462a Bioenergetics Reading - Lehninger Principles, Chapter 14, pp. 485-512 Practice problems - Chapter 14: 2-8, 10, 12, 13; Physical Chemistry extra problems, free energy problems Free Energy

More information

Biological Chemistry and Metabolic Pathways

Biological Chemistry and Metabolic Pathways Biological Chemistry and Metabolic Pathways 1. Reaction a. Thermodynamics b. Kinetics 2. Enzyme a. Structure and Function b. Regulation of Activity c. Kinetics d. Inhibition 3. Metabolic Pathways a. REDOX

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism Chapter 8: An Introduction to Metabolism Key Concepts 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 8.2 The free-energy change of a reaction tells us

More information

Chapter 5. Energy Flow in the Life of a Cell

Chapter 5. Energy Flow in the Life of a Cell Chapter 5 Energy Flow in the Life of a Cell Including some materials from lectures by Gregory Ahearn University of North Florida Ammended by John Crocker Copyright 2009 Pearson Education, Inc.. Review

More information

Metabolism. Fermentation vs. Respiration. End products of fermentations are waste products and not fully.

Metabolism. Fermentation vs. Respiration. End products of fermentations are waste products and not fully. Outline: Metabolism Part I: Fermentations Part II: Respiration Part III: Metabolic Diversity Learning objectives are: Learn about respiratory metabolism, ATP generation by respiration linked (oxidative)

More information

Electron Bifurcation. A brief history of earth and life

Electron Bifurcation. A brief history of earth and life Electron Bifurcation life s 3rd mechanism of energy conversion Christoph Flamm Institute for Theoretical Chemistry University of Vienna TBI Winterseminar, Bled, Slovenia, February 11-18 2018 A brief history

More information

Chapter 6: Energy Flow in the Life of a Cell

Chapter 6: Energy Flow in the Life of a Cell Chapter 6: Energy Flow in the Life of a Cell What is Energy? Answer: The Capacity to do Work Types of Energy: 1) Kinetic Energy = Energy of movement Light (movement of photons) Heat (movement of particles)

More information

M.Sc. Project Introduction Nitrogen-fixing Enzymes

M.Sc. Project Introduction Nitrogen-fixing Enzymes M.Sc. Project Introduction Nitrogen-fixing Enzymes M.Sc. Candidate: Egill Skulason Supervisor: Hannes Jonsson Co-supervisor: Magnus Mar Kristjansson Raunvisindastofnun Haskola Islands Efnafraedistofa vklubbur

More information

Redox cycling. basic concepts of redox biology

Redox cycling. basic concepts of redox biology Redox cycling basic concepts of redox biology, MD PhD Division of Biochemistry Medical Biochemistry and Biophysics Karolinska Institutet Stockholm, Sweden Elias.Arner@ki.se What is redox? Redox: Reduction

More information

Outline. Metabolism: Energy and Enzymes. Forms of Energy. Chapter 6

Outline. Metabolism: Energy and Enzymes. Forms of Energy. Chapter 6 Metabolism: Energy and Enzymes Chapter 6 Forms of Energy Outline Laws of Thermodynamics Metabolic Reactions ATP Metabolic Pathways Energy of Activation Enzymes Photosynthesis Cellular Respiration 1 2 Forms

More information

Lecture Series 9 Cellular Pathways That Harvest Chemical Energy

Lecture Series 9 Cellular Pathways That Harvest Chemical Energy Lecture Series 9 Cellular Pathways That Harvest Chemical Energy Reading Assignments Review Chapter 3 Energy, Catalysis, & Biosynthesis Read Chapter 13 How Cells obtain Energy from Food Read Chapter 14

More information

Photosynthesis in Detail. 3/19/2014 Averett

Photosynthesis in Detail. 3/19/2014 Averett Photosynthesis in Detail 1 In photosynthesis many chemical reactions, enzymes and ions work together in a precise order. Enzymes Biological catalyst Substance that initiates or speeds up the rate of a

More information

Unit 7 Part I: Introductions to Biochemistry

Unit 7 Part I: Introductions to Biochemistry Unit 7 Part I: Introductions to Biochemistry Chemical Reactions, Enzymes and ATP 19-Mar-14 Averett 1 Chemical Reactions Chemical Reactions Process by which one set of chemicals is changed into another

More information

Photo-Phosphorylation. Photosynthesis 11/29/10. Lehninger 5 th ed. Chapter 19

Photo-Phosphorylation. Photosynthesis 11/29/10. Lehninger 5 th ed. Chapter 19 1 Photo-Phosphorylation Lehninger 5 th ed. Chapter 19 2 Photosynthesis The source of food, and therefore life on earth. It uses water to produce O 2. However E 0 of water is 0.816V (NADH s is -0.32V).

More information

Electrochemistry & Redox. Voltaic Cells. Electrochemical Cells

Electrochemistry & Redox. Voltaic Cells. Electrochemical Cells Electrochemistry & Redox An oxidation-reduction (redox) reaction involves the transfer of electrons from the reducing agent to the oxidising agent. OXIDATION - is the LOSS of electrons REDUCTION - is the

More information

CHEM 109A Organic Chemistry

CHEM 109A Organic Chemistry CHEM 109A Organic Chemistry https://labs.chem.ucsb.edu/zakarian/armen/courses.html Chapter 5 Alkene: Introduction Thermodynamics and Kinetics Midterm 2... Grades will be posted on Tuesday, Feb. 27 th.

More information

Chapter Cells and the Flow of Energy A. Forms of Energy 1. Energy is capacity to do work; cells continually use energy to develop, grow,

Chapter Cells and the Flow of Energy A. Forms of Energy 1. Energy is capacity to do work; cells continually use energy to develop, grow, Chapter 6 6.1 Cells and the Flow of Energy A. Forms of Energy 1. Energy is capacity to do work; cells continually use energy to develop, grow, repair, reproduce, etc. 2. Kinetic energy is energy of motion;

More information

Pathways that Harvest and Store Chemical Energy

Pathways that Harvest and Store Chemical Energy 6 Pathways that Harvest and Store Chemical Energy Energy is stored in chemical bonds and can be released and transformed by metabolic pathways. Chemical energy available to do work is termed free energy

More information

Biology Reading Assignments:

Biology Reading Assignments: Biology 205 5.13.08 Reading Assignments: Chapter 3 Energy, Catalysis and Biosynthesis pgs. 83-94; 106-116 (Note the various roles of nucleotide based carrier molecules); work questions 3-2 and 3-3 Chapter

More information

20. Electron Transport and Oxidative Phosphorylation

20. Electron Transport and Oxidative Phosphorylation 20. Electron Transport and Oxidative Phosphorylation 20.1 What Role Does Electron Transport Play in Metabolism? Electron transport - Role of oxygen in metabolism as final acceptor of electrons - In inner

More information

Supplementary thermodynamics as applied to biosystems

Supplementary thermodynamics as applied to biosystems Supplementary thermodynamics as applied to biosystems Glucose is transferred to glucose-6-phosphate, abbreviated here to G6P. The reaction may be written Glucose + phosphate G6P + H 2 O G o = 13.8kJ/mol

More information

Scission of Dinitrogen by a Molybdenum(III) Xylidene Complex. CHM 5.33 Fall 2005

Scission of Dinitrogen by a Molybdenum(III) Xylidene Complex. CHM 5.33 Fall 2005 Scission of Dinitrogen by a Molybdenum(III) Xylidene Complex CHM 5.33 Fall 2005 Introduction The experiment is based on research performed in the laboratory of Professor Cummins during the early 90 s.

More information

Chapter 8 Notes. An Introduction to Metabolism

Chapter 8 Notes. An Introduction to Metabolism Chapter 8 Notes An Introduction to Metabolism Describe how allosteric regulators may inhibit or stimulate the activity of an enzyme. Objectives Distinguish between the following pairs of terms: catabolic

More information

An Introduction to Metabolism

An Introduction to Metabolism LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 8 An Introduction to Metabolism

More information

Biology Reading Assignment: Chapter 9 in textbook

Biology Reading Assignment: Chapter 9 in textbook Biology 205 5.10.06 Reading Assignment: Chapter 9 in textbook HTTP://WUNMR.WUSTL.EDU/EDUDEV/LABTUTORIALS/CYTOCHROMES/CYTOCHROMES.HTML What does a cell need to do? propagate itself (and its genetic program)

More information

*The entropy of a system may decrease, but the entropy of the system plus its surroundings must always increase

*The entropy of a system may decrease, but the entropy of the system plus its surroundings must always increase AP biology Notes: Metabolism Metabolism = totality of an organism's chemical process concerned with managing cellular resources. Metabolic reactions are organized into pathways that are orderly series

More information

Overview of Photosynthesis

Overview of Photosynthesis Overview of Photosynthesis In photosynthesis, green plants absorb energy from the sun and use the energy to drive an endothermic reaction, the reaction between carbon dioxide and water that produces glucose

More information

PHOTOSYNTHESIS. The Details

PHOTOSYNTHESIS. The Details PHOTOSYNTHESIS The Details Photosynthesis is divided into 2 sequential processes: 1. The Light Dependent Reactions (stages 1 & 2) 2. The Light Independent Reactions (stage 3) a.k.a. the Calvin Cycle THE

More information

January 8 th : Introduction to the course

January 8 th : Introduction to the course January 8 th : Introduction to the course ANNOUNCEMENTS The class consists of three major sections: 1. Biological energetics (metabolism): a. Types of energy relevant to cells b. Cellular mechanisms for

More information

C. Incorrect! Catalysts themselves are not altered or consumed during the reaction.

C. Incorrect! Catalysts themselves are not altered or consumed during the reaction. Human Physiology - Problem Drill 04: Enzymes and Energy Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully, (2) Work the problems on paper as needed, (3) Pick the answer,

More information

Chemistry 5.07SC Biological Chemistry I Fall Semester, 2013

Chemistry 5.07SC Biological Chemistry I Fall Semester, 2013 Chemistry 5.07SC Biological Chemistry I Fall Semester, 2013 Lecture 10. Biochemical Transformations II. Phosphoryl transfer and the kinetics and thermodynamics of energy currency in the cell: ATP and GTP.

More information

I. Enzymes as Catalysts Chapter 4

I. Enzymes as Catalysts Chapter 4 8/29/11 I. Enzymes as Catalysts Chapter 4 Enzymes and Energy Lecture PowerPoint Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Enzymes Activation Energy A class

More information

Biochemical bases for energy transformations. Biochemical bases for energy transformations. Nutrition 202 Animal Energetics R. D.

Biochemical bases for energy transformations. Biochemical bases for energy transformations. Nutrition 202 Animal Energetics R. D. Biochemical bases for energy transformations Biochemical bases for energy transformations Nutrition 202 Animal Energetics R. D. Sainz Lecture 02 Energy originally from radiant sun energy Captured in chemical

More information

An Introduction to Metabolism

An Introduction to Metabolism An Introduction to Metabolism Chapter 8 Objectives Distinguish between the following pairs of terms: catabolic and anabolic pathways; kinetic and potential energy; open and closed systems; exergonic and

More information

Photosystem I in Arabidopsis Thaliana

Photosystem I in Arabidopsis Thaliana Photosystem I in Arabidopsis Thaliana Part A. Photosystem I in Arabidopsis Thaliana Arabidopsis thaliana is a small flowering plant related to the cabbage and mustard plants. Like all plants, Arabidopsis

More information

CHEMISTRY (CHEM) CHEM 5800 Principles Of Materials Chemistry. Tutorial in selected topics in materials chemistry. S/U grading only.

CHEMISTRY (CHEM) CHEM 5800 Principles Of Materials Chemistry. Tutorial in selected topics in materials chemistry. S/U grading only. Chemistry (CHEM) 1 CHEMISTRY (CHEM) CHEM 5100 Principles of Organic and Inorganic Chemistry Study of coordination compounds with a focus on ligand bonding, electron counting, molecular orbital theory,

More information

Lecture 2: Biological Thermodynamics [PDF] Key Concepts

Lecture 2: Biological Thermodynamics [PDF] Key Concepts Lecture 2: Biological Thermodynamics [PDF] Reading: Berg, Tymoczko & Stryer: pp. 11-14; pp. 208-210 problems in textbook: chapter 1, pp. 23-24, #4; and thermodynamics practice problems [PDF] Updated on:

More information

Exam 4 April 15, 2005 CHEM 3511 Print Name: KEY Signature

Exam 4 April 15, 2005 CHEM 3511 Print Name: KEY Signature 1) (8 pts) General Properties of Enzymes. Give four properties of enzymaticallycatalyzed reactions. The answers should indicate how enzymatic reactions differ from non-enzymatic reactions. Write four only

More information

Activating Strategy. AP Lesson #10. EQ: What is metabolism and what role does energy play in metabolism? How does energy move through an environment?

Activating Strategy. AP Lesson #10. EQ: What is metabolism and what role does energy play in metabolism? How does energy move through an environment? Activating Strategy Belief or Disbelief 1. 1 st Law of thermodynamics states that energy can be created and destroyed. 2. Anabolic reactions are reactions that break bonds between molecules. 3. Exergonic

More information

Chapter 6: Energy Flow in the Life of a Cell

Chapter 6: Energy Flow in the Life of a Cell Chapter 6: Energy Flow in the Life of a Cell What is Energy? Answer: The capacity to do work Types of Energy: 1) Potential Energy = Stored energy Positional (stored in location of object) Chemical (stored

More information

2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of October

2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of October Name: Class: _ Date: _ 2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of 19-23 October Multiple Choice Identify the choice that best completes the statement or answers the question. 1) Which

More information

Chapter 15 part 2. Biochemistry I Introduction to Metabolism Bioenergetics: Thermodynamics in Biochemistry. ATP 4- + H 2 O ADP 3- + P i + H +

Chapter 15 part 2. Biochemistry I Introduction to Metabolism Bioenergetics: Thermodynamics in Biochemistry. ATP 4- + H 2 O ADP 3- + P i + H + Biochemistry I Introduction to Metabolism Bioenergetics: Thermodynamics in Biochemistry ATP 4- + 2 ADP 3- + P i 2- + + Chapter 15 part 2 Dr. Ray 1 Energy flow in biological systems: Energy Transformations

More information

10/26/2010. An Example of a Polar Reaction: Addition of H 2 O to Ethylene. to Ethylene

10/26/2010. An Example of a Polar Reaction: Addition of H 2 O to Ethylene. to Ethylene 6.5 An Example of a Polar Reaction: Addition of H 2 O to Ethylene Addition of water to ethylene Typical polar process Acid catalyzed addition reaction (Electophilic addition reaction) Polar Reaction All

More information

Welcome to Class 8! Introductory Biochemistry! Announcements / Reminders! Midterm TA led Review Sessions!

Welcome to Class 8! Introductory Biochemistry! Announcements / Reminders! Midterm TA led Review Sessions! Announcements / Reminders Midterm TA led Review Sessions Welcome to Class 8 Sunday, February 23 from 8-10pm Location: Science Center Main Room (315) Office Hours Prof Salomon: SFH 270 on Thursday Feb 20,

More information

How Cells Work. Learning Objectives

How Cells Work. Learning Objectives How Cells Work Chapter 5 Learning Objectives 1. Physics tells us that in any energy transformation: a) energy is neither created nor destroyed, and b) there is always some energy lost in an unusable form

More information

BIOLOGY 10/11/2014. An Introduction to Metabolism. Outline. Overview: The Energy of Life

BIOLOGY 10/11/2014. An Introduction to Metabolism. Outline. Overview: The Energy of Life 8 An Introduction to Metabolism CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Outline I. Forms of Energy II. Laws of Thermodynamics III. Energy and metabolism IV. ATP V. Enzymes

More information

Enzymes: Basic Principles

Enzymes: Basic Principles Enzymes: Basic Principles BIO161 Basic Biochemistry Dr John Puddefoot J.R.Puddefoot@qmul.ac.uk Objectives: To introduce the basic concepts and definitions of enzymology You should be able to able to define

More information

High energy upgrade: LCLS-II-HE new insight to structural dynamics at the atomic scale

High energy upgrade: LCLS-II-HE new insight to structural dynamics at the atomic scale High energy upgrade: LCLS-II-HE new insight to structural dynamics at the atomic scale Ultrafast coherent X-rays ~1 Ångstrom (~12 kev) High repetition rate 4 GeV 8 GeV (SCRF linac) +20 cryomodules Dynamics

More information

AP Biology. Metabolism & Enzymes

AP Biology. Metabolism & Enzymes Metabolism & Enzymes From food webs to the life of a cell energy energy energy Flow of energy through life: Life is built on chemical reactions transforming energy from one form to another organic molecules

More information

Lectures by Kathleen Fitzpatrick

Lectures by Kathleen Fitzpatrick Chapter 10 Chemotrophic Energy Metabolism: Aerobic Respiration Lectures by Kathleen Fitzpatrick Simon Fraser University Figure 10-1 Figure 10-6 Conversion of pyruvate The conversion of pyruvate to acetyl

More information

Department of Chemistry and Biochemistry Approved Learning Outcomes Approved May 2017 at Departmental Retreat

Department of Chemistry and Biochemistry Approved Learning Outcomes Approved May 2017 at Departmental Retreat Department of Chemistry and Biochemistry Approved Learning Outcomes Approved May 2017 at Departmental Retreat Chem 101 Critique and give examples of how understanding and applying chemistry is a means

More information

Analyze the roles of enzymes in biochemical reactions

Analyze the roles of enzymes in biochemical reactions ENZYMES and METABOLISM Elements: Cell Biology (Enzymes) Estimated Time: 6 7 hours By the end of this course, students will have an understanding of the role of enzymes in biochemical reactions. Vocabulary

More information

Basic Concepts of Enzyme Action. Enzymes. Rate Enhancement 9/17/2015. Stryer Short Course Chapter 6

Basic Concepts of Enzyme Action. Enzymes. Rate Enhancement 9/17/2015. Stryer Short Course Chapter 6 Basic Concepts of Enzyme Action Stryer Short Course Chapter 6 Enzymes Biocatalysts Active site Substrate and product Catalyzed rate Uncatalyzed rate Rate Enhancement Which is a better catalyst, carbonic

More information

Recommended Reading: 23, 29 (3rd edition); 22, 29 (4th edition) Ch 102 Problem Set 7 Due: Thursday, June 1 Before Class. Problem 1 (1 points) Part A

Recommended Reading: 23, 29 (3rd edition); 22, 29 (4th edition) Ch 102 Problem Set 7 Due: Thursday, June 1 Before Class. Problem 1 (1 points) Part A Recommended Reading: 23, 29 (3rd edition); 22, 29 (4th edition) Ch 102 Problem Set 7 Due: Thursday, June 1 Before Class Problem 1 (1 points) Part A Kinetics experiments studying the above reaction determined

More information

Flow of Energy. Flow of Energy. Energy and Metabolism. Chapter 6

Flow of Energy. Flow of Energy. Energy and Metabolism. Chapter 6 Energy and Metabolism Chapter 6 Flow of Energy Energy: the capacity to do work -kinetic energy: the energy of motion -potential energy: stored energy Energy can take many forms: mechanical electric current

More information

3. Based on how energy is stored in the molecules, explain why ΔG is independent of the path of the reaction.

3. Based on how energy is stored in the molecules, explain why ΔG is independent of the path of the reaction. B. Thermodynamics 1. What is "free energy"? 2. Where is this energy stored? We say that ΔG is a thermodynamic property, meaning that it is independent of the way that the conversion of reactants to products

More information

Biochemistry and Physiology ID #:

Biochemistry and Physiology ID #: BCHM 463 Your Name: Biochemistry and Physiology ID #: Exam II, November 4, 2002 Prof. Jason Kahn You have 50 minutes for this exam. Exams written in pencil or erasable ink will not be re-graded under any

More information

What is an enzyme? Lecture 12: Enzymes & Kinetics I Introduction to Enzymes and Kinetics. Margaret A. Daugherty Fall General Properties

What is an enzyme? Lecture 12: Enzymes & Kinetics I Introduction to Enzymes and Kinetics. Margaret A. Daugherty Fall General Properties Lecture 12: Enzymes & Kinetics I Introduction to Enzymes and Kinetics Margaret A. Daugherty Fall 2003 ENZYMES: Why, what, when, where, how? All but the who! What: proteins that exert kinetic control over

More information

CHEMISTRY (CHE) CHE 104 General Descriptive Chemistry II 3

CHEMISTRY (CHE) CHE 104 General Descriptive Chemistry II 3 Chemistry (CHE) 1 CHEMISTRY (CHE) CHE 101 Introductory Chemistry 3 Survey of fundamentals of measurement, molecular structure, reactivity, and organic chemistry; applications to textiles, environmental,

More information

CHAPTER 8. An Introduction to Metabolism

CHAPTER 8. An Introduction to Metabolism CHAPTER 8 An Introduction to Metabolism WHAT YOU NEED TO KNOW: Examples of endergonic and exergonic reactions. The key role of ATP in energy coupling. That enzymes work by lowering the energy of activation.

More information

Chapter 8 Metabolism: Energy, Enzymes, and Regulation

Chapter 8 Metabolism: Energy, Enzymes, and Regulation Chapter 8 Metabolism: Energy, Enzymes, and Regulation Energy: Capacity to do work or cause a particular change. Thus, all physical and chemical processes are the result of the application or movement of

More information

Chapter 5 Metabolism: Energy & Enzymes

Chapter 5 Metabolism: Energy & Enzymes Energy Energy is the capacity to do work Kinetic energy Energy of motion Potential energy Stored energy What do you use for energy? Where do you think the energy is stored these molecules? The BONDS! Every

More information

Photosynthetic autotrophs use the energy of sunlight to convert low-g CO 2 and H 2 O into energy-rich complex sugar molecules.

Photosynthetic autotrophs use the energy of sunlight to convert low-g CO 2 and H 2 O into energy-rich complex sugar molecules. Chapters 7 & 10 Bioenergetics To live, organisms must obtain energy from their environment and use it to do the work of building and organizing cell components such as proteins, enzymes, nucleic acids,

More information

9/25/2011. Outline. Overview: The Energy of Life. I. Forms of Energy II. Laws of Thermodynamics III. Energy and metabolism IV. ATP V.

9/25/2011. Outline. Overview: The Energy of Life. I. Forms of Energy II. Laws of Thermodynamics III. Energy and metabolism IV. ATP V. Chapter 8 Introduction to Metabolism Outline I. Forms of Energy II. Laws of Thermodynamics III. Energy and metabolism IV. ATP V. Enzymes Overview: The Energy of Life Figure 8.1 The living cell is a miniature

More information

Unit title: Chemistry for Applied Biologists

Unit title: Chemistry for Applied Biologists Unit title: Chemistry for Applied Biologists Unit code: K/601/0292 QCF level: 5 Credit value: 15 Aim This unit covers bonding, thermodynamics, reaction rates, equilibrium, oxidation and reduction and organic

More information

Pre-Steady State Kinetics of Catalytic Intermediates of an [FeFe]-Hydrogenase

Pre-Steady State Kinetics of Catalytic Intermediates of an [FeFe]-Hydrogenase Supporting Information Pre-Steady State Kinetics of Catalytic Intermediates of an [FeFe]-Hydrogenase Brandon L. Greene, Gerrit J. Schut, Michael W. W. Adams and R. Brian Dyer * Department of Chemistry,

More information

An Introduction to Metabolism

An Introduction to Metabolism An Introduction to Metabolism The living cell is a microscopic factory where life s giant processes can be performed: -sugars to amino acids to proteins and vise versa -reactions to dismantle polymers

More information

2013 W. H. Freeman and Company. 6 Enzymes

2013 W. H. Freeman and Company. 6 Enzymes 2013 W. H. Freeman and Company 6 Enzymes CHAPTER 6 Enzymes Key topics about enzyme function: Physiological significance of enzymes Origin of catalytic power of enzymes Chemical mechanisms of catalysis

More information

Cellular Energy: Photosythesis

Cellular Energy: Photosythesis Cellular Energy: hotosythesis Cellular respiration and photosynthesis are chemical reactions that provide kinetic and potential energy for cells Sunlight energy hotosynthesis in chloroplasts Glucose +

More information

CHAPTER 15 Metabolism: Basic Concepts and Design

CHAPTER 15 Metabolism: Basic Concepts and Design CHAPTER 15 Metabolism: Basic Concepts and Design Chapter 15 An overview of Metabolism Metabolism is the sum of cellular reactions - Metabolism the entire network of chemical reactions carried out by living

More information

Catalysis. Instructor: Dr. Tsung-Lin Li Genomics Research Center Academia Sinica

Catalysis. Instructor: Dr. Tsung-Lin Li Genomics Research Center Academia Sinica Catalysis Instructor: Dr. Tsung-Lin Li Genomics Research Center Academia Sinica References: Biochemistry" by Donald Voet and Judith G. Voet Biochemistry" by Christopher K. Mathews, K. E. Van Hold and Kevin

More information

Chemistry. Faculty. Major Requirements for the Major in Chemistry

Chemistry. Faculty. Major Requirements for the Major in Chemistry Chemistry 1 Chemistry Website: chemistry.sewanee.edu Chemistry is often referred to as the central science. As such, it interfaces with and illuminates numerous disciplines including physics, biology,

More information

Sample Question Solutions for the Chemistry of Life Topic Test

Sample Question Solutions for the Chemistry of Life Topic Test Sample Question Solutions for the Chemistry of Life Topic Test 1. Enzymes play a crucial role in biology by serving as biological catalysts, increasing the rates of biochemical reactions by decreasing

More information

The products have more enthalpy and are more ordered than the reactants.

The products have more enthalpy and are more ordered than the reactants. hapters 7 & 10 Bioenergetics To live, organisms must obtain energy from their environment and use it to do the work of building and organizing cell components such as proteins, enzymes, nucleic acids,

More information

Energetics Free Energy and Spontaneity. Fueling Life

Energetics Free Energy and Spontaneity. Fueling Life Energetics Free Energy and Spontaneity Fueling Life Energy takes various forms MECHANICALL Energy, regardless of the form, can exist in two states potential kinetic Photosynthesis makes energy available

More information

Course Goals for CHEM 202

Course Goals for CHEM 202 Course Goals for CHEM 202 Students will use their understanding of chemical bonding and energetics to predict and explain changes in enthalpy, entropy, and free energy for a variety of processes and reactions.

More information

Energy Transformation and Metabolism (Outline)

Energy Transformation and Metabolism (Outline) Energy Transformation and Metabolism (Outline) - Definitions & Laws of Thermodynamics - Overview of energy flow ecosystem - Biochemical processes: Anabolic/endergonic & Catabolic/exergonic - Chemical reactions

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 An Introduction to Metabolism oweroint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Concept 8.1: An organism s metabolism transforms matter and energy, subject to the laws

More information