M.Sc. Project Introduction Nitrogen-fixing Enzymes

Size: px
Start display at page:

Download "M.Sc. Project Introduction Nitrogen-fixing Enzymes"

Transcription

1 M.Sc. Project Introduction Nitrogen-fixing Enzymes M.Sc. Candidate: Egill Skulason Supervisor: Hannes Jonsson Co-supervisor: Magnus Mar Kristjansson Raunvisindastofnun Haskola Islands Efnafraedistofa vklubbur 31 st of July 2003

2 Contents Introduction Background Nitrogenase Methodology FeMo Cofactor Model Structures Reactivity Biological Ammonia Synthesis Summary and Future Study

3 Introduction Project Goal: Study the biological ammonia synthesis using density functional calculations (DFT) on models of the active center of nitrogenase. Nitrogenase is a catalytic enzyme found in many bacteria, and is central to biological ammonia synthesis. Understanding of this process may lead to a more gentle manufacturing of ammonia, lowering pollution and energy costs. Background: Density Functional Calculations and Modeling of the Biological Ammonia Synthesis by Thomas Holm Rod, Ph. D. (2000) Technical University of Denmark (DTU) and Center for Atomic-Scale Materials Physics (CAMP).

4 Background The conversion of atmospheric N 2 into a biologically accessible form of nitrogen such as ammonia, is termed nitrogen fixation. Since the element N is present in many biomolecules, such as amino acids, nitrogen fixation is a prerequisite for life. In spite of the vast quantities of atmospheric N 2, the sources of biologically accessible nitrogen are few.

5 The Main Sources of Biologically Accessible Nitrogen Oxidation of N 2 to nitrogen oxides by lightning and combustion. The commercial Haber-Bosch process where N 2 reacts with hydrogen on a Fe or Ru based catalyst to form ammonia. The enzyme catalyzed ammonia synthesis where N 2 reacts with electrons and protons to form ammonia. Ref: L. Stryer, Biochemistry, 4. Ed. (W.H. Freeman and Company, New York, 1995), p. 714.

6 Nitrogenase Nitrogenase consists of two metalloproteins: Fe protein and MoFe protein (named after their metal clusters). The Fe protein contains a ferredoxin (4Fe-4S), which is known to play a role in electron transfer in many proteins. W. Kaim and B. Schwederski, Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life (John Wiley & Sons, New York, 1991). The MoFe protein contains two unique cluster pairs, namely the P-cluster and the FeMo cofactor (FeMoco). FeMoco is most likely the active center where N 2 binds and is reduced.

7 Nitrogenase Ferredoxin reduced e- are accelerated through the Pcluster towards the FeMoco. N. Schindelin et al., Structure of ADP AlF4- -stabilized nitrogenase complex and its implications for signal transduction, Nature 387, (1997), PDB ID code: 1N2C.

8 The Metalloclusters Sulfur: yellow Iron: purple Molybdenum: blue N. Schindelin et al., Structure of ADP AlF 4 - -stabilized nitrogenase complex and its implications for signal transduction, Nature 387, (1997), PDB ID code: 1N2C.

9 The Methodology Density Functional Calculation (DFT) forms the basis in this Ph. D. thesis and will be used in this M.Sc. study. The exchange correlation functionals applied in the Ph. D. study, by Rod, were the PW91 and the RPBE functionals. The latter will probably be used for current study. DACAPO: an DFT calculating program which use planewave pseudo-potentials.

10 Model Structures of the FeMo Cofactor

11 N 2 Adsorption on Models I and II Adsorption energies: Model I 0.0 ev Model II -0.1 ev

12 Reactivity of the FeMoco H bonding (H + + e - ) and H 2 formation N 2 adsorption modeling of the interaction with the surrounding protein The energy of a system is always calculated in relation to model I and the incoming substrate, usually in gas phase.

13 H Binding and H2 Formation of Model I To study the effect of the e- and H+ flow to the FeMoco, 1-4 H atoms where added to model I.

14 N2 Adsorption

15 Modeling of the Interaction with the Surrounding Protein There is a possibility that an e - is transferred to the complex without a simultaneous transfer of a proton. It is clear that the enzyme must have sites close to the active site that can act as proton donors during nitrogen hydrogenation. Such a donor might either be an amino residue or an H 2 O molecule. They therefore add to their system a weak base, NH 4 + or H 3 O +, in the vicinity of the cofactor.

16 N 2 Adsorption on Model I with and without the Proton Donor NH 4 +

17 Biological Ammonia Synthesis

18 A Short Summary In this thesis a simple model of the FeMoco has been investigated theoretically. Two different clusters have been studied to mimic the central part of the FeMoco. The effect of the surroundings have also been included in a crude way by invoking proton donors in the vicinity of the cofactor. The interaction of the FeMoco with the substrates H, H 2 and N 2 have been calculated and most of the observations agree with experimental results. (Not discussed in this presentation). A reaction path, of the biological ammonia synthesis, has been calculated.

19 For Future Study Investigate the real environment of the nitrogenase and make new models. Simulate the high chemical potential of the electrons and protons.

Theoretical Calculations of Electrochemical Ammonia Synthesis at Ambient Pressure and Temperature

Theoretical Calculations of Electrochemical Ammonia Synthesis at Ambient Pressure and Temperature Theoretical Calculations of Electrochemical Ammonia Synthesis at Ambient Pressure and Temperature Egill Skúlason 1,2, Thomas Bligaard 1,2, Jan Rossmeisl 2, Áshildur Logadóttir 2, Jens K. Nørskov 2, Hannes

More information

Catalysis. Catalytic nanoparticles have been used for centuries to facilitate desirable chemical reactions and to suppress unwanted byproducts.

Catalysis. Catalytic nanoparticles have been used for centuries to facilitate desirable chemical reactions and to suppress unwanted byproducts. Catalysis Catalytic nanoparticles have been used for centuries to facilitate desirable chemical reactions and to suppress unwanted byproducts. Gerhard Ertl received the 2007 Chemistry Nobel Prize for converting

More information

Scission of Dinitrogen by a Molybdenum(III) Xylidene Complex. CHM 5.33 Fall 2005

Scission of Dinitrogen by a Molybdenum(III) Xylidene Complex. CHM 5.33 Fall 2005 Scission of Dinitrogen by a Molybdenum(III) Xylidene Complex CHM 5.33 Fall 2005 Introduction The experiment is based on research performed in the laboratory of Professor Cummins during the early 90 s.

More information

Lecture 12. Metalloproteins - II

Lecture 12. Metalloproteins - II Lecture 12 Metalloproteins - II Metalloenzymes Metalloproteins with one labile coordination site around the metal centre are known as metalloenzyme. As with all enzymes, the shape of the active site is

More information

5.03 In-Class Exam 2

5.03 In-Class Exam 2 5.03 In-Class Exam 2 Christopher C. Cummins March 12, 2010 Instructions Clearly write your name at the top of this front page, but otherwise do not write on this front page as it will be used for scoring.

More information

The structure of vanadium nitrogenase reveals an unusual bridging ligand

The structure of vanadium nitrogenase reveals an unusual bridging ligand SUPPLEMENTARY INFORMATION The structure of vanadium nitrogenase reveals an unusual bridging ligand Daniel Sippel and Oliver Einsle Lehrstuhl Biochemie, Institut für Biochemie, Albert-Ludwigs-Universität

More information

Biology Slide 1 of 34

Biology Slide 1 of 34 Biology 1 of 34 2 4 Chemical Reactions and Enzymes 2 of 34 2 4 Chemical Reactions and Enzymes Chemical Reactions Chemical Reactions A chemical reaction is a process that changes one set of chemicals into

More information

2017 Ebneshahidi. Dr. Ali Ebneshahidi

2017 Ebneshahidi. Dr. Ali Ebneshahidi Dr. Ali Ebneshahidi A. Introduction Chemistry science that deals with the composition of substances and the changes that take place in their composition. Organic chemistry chemistry that deals with organic

More information

(g) + 3H 2. (g) 2NH 3. (g) (a) Explain what is meant by a dynamic equilibrium. (2)

(g) + 3H 2. (g) 2NH 3. (g) (a) Explain what is meant by a dynamic equilibrium. (2) 1 When nitrogen and hydrogen react to form ammonia, the reaction can reach a dynamic equilibrium. (g) + 3H 2 (g) 2NH 3 (g) (a) Explain what is meant by a dynamic equilibrium. (b) In industry, the reaction

More information

AP Chem Chapter 14 Study Questions

AP Chem Chapter 14 Study Questions Class: Date: AP Chem Chapter 14 Study Questions 1. A burning splint will burn more vigorously in pure oxygen than in air because a. oxygen is a reactant in combustion and concentration of oxygen is higher

More information

Computer Simulations and Nanotechnology

Computer Simulations and Nanotechnology Computer Simulations and Nanotechnology Intro: - Making use of high speed modern computers, and therefore nanotechnology - Contributing to the development of nanotechnology Tools: A. Starting from basic

More information

2 4 Chemical Reactions and Enzymes Slide 1 of 34

2 4 Chemical Reactions and Enzymes Slide 1 of 34 2 4 Chemical Reactions and Enzymes 1 of 34 Chemical Reactions Chemical Reactions A chemical reaction is a process that changes one set of chemicals into another set of chemicals. Some chemical reactions

More information

Chemistry 1506: Allied Health Chemistry 2. Section 10: Enzymes. Biochemical Catalysts. Outline

Chemistry 1506: Allied Health Chemistry 2. Section 10: Enzymes. Biochemical Catalysts. Outline Chemistry 1506 Dr. Hunter s Class Section 10 Notes - Page 1/14 Chemistry 1506: Allied Health Chemistry 2 Section 10: Enzymes Biochemical Catalysts. Outline SECTION 10.1 INTRODUCTION...2 SECTION SECTION

More information

Unit 7 Part I: Introductions to Biochemistry

Unit 7 Part I: Introductions to Biochemistry Unit 7 Part I: Introductions to Biochemistry Chemical Reactions, Enzymes and ATP 19-Mar-14 Averett 1 Chemical Reactions Chemical Reactions Process by which one set of chemicals is changed into another

More information

16+ ENTRANCE EXAMINATION

16+ ENTRANCE EXAMINATION ST EDWARD S OXFORD 16+ ENTRANCE EXAMINATION For entry in September 2015 CHEMISTRY Time: 1 hour Candidates Name: St Edward's School 1 1. Complete the table below. St Edward's School 2 Element calcium Symbol

More information

2013 W. H. Freeman and Company. 6 Enzymes

2013 W. H. Freeman and Company. 6 Enzymes 2013 W. H. Freeman and Company 6 Enzymes CHAPTER 6 Enzymes Key topics about enzyme function: Physiological significance of enzymes Origin of catalytic power of enzymes Chemical mechanisms of catalysis

More information

Ammonia synthesis at low temperatures

Ammonia synthesis at low temperatures JOURNAL OF CHEMICAL PHYSICS VOLUME 112, NUMBER 12 22 MARCH 2000 Ammonia synthesis at low temperatures T. H. Rod, A. Logadottir, and J. K. Nørskov a) Center for Atomic-scale Materials Physics, Department

More information

BIOLOGICAL SCIENCE. Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge. FIFTH EDITION Freeman Quillin Allison

BIOLOGICAL SCIENCE. Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge. FIFTH EDITION Freeman Quillin Allison BIOLOGICAL SCIENCE FIFTH EDITION Freeman Quillin Allison 8 Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge Roadmap 8 In this chapter you will learn how Enzymes use

More information

Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08 Å resolution: comparison with the Azotobacter vinelandii MoFe protein

Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08 Å resolution: comparison with the Azotobacter vinelandii MoFe protein Acta Cryst. (2015). D71, 274-282, doi:10.1107/s1399004714025243 Supporting information Volume 71 (2015) Supporting information for article: Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08

More information

2054, Chap. 8, page 1

2054, Chap. 8, page 1 2054, Chap. 8, page 1 I. Metabolism: Energetics, Enzymes, and Regulation (Chapter 8) A. Energetics and work 1. overview a. energy = ability to do work (1) chemical, transport, mechanical (2) ultimate source

More information

Unit 2: Basic Chemistry

Unit 2: Basic Chemistry Unit 2: Basic Chemistry I. Matter and Energy A. Matter anything that occupies space and has mass (weight) B. Energy the ability to do work 1. Chemical 2. Electrical 3. Mechanical 4. Radiant C. Composition

More information

BIOCHEMISTRY. František Vácha. JKU, Linz.

BIOCHEMISTRY. František Vácha. JKU, Linz. BIOCHEMISTRY František Vácha http://www.prf.jcu.cz/~vacha/ JKU, Linz Recommended reading: D.L. Nelson, M.M. Cox Lehninger Principles of Biochemistry D.J. Voet, J.G. Voet, C.W. Pratt Principles of Biochemistry

More information

Doug Kremer President Mike Kelly Director Turf Operations. Maximizing Earth s Potential

Doug Kremer President Mike Kelly Director Turf Operations. Maximizing Earth s Potential Doug Kremer President Mike Kelly Director Turf Operations Company Background Founded in 1998 to develop microbiological products - Integrated Fertility Management (IFM) Convert atmospheric nitrogen to

More information

The apparatus below was set-up to show the catalytic oxidation of ammonia. Study the diagram and answer the questions that follow:dry NH3 (g)

The apparatus below was set-up to show the catalytic oxidation of ammonia. Study the diagram and answer the questions that follow:dry NH3 (g) NITROGEN AND ITS COMPOUNDS 1. The apparatus below was set-up to show the catalytic oxidation of ammonia. Study the diagram and answer the questions that follow:dry NH3 (g) Hot nichrome wire (i) Write an

More information

What does rate of reaction mean?

What does rate of reaction mean? Junior Science What does rate of reaction mean? It is not how much of a product is made, but instead how quickly a reaction takes place. The speed of a reaction is called the rate of the reaction. What

More information

2 4 Chemical Reactions and Enzymes Chemical Reactions

2 4 Chemical Reactions and Enzymes Chemical Reactions Chemical Reactions A chemical reaction occurs when chemical bonds are broken and reformed. Rust forms very slowly, while rocket fuel combustion is explosive! The significance of this comparison is that

More information

Principles of Bioenergetics. Lehninger 3 rd ed. Chapter 14

Principles of Bioenergetics. Lehninger 3 rd ed. Chapter 14 1 Principles of Bioenergetics Lehninger 3 rd ed. Chapter 14 2 Metabolism A highly coordinated cellular activity aimed at achieving the following goals: Obtain chemical energy. Convert nutrient molecules

More information

Density Functional Theory Evaluation of. Cation-doped Bismuth Molybdenum Oxide. Photocatalysts for Nitrogen Fixation

Density Functional Theory Evaluation of. Cation-doped Bismuth Molybdenum Oxide. Photocatalysts for Nitrogen Fixation Density Functional Theory Evaluation of arxiv:1803.07174v1 [cond-mat.mtrl-sci] 19 Mar 2018 Cation-doped Bismuth Molybdenum Oxide Photocatalysts for Nitrogen Fixation Alhassan S. Yasin, Botong Liu, Nianqiang

More information

Lecture 18 The Network and the Chemistry of Hydrogen and its Compounds

Lecture 18 The Network and the Chemistry of Hydrogen and its Compounds 2P32 Principles of Inorganic Chemistry Dr. M.Pilkington Lecture 18 The Network and the Chemistry of Hydrogen and its Compounds 1. Inert Pair Effect 2. Division of Elements into Metals and Non Metals 3.

More information

What does rate of reaction mean?

What does rate of reaction mean? 1 of 39 2 of 39 What does rate of reaction mean? 3 of 39 The speed of different chemical reactions varies hugely. Some reactions are very fast and others are very slow. The speed of a reaction is called

More information

Biology Reading Assignment: Chapter 9 in textbook

Biology Reading Assignment: Chapter 9 in textbook Biology 205 5.10.06 Reading Assignment: Chapter 9 in textbook HTTP://WUNMR.WUSTL.EDU/EDUDEV/LABTUTORIALS/CYTOCHROMES/CYTOCHROMES.HTML What does a cell need to do? propagate itself (and its genetic program)

More information

Explanation: They do this by providing an alternative route or mechanism with a lower activation energy

Explanation: They do this by providing an alternative route or mechanism with a lower activation energy Catalysts Definition: Catalysts increase reaction rates without getting used up. Explanation: They do this by providing an alternative route or mechanism with a lower Comparison of the activation energies

More information

CHEM 251 (4 credits): Description

CHEM 251 (4 credits): Description CHEM 251 (4 credits): Intermediate Reactions of Nucleophiles and Electrophiles (Reactivity 2) Description: An understanding of chemical reactivity, initiated in Reactivity 1, is further developed based

More information

MARIYA INTERNATIONAL SCHOOL. Work sheet III. Term I. Level 8 Chemistry [MCQ] Name: CHEMICAL REACTIONS & SULFUR

MARIYA INTERNATIONAL SCHOOL. Work sheet III. Term I. Level 8 Chemistry [MCQ] Name: CHEMICAL REACTIONS & SULFUR MARIYA INTERNATIONAL SCHOOL Work sheet III Term I Level 8 Chemistry [MCQ] Name: CHEMICAL REACTIONS & SULFUR 1. A steel works and a chemical works are built near to a city. The limestone buildings in the

More information

Enzyme function: the transition state. Enzymes & Kinetics V: Mechanisms. Catalytic Reactions. Margaret A. Daugherty A B. Lecture 16: Fall 2003

Enzyme function: the transition state. Enzymes & Kinetics V: Mechanisms. Catalytic Reactions. Margaret A. Daugherty A B. Lecture 16: Fall 2003 Lecture 16: Enzymes & Kinetics V: Mechanisms Margaret A. Daugherty Fall 2003 Enzyme function: the transition state Catalytic Reactions A B Catalysts (e.g. enzymes) act by lowering the transition state

More information

Catalytic Reactions. Intermediate State in Catalysis. Lecture 16: Catalyzed reaction. Uncatalyzed reaction. Enzymes & Kinetics V: Mechanisms

Catalytic Reactions. Intermediate State in Catalysis. Lecture 16: Catalyzed reaction. Uncatalyzed reaction. Enzymes & Kinetics V: Mechanisms Enzyme function: the transition state Catalytic Reactions Lecture 16: Enzymes & Kinetics V: Mechanisms Margaret A. Daugherty Fall 2003 A B Catalysts (e.g. enzymes) act by lowering the transition state

More information

CHAPTER 8. An Introduction to Metabolism

CHAPTER 8. An Introduction to Metabolism CHAPTER 8 An Introduction to Metabolism WHAT YOU NEED TO KNOW: Examples of endergonic and exergonic reactions. The key role of ATP in energy coupling. That enzymes work by lowering the energy of activation.

More information

State how a catalyst speeds up a chemical reaction. ...

State how a catalyst speeds up a chemical reaction. ... Q1. This question is about the use of transition metals as catalysts. (a) State how a catalyst speeds up a chemical reaction. State the characteristic property of transition metals that enables them to

More information

Amino sugars 5-10% Purine and Pyrimidine Bases trace amounts. Undescribed Lots - non-protein N Crude proteins Lignin - N

Amino sugars 5-10% Purine and Pyrimidine Bases trace amounts. Undescribed Lots - non-protein N Crude proteins Lignin - N N in Soil Note: soil concentrations can be anywhere, depending on vegetation, land use, etc. But a substantial amount indeed most (ca. 99%) soil nitrogen is organic Free amino acids trace amounts Amino

More information

Spectroscopic investigation of nitrogenase: EPR and MCD studies of the FeMo cofactor and the P- cluster

Spectroscopic investigation of nitrogenase: EPR and MCD studies of the FeMo cofactor and the P- cluster Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2004 Spectroscopic investigation of nitrogenase: EPR and MCD studies of the FeMo cofactor and the P- cluster Robyn

More information

M06/4/CHEMI/HP3/ENG/TZ0/XX CHEMISTRY HIGHER LEVEL PAPER 3. Candidate session number 0 0. Friday 19 May 2006 (morning) 1 hour 15 minutes

M06/4/CHEMI/HP3/ENG/TZ0/XX CHEMISTRY HIGHER LEVEL PAPER 3. Candidate session number 0 0. Friday 19 May 2006 (morning) 1 hour 15 minutes IB CHEMISTRY HIGHER LEVEL PAPER 3 DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI Friday 19 May 2006 (morning) 1 hour 15 minutes M06/4/CHEMI/HP3/ENG/TZ0/XX 22066103 Candidate session

More information

Enzymes are macromolecules (proteins) that act as a catalyst

Enzymes are macromolecules (proteins) that act as a catalyst Chapter 8.4 Enzymes Enzymes speed up metabolic reactions by lowering energy barriers Even though a reaction is spontaneous (exergonic) it may be incredibly slow Enzymes cause hydrolysis to occur at a faster

More information

Acetyl CoA Synthase: Nature s Monsanto Acetic Acid Catalyst. By: Seth Cory and Trang Nguyen CHEM 462 Dr. Marcetta Y. Darensbourg

Acetyl CoA Synthase: Nature s Monsanto Acetic Acid Catalyst. By: Seth Cory and Trang Nguyen CHEM 462 Dr. Marcetta Y. Darensbourg Acetyl CoA ynthase: ature s Monsanto Acetic Acid Catalyst 1 By: eth Cory and Trang guyen CHEM 462 Dr. Marcetta Y. Darensbourg utline Industrial Process: Monsanto Acetic Acid Catalysis Reaction Mechanism

More information

Chemical Reactions and Stoichiometry. Ms. Grobsky

Chemical Reactions and Stoichiometry. Ms. Grobsky Chemical Reactions and Stoichiometry Ms. Grobsky Wrapping Up the Types of Chemical Reactions We just got done investigating the different types of chemical reactions We can now answer the two questions

More information

Energy and Cells. Appendix 1. The two primary energy transformations in plants are photosynthesis and respiration.

Energy and Cells. Appendix 1. The two primary energy transformations in plants are photosynthesis and respiration. Energy and Cells Appendix 1 Energy transformations play a key role in all physical and chemical processes that occur in plants. Energy by itself is insufficient to drive plant growth and development. Enzymes

More information

University of York. BA, BSc, and MSc Degree Examinations Department : BIOLOGY. Title of Exam: Biochemical reaction mechanisms

University of York. BA, BSc, and MSc Degree Examinations Department : BIOLOGY. Title of Exam: Biochemical reaction mechanisms Examination Candidate Number: Desk Number: University of York BA, BSc, and MSc Degree Examinations 2017-8 Department : BIOLOGY Title of Exam: Biochemical reaction mechanisms Time Allowed: 1 hour Marking

More information

Chemical Kinetics. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions:

Chemical Kinetics. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions: Chemical Kinetics Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions: reactant concentration temperature action of catalysts surface

More information

CHEM 463: Advanced Inorganic Chemistry Modeling Metalloproteins for Structural Analysis

CHEM 463: Advanced Inorganic Chemistry Modeling Metalloproteins for Structural Analysis CHEM 463: Advanced Inorganic Chemistry Modeling Metalloproteins for Structural Analysis Purpose: The purpose of this laboratory is to introduce some of the basic visualization and modeling tools for viewing

More information

Younes Abghoui, Anna L. Garden, Valtýr Freyr Hlynsson, Snædís Björgvinsdóttir, Hrefna Ólafsdóttir, Egill Skúlason

Younes Abghoui, Anna L. Garden, Valtýr Freyr Hlynsson, Snædís Björgvinsdóttir, Hrefna Ólafsdóttir, Egill Skúlason Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions

More information

Catalyst and catalysis:

Catalyst and catalysis: Catalysis Catalyst and catalysis: Rate of the chemical reaction may be influenced considerably in the presence of small amount of specific substance such substance are called catalyst and the phenomena

More information

Reaction Rates and Equilibrium

Reaction Rates and Equilibrium CHAPTER 7 14 SECTION Chemical Reactions Reaction Rates and Equilibrium KEY IDEAS As you read this section, keep these questions in mind: How can you increase the rate of a reaction? What does a catalyst

More information

MARK SCHEME for the October/November 2012 series 0620 CHEMISTRY. 0620/21 Paper 2 (Core Theory), maximum raw mark 80

MARK SCHEME for the October/November 2012 series 0620 CHEMISTRY. 0620/21 Paper 2 (Core Theory), maximum raw mark 80 CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education MARK SCHEME for the October/November 2012 series 0620 CHEMISTRY 0620/21 Paper 2 (Core Theory), maximum raw

More information

Kinetics. Chapter 14. Chemical Kinetics

Kinetics. Chapter 14. Chemical Kinetics Lecture Presentation Chapter 14 Yonsei University In kinetics we study the rate at which a chemical process occurs. Besides information about the speed at which reactions occur, kinetics also sheds light

More information

5 Selected samples. 5.1 Organic Radicals in Solution CH 3 H 3 C N O N O. 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) dimethylnitroxyl radical 5-1

5 Selected samples. 5.1 Organic Radicals in Solution CH 3 H 3 C N O N O. 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) dimethylnitroxyl radical 5-1 5 Selected samples 5.1 Organic Radicals in Solution 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) H 3 C H 3 C N O CH 3 CH 3 344 345 346 347 348 349 350 351 dimethylnitroxyl radical H 3 C N O CH 3 340 342

More information

Chapter 6. Ground Rules Of Metabolism

Chapter 6. Ground Rules Of Metabolism Chapter 6 Ground Rules Of Metabolism Alcohol Dehydrogenase An enzyme Breaks down ethanol and other toxic alcohols Allows humans to drink Metabolism Is the totality of an organism s chemical reactions Arises

More information

Chapter 02 - Life, Matter, and Energy. Multiple Choice Questions

Chapter 02 - Life, Matter, and Energy. Multiple Choice Questions Essentials of Anatomy and Physiology 1st Edition Saladin TEST BANK Full clear download (no formatting errors) at: https://testbankreal.com/download/essentials-anatomy-physiology-1stedition-saladin-test-bank/

More information

!n[a] =!n[a] o. " kt. Half lives. Half Life of a First Order Reaction! Pressure of methyl isonitrile as a function of time!

!n[a] =!n[a] o.  kt. Half lives. Half Life of a First Order Reaction! Pressure of methyl isonitrile as a function of time! Half lives Half life: t 1/2 t 1/2 is the time it takes for the concentration of a reactant to drop to half of its initial value. For the reaction A! products Half Life of a First Order Reaction! Pressure

More information

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki Ashley Robison My Preferences Site Tools Popular pages MindTouch User Guide FAQ Sign Out If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it

More information

Energy Transformation and Metabolism (Outline)

Energy Transformation and Metabolism (Outline) Energy Transformation and Metabolism (Outline) - Definitions & Laws of Thermodynamics - Overview of energy flow ecosystem - Biochemical processes: Anabolic/endergonic & Catabolic/exergonic - Chemical reactions

More information

(g) + 3H 2. (g) 2NH [2] State two changes to the reaction conditions which would increase the percentage of ammonia at equilibrium....

(g) + 3H 2. (g) 2NH [2] State two changes to the reaction conditions which would increase the percentage of ammonia at equilibrium.... 1 Ammonia is made by the Haber process. N 2 + 3H 2 2 The forward reaction is exothermic. Typical reaction conditions are: finely divided iron calyst, temperure 450 C, pressure 200 mospheres. (a) Explain

More information

Biological Nitrogen Fixation Simulation of the Reaction Mechanism of Nitrogenase from First Principles

Biological Nitrogen Fixation Simulation of the Reaction Mechanism of Nitrogenase from First Principles Biological Nitrogen Fixation Simulation of the Reaction Mechanism of Nitrogenase from First Principles Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften vorgelegt von Johannes

More information

A Brief Overview of Biochemistry. And I mean BRIEF!

A Brief Overview of Biochemistry. And I mean BRIEF! A Brief Overview of Biochemistry And I mean BRIEF! Introduction A. Chemistry deals with the composition of substances and how they change. B. A knowledge of chemistry is necessary for the understanding

More information

(a) Reaction rates (i) Following the course of a reaction Reactions can be followed by measuring changes in concentration, mass and volume of

(a) Reaction rates (i) Following the course of a reaction Reactions can be followed by measuring changes in concentration, mass and volume of (a) Reaction rates (i) Following the course of a reaction Reactions can be followed by measuring changes in concentration, mass and volume of reactants or products. g Measuring a change in mass Measuring

More information

I. Flow of Energy in Living Things II. Laws of Thermodynamics & Free Energy III. Activation Energy IV. Enzymes V. Reaction Coupling VI.

I. Flow of Energy in Living Things II. Laws of Thermodynamics & Free Energy III. Activation Energy IV. Enzymes V. Reaction Coupling VI. Chapter 6 Energy & Metabolism I. Flow of Energy in Living Things II. Laws of Thermodynamics & Free Energy III. Activation Energy IV. Enzymes V. Reaction Coupling VI. Metabolism I. Flow of Energy in Living

More information

Exploratory Examination of Photosystem I in Arabidopsis thaliana

Exploratory Examination of Photosystem I in Arabidopsis thaliana Exploratory Examination of Photosystem I in Arabidopsis thaliana A. Role of Photosystem I Photosystem I (PSI) captures the sunlight and transfers the energy through a pigment network to the center of the

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Catalysis of environmental reactions Dr. Zifei Liu Catalysis and catalysts Catalysis is the increase in the rate of a chemical reaction due to the participation

More information

(g) 2NH 3. (g) ΔH = 92 kj mol 1

(g) 2NH 3. (g) ΔH = 92 kj mol 1 1 The uses of catalysts have great economic and environmental importance For example, catalysts are used in ammonia production and in catalytic converters (a) Nitrogen and hydrogen react together in the

More information

Ch 4: Cellular Metabolism, Part 1

Ch 4: Cellular Metabolism, Part 1 Developed by John Gallagher, MS, DVM Ch 4: Cellular Metabolism, Part 1 Energy as it relates to Biology Energy for synthesis and movement Energy transformation Enzymes and how they speed reactions Metabolism

More information

An Introduction to Metabolism

An Introduction to Metabolism An Introduction to Metabolism The living cell is a microscopic factory where life s giant processes can be performed: -sugars to amino acids to proteins and vise versa -reactions to dismantle polymers

More information

Rate Law Summary. Rate Laws vary as a function of time

Rate Law Summary. Rate Laws vary as a function of time Rate Law Summary Measure the instantaneous rate of a reaction: this is a number with units of M/s! Measure the rate of loss of a reactant r... the rate of appearance of a product Repeat the experiment

More information

Chapter 5: Photosynthesis: The Energy of Life pg : Pathways of Photosynthesis pg

Chapter 5: Photosynthesis: The Energy of Life pg : Pathways of Photosynthesis pg UNIT 2: Metabolic Processes Chapter 5: Photosynthesis: The Energy of Life pg. 210-240 5.2: Pathways of Photosynthesis pg. 220-228 Light Dependent Reactions Photosystem II and I are the two light capturing

More information

Bio-elements. Living organisms requires only 27 of the 90 common chemical elements found in the crust of the earth, to be as its essential components.

Bio-elements. Living organisms requires only 27 of the 90 common chemical elements found in the crust of the earth, to be as its essential components. Bio-elements Living organisms requires only 27 of the 90 common chemical elements found in the crust of the earth, to be as its essential components. Most of the chemical components of living organisms

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level CHEMISTRY 9701/23 Paper 2 AS Level Structured Questions May/June 2016 1 hour 15 minutes Candidates answer

More information

Collision Theory Reversible Chemical Reactions

Collision Theory Reversible Chemical Reactions Collision Theory Reversible Chemical Reactions BIOB111 CHEMISTRY & BIOCHEMISTRY Session 4 Key concepts: session 4 From this session you are expected to develop an understanding of the following concepts:

More information

5.3.1 Transition Elements

5.3.1 Transition Elements 5.3.1 Transition Elements General properties of transition metals transition metal characteristics of elements Ti u arise from an incomplete d sub-level in ions these characteristics include formation

More information

Chapter 6: Energy and Metabolism

Chapter 6: Energy and Metabolism Chapter 6: Energy and Metabolism Student: 1. Oxidation and reduction reactions are chemical processes that result in a gain or loss in A) atoms. B) neutrons. C) electrons. D) molecules. E) protons. 2.

More information

Chapter 14. Chemical Kinetics

Chapter 14. Chemical Kinetics Chapter 14. Chemical Kinetics Common Student Misconceptions It is possible for mathematics to get in the way of some students understanding of the chemistry of this chapter. Students often assume that

More information

Biochemistry. Lecture 8 Enzyme Kinetics

Biochemistry. Lecture 8 Enzyme Kinetics Biochemistry Lecture 8 Enzyme Kinetics Why Enzymes? igher reaction rates Greater reaction specificity Milder reaction conditions Capacity for regulation C - - C N 2 - C N 2 - C - C Chorismate mutase -

More information

Chemistry in Biology. Section 1. Atoms, Elements, and Compounds

Chemistry in Biology. Section 1. Atoms, Elements, and Compounds Section 1 Atoms, Elements, and Compounds Atoms! Chemistry is the study of matter.! Atoms are the building blocks of matter.! Neutrons and protons are located at the center of the atom.! Protons are positively

More information

chpt. 2 review Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

chpt. 2 review Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: chpt. 2 review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Subatomic particles are a. particles that are smaller than an atom. b.

More information

OH, is an important feedstock for the chemical industry.

OH, is an important feedstock for the chemical industry. 1 Methanol, CH 3 OH, is an important feedstock for the chemical industry. In the manufacture of methanol, carbon dioxide and hydrogen are reacted together in the reversible reaction shown below. CO 2 (g)

More information

Chemistry Review CHAPTER 2 IN TEXT

Chemistry Review CHAPTER 2 IN TEXT Chemistry Review CHAPTER 2 IN TEXT Chemistry of Life Living organisms and the world they live in are subject to the basic laws of physics and chemistry. Life can be organized into a hierarchy of structural

More information

Recent activities in TP C6:

Recent activities in TP C6: Recent activities in TP C6: Adsorption, diffusion, and reaction at MoO 3 and V 2 O 5 substrate K. Hermann, M. Gruber, and X. Shi Theory Department, Fritz-Haber-Institut, Berlin Sfb 546 Workshop, Schmöckwitz,

More information

AP Chemistry - Notes - Chapter 12 - Kinetics Page 1 of 7 Chapter 12 outline : Chemical kinetics

AP Chemistry - Notes - Chapter 12 - Kinetics Page 1 of 7 Chapter 12 outline : Chemical kinetics AP Chemistry - Notes - Chapter 12 - Kinetics Page 1 of 7 Chapter 12 outline : Chemical kinetics A. Chemical Kinetics - chemistry of reaction rates 1. Reaction Rates a. Reaction rate- the change in concentration

More information

C a h p a t p e t r e r 6 E z n y z m y e m s

C a h p a t p e t r e r 6 E z n y z m y e m s Chapter 6 Enzymes 4. Examples of enzymatic reactions acid-base catalysis: give and take protons covalent catalysis: a transient covalent bond is formed between the enzyme and the substrate metal ion catalysis:

More information

MARIYA INTERNATIONAL SCHOOL. Work sheet II. Term II. Level 8 Chemistry [Paper IV] Name: SULFUR AND AIR AND WATER

MARIYA INTERNATIONAL SCHOOL. Work sheet II. Term II. Level 8 Chemistry [Paper IV] Name: SULFUR AND AIR AND WATER MARIYA INTERNATIONAL SCHOOL Work sheet II Term II Level 8 Chemistry [Paper IV] Name: SULFUR AND AIR AND WATER 1. Nitrogen dioxide and other oxides of nitrogen are formed in car engines. a) Explain how

More information

Photosystem I in Arabidopsis Thaliana

Photosystem I in Arabidopsis Thaliana Photosystem I in Arabidopsis Thaliana Part A. Photosystem I in Arabidopsis Thaliana Arabidopsis thaliana is a small flowering plant related to the cabbage and mustard plants. Like all plants, Arabidopsis

More information

ENV SCI 22 GROUP QUIZ WEEK 2

ENV SCI 22 GROUP QUIZ WEEK 2 ENV SCI 22 GROUP QUIZ WEEK 2 ph OF ACIDS AND BASES 1) A decrease of one unit in the ph scale above represents a tenfold increase in the hydrogen ion concentration of a solution. For example, a solution

More information

Metabolism and Enzymes

Metabolism and Enzymes Energy Basics Metabolism and Enzymes Chapter 5 Pgs. 77 86 Chapter 8 Pgs. 142 162 Energy is the capacity to cause change, and is required to do work. Very difficult to define quantity. Two types of energy:

More information

Introduction. Motivation

Introduction. Motivation The important thing in science is not so much to obtain new facts as to discover new ways of thinking about them. - William Lawrence Bragg 1 Introduction Motivation Biological systems have evolved the

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism Chapter 8: An Introduction to Metabolism Key Concepts 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 8.2 The free-energy change of a reaction tells us

More information

Chapter Chemical Kinetics

Chapter Chemical Kinetics CHM 51 Chapter 13.5-13.7 Chemical Kinetics Graphical Determination of the Rate Law for A Product Plots of [A] versus time, ln[a] versus time, and 1/[A] versus time allow determination of whether a reaction

More information

BIOLOGY 10/11/2014. An Introduction to Metabolism. Outline. Overview: The Energy of Life

BIOLOGY 10/11/2014. An Introduction to Metabolism. Outline. Overview: The Energy of Life 8 An Introduction to Metabolism CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Outline I. Forms of Energy II. Laws of Thermodynamics III. Energy and metabolism IV. ATP V. Enzymes

More information

PDBe TUTORIAL. PDBePISA (Protein Interfaces, Surfaces and Assemblies)

PDBe TUTORIAL. PDBePISA (Protein Interfaces, Surfaces and Assemblies) PDBe TUTORIAL PDBePISA (Protein Interfaces, Surfaces and Assemblies) http://pdbe.org/pisa/ This tutorial introduces the PDBePISA (PISA for short) service, which is a webbased interactive tool offered by

More information

Chapter 2. Introduction: Chapter Chemical Basis of Life. Structure of Matter:

Chapter 2. Introduction: Chapter Chemical Basis of Life. Structure of Matter: Chapter 2.1-2.2 Read text 2.1 and describe why chemistry is important in understanding life. Read text 2.2 and discuss how atomic structure determines how atoms interact. Also describe the types of chemical

More information

Supporting Information: Selective Electrochemical Generation of. Hydrogen Peroxide from Water Oxidation

Supporting Information: Selective Electrochemical Generation of. Hydrogen Peroxide from Water Oxidation Supporting Information: Selective Electrochemical Generation of Hydrogen Peroxide from Water Oxidation Venkatasubramanian Viswanathan,,, Heine A. Hansen,, and Jens K. Nørskov,, Department of Mechanical

More information

Number 1 What is a chemical reaction?

Number 1 What is a chemical reaction? Chemical Reactions and Enzymes Number 1 What is a chemical reaction? A process that changes, or transforms, one set of chemicals into another by changing the chemical bonds that join atoms in compounds.

More information

A. Reaction Mechanisms and Catalysis (1) proximity effect (2) acid-base catalysts (3) electrostatic (4) functional groups (5) structural flexibility

A. Reaction Mechanisms and Catalysis (1) proximity effect (2) acid-base catalysts (3) electrostatic (4) functional groups (5) structural flexibility (P&S Ch 5; Fer Ch 2, 9; Palm Ch 10,11; Zub Ch 9) A. Reaction Mechanisms and Catalysis (1) proximity effect (2) acid-base catalysts (3) electrostatic (4) functional groups (5) structural flexibility B.

More information

Fertilisers. Topic 12 National 5 Chemistry Summary Notes

Fertilisers. Topic 12 National 5 Chemistry Summary Notes Fertilisers LI 1 Topic 12 National 5 Chemistry Summary Notes Chemistry is extremely important to the future of food production. As the population of the world increases, more and more efficient ways of

More information

Biology 30 The Chemistry of Living Things

Biology 30 The Chemistry of Living Things Biology 30 The Chemistry of Living Things Hierarchy of organization: Chemistry: MATTER: Periodic Table: ELEMENT: Ex. oxygen, gold, copper, carbon COMPOUND: Ex. salt (NaCl), H 2 O ELEMENTS ESSENTIAL TO

More information