Acetyl CoA Synthase: Nature s Monsanto Acetic Acid Catalyst. By: Seth Cory and Trang Nguyen CHEM 462 Dr. Marcetta Y. Darensbourg

Size: px
Start display at page:

Download "Acetyl CoA Synthase: Nature s Monsanto Acetic Acid Catalyst. By: Seth Cory and Trang Nguyen CHEM 462 Dr. Marcetta Y. Darensbourg"

Transcription

1 Acetyl CoA ynthase: ature s Monsanto Acetic Acid Catalyst 1 By: eth Cory and Trang guyen CHEM 462 Dr. Marcetta Y. Darensbourg

2 utline Industrial Process: Monsanto Acetic Acid Catalysis Reaction Mechanism Advantages & ther Routes Biological Mechanism: AC/CDH Catalysis verview of tructure Proposed Mechanisms & Biomimetic Complexes urvey of Mechanisms at the A-Cluster Analysis of ynthetic Biomimetic Complexes Computational Analysis Conclusion Current Directions ummary 2

3 Monsanto Acetic Acid Process Acetic acid used by many chemists Converted to acetic anhydride and used for synthesis of acetate films and aspirin Mid 1960s: BAF cobalt catalyst used for methanol carbonylation Reaction conditions: 250 o C and 680 bar Late 1960s: Monsanto rhodium catalyst discovered Reaction conditions: o C and bar 3 Miessler, G; pessard, G. rganometallic Chemistry Jones, J. Platinum Metals Rev. 2000, 3,

4 Monsanto Acetic Acid Process Rate = k[[rh(c 2 )I 2- ]][CH 3 I] tart Here H 2 CH 3 I I CH C 3 H HI E.C. = 16 e - I Rh + C CH 3 C H C I CH 3 Rh 3+ I E.C. = 18 e - C I E.C. = 16 e - I Rh C 3+ CH 3 C I I E.C. = 18 e - C 4 H 2 C I Rh C CH 3+ CH 3 3 C I C I I Adapted from: Miessler, G; pessard, G. rganometallic Chemistry

5 Monsanto Acetic Acid Process 5 Jones, J. Platinum Metals Rev. 2000, 3,

6 Benefits: Monsanto Acetic Acid Process Uses a more efficient metal complex to synthesize a C-C bond Increased yield selectivity to >99% based upon methanol Milder conditions needed for the synthesis ( o C and bar) Plant capacity: 500,000 tons annually Challenges: Rhodium: expensive and precipitates under low water concentrations Large production of high boiling point by-products Replaced by an Iridium catalyst in the late 1990s by BP Chemicals How can nature do this chemistry at atmospheric pressures and low temperatures? 6 unley, G; Watson, D. Catal. Today. 2000, 58, ava, X; et al. Ullmann s Encyclopedia of Industrial Chemistry

7 utline Industrial Process: Monsanto Acetic Acid Catalysis Reaction Mechanism Advantages & ther Routes Biological Mechanism: AC/CDH Catalysis verview of tructure Proposed Mechanisms & Biomimetic Complexes urvey of Mechanisms at the A-Cluster Analysis of ynthetic Biomimetic Complexes Computational Analysis Conclusion Current Directions ummary 7

8 atural ources of AC Bacteria Chemoautotropic: grow on C 2 /H 2 or C Major role in the global carbon (C 2 /C) cycle Bacteria have developed intricate chemical processes to survive based on their environments! 8 Tan, ; et al. Biochem. 2007, 46,

9 AC/CDH: verview of tructure 9 Ragsdale, ; et al. Chem. Rev. 2014, 114,

10 AC/CDH: verview of Reactions How C is delivered from C- cluster to A-cluster? Active site of C-cluster Proposed Mechanism of C-cluster 10 Macharak, P; Harrop, T. Coord. Chem. Rev. 2005, 249, Lindahl, P. Met. Ions Life ci. 2009, 6, Wolfgang, K; chwederski, B; Klein, A. Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life

11 AC/CDH: verview of tructure 11 Ragsdale, ; et al. Chem. Rev. 2014, 114,

12 A Cluster: active site of AC reaction Proximal i: (trigonal planar) + where substrate binds + very labile can be removed by phenanthroline Proximal i: (trigonal pyramid) can be replaced by Zn and Cu inactivates AC activity i 12 Lindahl, P. Coordination & Bioinorganic Chemistry Lectures, ickel Enzyme, Texas A&M University, College tation. TX, UA, 2014

13 A-Cluster: i d ite (Tight) H 4-2- cys H gly i 2+ i 2+ cys * signifies an attachment to the protein backbone 13

14 pectroscopic Properties of A-cluster Electronic Properties xidized = diamagnetic 1 e - Reduced = paramagnetic Under C atmosphere gives EPR signal Vibrational Properties ν C = 1996 cm Macharak, P; Harrop, T. Coord. Chem. Rev. 2005, 249, Fontecilla-Camps, J; et al. at. truct. Biol. 2003, 10,

15 utline Industrial Process: Monsanto Acetic Acid Catalysis Reaction Mechanism Advantages & ther Routes Biological Mechanism: AC/CDH Catalysis verview of tructure Proposed Mechanisms & Biomimetic Complexes urvey of Mechanisms at the A-Cluster Analysis of ynthetic Biomimetic Complexes Computational Analysis Conclusion Current Directions ummary 15

16 How can we study the chemistry of the A-cluster? Goals: Provide mechanistic insight at the A-Cluster Use the model to synthesize acetyl-coa from CH 3 and C Biophysical Methods tarting materials: How to obtain the A-cluster of AC/CDH enzyme? Protein biochemistry: purify proteins from living organisms Active-site mimicking organometallic complexes Experimental techniques: How to study the activity of A-cluster? Biophysical Techniques: X-ray Crystallography & pectroscopy rganometallic synthesis coupled with spectroscopy and redox studies tructural & pectroscopic vs. Functional Computationally using DFT calculations 16

17 Diamagnetic Mechanism Paramagnetic Mechanism i 0 : d 10 i + : d 9 Relies on i p (0) i(ii) square planar species ifec EPR signal results from a side-reaction Relies on i p (I) i(iii) square pyramidal species ifec EPR signal results from a i(i)-c species 17 Crabtree, R. The rganometallic Chemistry of the Transition Metals Ragsdale, ; et al. Chem. Rev. 2014, 114,

18 Lindahl Mechanism (Diamagnetic) CH 3 Co 3+ -CoFeP Co 1+ -CoFeP 2+/1+ [Fe4 4] i 0 i 2+ 2+/1+ [Fe4 4] H 3 C i 2+ i 2+ H 3 C CoA CoA - C 2+/1+ [Fe4 4] H 3 C i 2+ i 2+ Migratory Insertion 2+/1+ [Fe4 4] H 3 C i 2+ C i Adapted from: Lindahl, P. Met. Ions Life ci. 2009, 6, Lindahl, P; Barondeau, D. J. Am. Chem. oc. 1997, 119,

19 Camps Mechanism (Diamagnetic) 2+/1+ [Fe4 4] i 0 i 2+ C 2+/1+ [Fe4 4] i 0 C i 2+ H 3 C CoA Does C withdraw e- density from i 0? CH 3 Co 3+ -CoFeP CoA - Co 1+ -CoFeP 2+/1+ [Fe4 4] H 3 C i 2+ i 2+ Migratory Insertion 2+/1+ [Fe4 4] H 3 C i 2+ C i Adapted from: Fontecilla-Camps, J; et al. at. truct. Biol. 2003, 10,

20 Ragsdale Mechanism (Paramagnetic) i 2+ is activated by a 1e- reduction by ferredoxin H 3 C 2+ [Fe4 4] i 1+ i 2+ C 2+ [Fe4 4] i 1+ C i 2+ CoA CoA - Internal e - transfer CH 3 Co 3+ -CoFeP Co 1+ -CoFeP 2+ [Fe4 4] H 3 C i 2+ i 2+ Migratory Insertion 2+ [Fe4 4] H 3 C i 2+ C i [Fe4 4] H 3 C i 3+ C i Ragsdale, ; Murakami, J. Biol. Chem. 2000, 275, Ragsdale, ; et al. Biochemistry. 2002, 41, Adapted from: Ragsdale, ; et. al. Chem. Rev. 2014, 114,

21 utline Industrial Process: Monsanto Acetic Acid Catalysis Reaction Mechanism Advantages & ther Routes Biological Mechanism: AC/CDH Catalysis verview of tructure Proposed Mechanisms & Biomimetic Complexes urvey of Mechanisms at the A-Cluster Analysis of ynthetic Biomimetic Complexes Computational Analysis Conclusion Current Directions ummary 21

22 i p Biomimetic Complexes i 2+ either complex can be reduced ulfur lone pairs prevent reduction Catalytically incompetent with respect to AC-type activity Ph P Ph i 2+ Ph P Ph 22 Adapted from: Darensbourg, M; et al. Inorg. Chem. 1990, 29, Adapted from: Darensbourg, M; et al. rganomettalics. 1993, 12, Lindahl, P; J. Biol. Inorg. Chem. 2004, 9,

23 i p Biomimetic Complexes CH 3 CH 3 i 2+,1+ Ph Ph P i 2+,1+,0 CH 3 Ph H 3 C P Ph σ-donors to the metal o π-acceptors to delocalize electrons Phosphine ligands delocalize electrons Good π-acceptors allow for reduction to i 0 Catalyzes formation of acetyl group 23 Adapted from: Darensbourg, M; et al. Inorg. Chem. 1990, 29, Adapted from: Darensbourg, M; et al. rganomettalics. 1993, 12, Lindahl, P; J. Biol. Inorg. Chem. 2004, 9,

24 Functional Biomimetic Complex R R i 2+,1+ R = i-pr or t-bu R CH 3MgX R R H 3 C i 2+ R C R R i 2+ C CH 3 R R - H 3 C R i 0 Can be reduced to i 1+ Thioethers cannot stabilize low oxidation state of i After reductive elimination, the i 0 dissociates and precipitates v(c) = 2026 cm -1 (only when C binds first) 24 Adapted from: Holm, R; et al. J. Am. Chem. oc. 1991, 113,

25 Biomimetic Complexes i 2+ Ph P i 2+,1+ P Ph Ph Ph i d -like site: 2 2 square-planar coordinated i p -like site: 2 bridging thiolates with 2 phosphines {i p 2+ i d 2+ } {i p + i d 2+ } {i p 0 i d 2+ } e- e- 25 Adapted from: chröder; et al. Chem. Commun. 2003, 24,

26 Biomimetic Complexes i 2+ i 2+ Ph Ph i 2+,1+ P P Ph Ph i d -like site: 2 tertiary amine nitrogens Unable to reduce to i 0 i 0 C C i d -like site: 2 amide nitrogens Able to reduce to i 0 26 Adapted from: chröder; et al. Chem. Commun. 2003, 24, Adapted from: Rauchfuss, T; et al. J. Am. Chem. oc. 2003, 125,

27 Biomimetic Complexes (6) H 3C()CH (6) (5) i 2+ (5) H 2 (5) (5) R R P i 2+,1+,0 P R R i p -like site: i p -like site: 3 rd bridging ligands 3 coordination sites 2 phosphine ligands 4 coordination sites o AC activity 27 Adapted from: Riordan, C; Krishnan, R. J. Am. Chem. oc. 2004, 126, Lindahl, P. Coordination & Bioinorganic Chemistry Lectures, ickel Enzyme, Texas A&M University, College tation. TX, UA, 2014

28 utline Industrial Process: Monsanto Acetic Acid Catalysis Reaction Mechanism Advantages & ther Routes Biological Mechanism: AC/CDH Catalysis verview of tructure Proposed Mechanisms & Biomimetic Complexes urvey of Mechanisms at the A-Cluster Analysis of ynthetic Biomimetic Complexes Computational Analysis Conclusion Current Directions ummary 28

29 Hall s Theoretical Model Calculated Cu 1+ (C)(CH 3 ) as unstable and C likely dissociates upon CH 3 addition in a competitive mechanism howed CH 3 addition to i 0 prior to C retains thiolate ligands Calculated an unstable i 3+ (C )(CH 3 ) that dissociates from thiolate ligands Provided insight on a nickelassisted thioacetyl reductive elimination H Fe H H CH 3 M L i Adapted from: Hall, M; et. al. J. Am. Chem. oc. 2004, 126,

30 Hall s Theoretical Model i 0 i 2+ +CH 3 H 3 C i 2+ i 2+ C H 3 C i 2+ C i 2+ [1: 0 kcal mol -1 ] [2: 0 kcal mol -1 ] [3: kcal mol -1 ] [T: kcal mol -1 ] kcal mol -1 + H 3 C CH3 i 2+ H 3 C C H3 C i 2+ - CH 3 H 3 C C i 2+ i 2+ [T: -5.0 kcal mol -1 ] [5: kcal mol -1 ] [4: kcal mol -1 ] 30 Adapted from: Hall, M; et. al. J. Am. Chem. oc. 2004, 126,

31 utline Industrial Process: Monsanto Acetic Acid Catalysis Reaction Mechanism Advantages & ther Routes Biological Mechanism: AC/CDH Catalysis verview of tructure Proposed Mechanisms & Biomimetic Complexes urvey of Mechanisms at the A-Cluster Analysis of ynthetic Biomimetic Complexes Computational Analysis Conclusion ummary Current Directions 31

32 Questions: Diamagnetic Vs. Paramagnetic i(0) has never been observed i(0) in a highly electropositive environment formed by i 2+ d and [Fe 4 4 ] 2+ Reduction potential for i 2+ C/i + C is already negative, below 550 mv 2 addition of methyl cation to the i + p should result in a i 3+ p i 3+ p state is highly oxidizing and unstable Further reduced to a more stable state i 2+ p Requires e- transfer from a redox carrier protein, which has not also been observed 32 Ragsdale, ; et al. Chem. Rev. 2014, 114, Macharak, P; Harrop, T. Coord. Chem. Rev. 2005, 249,

33 Conclusion The closed state is required to promote the oxidative addition of a i 0/1+ to form i 2+/3+ (C)CH 3 followed by a methyl migration to form an acetyl C-C bond formation Reductive elimination drives the formation of acetyl-coa imilar to Monsanto Acetic Acid Process 33

34 Current Work: i-i bond roles in catalysis? 34 Lindahl, P; J. Inorg. Biochem. 2012, 106, M., Matsumoto, et al. Proc. at. Acad. ci. UA. 2009, 106,

35 Harvesting the Power of AC 35 Dalton. Trans. 2010,12, M., Matsumoto, et al. Proc. at. Acad. ci. UA. 2009, 106,

CO 2 and CO activation

CO 2 and CO activation 2 and activation Most organic chemicals are currently made commercially from ethylene, a product of oil refining. It is possible that in the next several decades we may have to shift toward other carbon

More information

CO 2 and CO activation

CO 2 and CO activation 2 and activation Most organic chemicals are currently made commercially from ethylene, a product of oil refining. Itispossiblethatinthenextseveraldecadeswemayhavetoshifttowardothercarbonsources for these

More information

Reaction chemistry of complexes Three general forms: 1. Reactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b.

Reaction chemistry of complexes Three general forms: 1. Reactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b. eaction chemistry of complexes Three general forms: 1. eactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b. Oxidative Addition c. eductive Elimination d. Nucleophillic

More information

Organometallic Catalysis

Organometallic Catalysis Organometallic Catalysis The catalysts we will study are termed homogeneous catalysts as they are dissolved in th e same solvent as the substrate. In contrast, heterogeneous catalysts, such as palladium

More information

Nitrogen Centered Radical Ligands Nagashima Nozomu

Nitrogen Centered Radical Ligands Nagashima Nozomu 1 Nitrogen Centered Radical Ligands 2015. 7. 4. Nagashima Nozomu 1. Introduction 2 3 Aminyl radical 1) D. E. Wiliams, JACS, 1966, 88, 5665 2) Y. Teki et al. JOC, 2000, 65, 7889 Sterically protected aminyl

More information

CHEM 251 (4 credits): Description

CHEM 251 (4 credits): Description CHEM 251 (4 credits): Intermediate Reactions of Nucleophiles and Electrophiles (Reactivity 2) Description: An understanding of chemical reactivity, initiated in Reactivity 1, is further developed based

More information

Lecture 12. Metalloproteins - II

Lecture 12. Metalloproteins - II Lecture 12 Metalloproteins - II Metalloenzymes Metalloproteins with one labile coordination site around the metal centre are known as metalloenzyme. As with all enzymes, the shape of the active site is

More information

489--Lectures 3 and 4. Fundamentals of Inorganic Chemistry

489--Lectures 3 and 4. Fundamentals of Inorganic Chemistry 489--Lectures 3 and 4 Fundamentals of Inorganic Chemistry (with special relevance to biological systems) Some slides courtesy of Prof. Xuan Zhao (U. Memphis) and Prof. Yi Lu (U. Illinois) Fundamentals

More information

A Summary of Organometallic Chemistry

A Summary of Organometallic Chemistry A Summary of Organometallic Chemistry Counting valence electrons (v.e.) with the ionic model 1. Look at the total charge of the complex Ph 3 P Cl Rh Ph 3 P PPh 3 OC CO 2 Fe OC CO Co + charge:0 charge:

More information

Iridium-Catalyzed Hydrogenation with Chiral P,N Ligands

Iridium-Catalyzed Hydrogenation with Chiral P,N Ligands Iridium-Catalyzed Hydrogenation with Chiral P, Ligands 贾佳 utline Brief Introduction Hydrogenation of C=C Bonds Hydrogenation of C= Bonds Hydrogenation of C= Bonds Conclusion Brief Introduction First example

More information

M.Sc. Project Introduction Nitrogen-fixing Enzymes

M.Sc. Project Introduction Nitrogen-fixing Enzymes M.Sc. Project Introduction Nitrogen-fixing Enzymes M.Sc. Candidate: Egill Skulason Supervisor: Hannes Jonsson Co-supervisor: Magnus Mar Kristjansson Raunvisindastofnun Haskola Islands Efnafraedistofa vklubbur

More information

Schedule. Lecture 7: M-M bonds δ-bonds and bonding in metal clusters

Schedule. Lecture 7: M-M bonds δ-bonds and bonding in metal clusters Schedule Lecture 7: M-M bonds δ-bonds and bonding in metal clusters Lecture 8: Rates of reaction Ligand-exchange reactions, labile and inert metal ions Lecture 9: Redox reactions Inner and outer-sphere

More information

Coordination and Special Materials Chemistry. Elective I/II: WS 2005/6 (Lecture) H.J. Deiseroth. Part 2

Coordination and Special Materials Chemistry. Elective I/II: WS 2005/6 (Lecture) H.J. Deiseroth. Part 2 Coordination and Special Materials Chemistry Elective I/II: WS 2005/6 (Lecture) H.J. Deiseroth Part 2 Coordination Chemistry: Spectroscopy -microstates and spectroscopic symbols (RS and jj coupling), see

More information

Inorganic Chemistry GARY L. MIESSLER DONALD A. TARR. St. Olaf College Northfield, Minnesota

Inorganic Chemistry GARY L. MIESSLER DONALD A. TARR. St. Olaf College Northfield, Minnesota Inorganic Chemistry GARY L. MIESSLER DONALD A. TARR St. Olaf College Northfield, Minnesota Contents PREFACE xiii 1 INTRODUCTION TO INORGANIC CHEMISTRY 1 1-1 What Is Inorganic Chemistry? 1 1-2 Contrasts

More information

Insertion Reactions. 1) 1,1 insertion in which the metal and the X ligand end up bound to the same (1,1) atom

Insertion Reactions. 1) 1,1 insertion in which the metal and the X ligand end up bound to the same (1,1) atom Insertion Reactions xidative addition and substitution allow us to assemble 1e and 2e ligands on the metal, respectively. With insertion, and its reverse reaction, elimination, we can now combine and transform

More information

Organometallic Chemistry and Homogeneous Catalysis

Organometallic Chemistry and Homogeneous Catalysis Organometallic Chemistry and Homogeneous Catalysis Dr. Alexey Zazybin Lecture N6 Kashiwa Campus, November 27, 2009 Group VIB: Cr, Mo, W -Oxidation states from -2 to +6 -While +2 and +3 for Cr are quite

More information

Reductive Elimination

Reductive Elimination Reductive Elimination Reductive elimination, the reverse of oxidative addition, is most often seen in higher oxidation states because the formal oxidation state of the metal is reduced by two units in

More information

Chem 263 March 28, 2006

Chem 263 March 28, 2006 Chem 263 March 28, 2006 Properties of Carboxylic Acids Since carboxylic acids are structurally related to both ketones and aldehydes, we would expect to see some similar structural properties. The carbonyl

More information

Chemistry 5.07SC Biological Chemistry I Fall Semester, 2013

Chemistry 5.07SC Biological Chemistry I Fall Semester, 2013 Chemistry 5.07SC Biological Chemistry I Fall Semester, 2013 Lecture 9 Biochemical Transformations I. Carbon-carbon bond forming and cleaving reactions in Biology (see the Lexicon). Enzymes catalyze a limited

More information

Scission of Dinitrogen by a Molybdenum(III) Xylidene Complex. CHM 5.33 Fall 2005

Scission of Dinitrogen by a Molybdenum(III) Xylidene Complex. CHM 5.33 Fall 2005 Scission of Dinitrogen by a Molybdenum(III) Xylidene Complex CHM 5.33 Fall 2005 Introduction The experiment is based on research performed in the laboratory of Professor Cummins during the early 90 s.

More information

ummary Manipulating Radicals

ummary Manipulating Radicals Manipulating Radicals ummary Modern catalysis research tries to address issues such as material scarcity, sustainability or process costs. One solution is to replace expensive and scarce noble metal catalysts

More information

Organometallic Chemistry and Homogeneous Catalysis

Organometallic Chemistry and Homogeneous Catalysis rganometallic hemistry and omogeneous atalysis Dr. Alexey Zazybin Lecture N8 Kashiwa ampus, December 11, 2009 Types of reactions in the coordination sphere of T 3. Reductive elimination X-L n -Y L n +

More information

Supramolecular catalysis

Supramolecular catalysis Supramolecular catalysis Catalyst: a chemical species that accelerates a chemical reactions without being consumed rganometallic catalyst: soluble metal complex with organic ligands that accelerates the

More information

Course 201N 1 st Semester Inorganic Chemistry Instructor: Jitendra K. Bera

Course 201N 1 st Semester Inorganic Chemistry Instructor: Jitendra K. Bera andout-9 ourse 201N 1 st Semester 2006-2007 Inorganic hemistry Instructor: Jitendra K. Bera ontents 3. rganometallic hemistry xidative Addition, Reductive Elimination, Migratory Insertion, Elimination

More information

14-1 Reactions Involving Gain or Loss of Ligands Reactions Involving Modification of Ligands

14-1 Reactions Involving Gain or Loss of Ligands Reactions Involving Modification of Ligands Organometallic Reaction and Catalysis 14-1 Reactions Involving Gain or Loss of Ligands 14-2 Reactions Involving Modification of Ligands 14-3 Organometallic Catalysts 14-4 Heterogeneous Catalysts Inorganic

More information

Flow of Energy. Flow of Energy. Energy and Metabolism. Chapter 6

Flow of Energy. Flow of Energy. Energy and Metabolism. Chapter 6 Energy and Metabolism Chapter 6 Flow of Energy Energy: the capacity to do work -kinetic energy: the energy of motion -potential energy: stored energy Energy can take many forms: mechanical electric current

More information

Chapter 21 Coordination chemistry: reactions of complexes

Chapter 21 Coordination chemistry: reactions of complexes CHEM 511 chapter 21 page 1 of 7 Chapter 21 Coordination chemistry: reactions of complexes Reactions of Complexes Typically measure ligand substitution reactions in solution (usually water) Lability and

More information

Enzymes and Protein Structure

Enzymes and Protein Structure Enzymes and Protein Structure Last Week PTM s We (Re)Learned About Primary Structure And Tertiary Structure S-Q-D-A-G-M-Q-Q-G-A-D-M-D-Q-V-S-A Secondary Structure Enzymes What are these crazy things called

More information

Chem 634. Introduction to Transition Metal Catalysis. Reading: Heg Ch 1 2 CS-B 7.1, , 11.3 Grossman Ch 6

Chem 634. Introduction to Transition Metal Catalysis. Reading: Heg Ch 1 2 CS-B 7.1, , 11.3 Grossman Ch 6 Chem 634 Introduction to Transition etal Catalysis eading: eg Ch 1 2 CS-B 7.1, 8.2 8.3, 11.3 Grossman Ch 6 Announcements Problem Set 1 due Thurs, 9/24 at beginning of class ffice our: Wed, 10:30-12, 220

More information

5.03 In-Class Exam 3

5.03 In-Class Exam 3 5.03 In-Class Exam 3 Christopher C. Cummins April 9, 2010 Instructions Clearly write your name at the top of this front page, but otherwise do not write on this front page as it will be used for scoring.

More information

Biological Chemistry and Metabolic Pathways

Biological Chemistry and Metabolic Pathways Biological Chemistry and Metabolic Pathways 1. Reaction a. Thermodynamics b. Kinetics 2. Enzyme a. Structure and Function b. Regulation of Activity c. Kinetics d. Inhibition 3. Metabolic Pathways a. REDOX

More information

Chem 263 Nov 24, Properties of Carboxylic Acids

Chem 263 Nov 24, Properties of Carboxylic Acids Chem 263 ov 24, 2009 Properties of Carboxylic Acids Since carboxylic acids are structurally related to both ketones and aldehydes, we would expect to see some similar structural properties. The carbonyl

More information

a. Why do the amides coordinate to Zr and the phosphines to Co?

a. Why do the amides coordinate to Zr and the phosphines to Co? Reactivity and Bonding of mplexes with Metal-Metal Bonds Goals: Determine electron counts and oxidation states of complexes with M-M bonds using CBC method of electron counting Draw molecular orbital diagrams

More information

Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy

Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Lecture 19, ovember 9, 2016 complexes C4 activation, functionalization ature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry,

More information

Vitamin B 12 Mechanism. Wan-Chun Chung 4/18/2011

Vitamin B 12 Mechanism. Wan-Chun Chung 4/18/2011 Vitamin B 12 Mechanism Wan-Chun Chung 4/18/2011 utline Introduction Isomerase mechanism problems Methyltranferase mechanism problems Dehalogenase mechanism 2 Introduction Brain, nervous system, blood formation,

More information

21.1 Introduction Carboxylic Acids Nomenclature of Carboxylic Acids. Acids Structure and Properties of Carboxylic Acids.

21.1 Introduction Carboxylic Acids Nomenclature of Carboxylic Acids. Acids Structure and Properties of Carboxylic Acids. 21.1 Introduction Carboxylic Acids Carboxylic acids are abundant in nature and in pharmaceuticals. 21.1 Introduction Carboxylic Acids The US produces over 2.5 million tons of acetic acid per year, which

More information

Organometallic Chemistry and Homogeneous Catalysis

Organometallic Chemistry and Homogeneous Catalysis Organometallic Chemistry and Homogeneous Catalysis Dr. Alexey Zazybin Lecture N1 Kashiwa Campus, October 9, 2009 What compounds we can call organometallic compounds? Compounds containing direct metal-carbon

More information

Studies of Carbon-Sulfur Bond Cleavage by Homogeneous Transition Metal Complexes

Studies of Carbon-Sulfur Bond Cleavage by Homogeneous Transition Metal Complexes CE 9421727 William D. Jones Final Report for NF Grant CE-9421727 for the period January 15, 1997-January 14, 1998 (year 3 of 3) tudies of Carbon-ulfur Bond eavage by omogeneous Transition Metal mplexes

More information

Chapter 15: Enyzmatic Catalysis

Chapter 15: Enyzmatic Catalysis Chapter 15: Enyzmatic Catalysis Voet & Voet: Pages 496-508 Slide 1 Catalytic Mechanisms Catalysis is a process that increases the rate at which a reaction approaches equilibrium Rate enhancement depends

More information

deactivation or decomposition is therefore quantified using the turnover number.

deactivation or decomposition is therefore quantified using the turnover number. A catalyst may be defined by two important criteria related to its stability and efficiency. Name both of these criteria and describe how they are defined with respect to stability or efficiency. A catalyst

More information

Course 201N 1 st Semester Inorganic Chemistry Instructor: Jitendra K. Bera

Course 201N 1 st Semester Inorganic Chemistry Instructor: Jitendra K. Bera andout-8 ourse 201N 1 st Semester 2006-2007 Inorganic hemistry Instructor: Jitendra K. Bera ontents 3. Organometallic hemistry yclopentadienyl, Alkyl and Alkene yclopentadienyl p The cyclopentadienyl ligand

More information

Metal Hydrides, Alkyls, Aryls, and their Reactions

Metal Hydrides, Alkyls, Aryls, and their Reactions Metal Hydrides, Alkyls, Aryls, and their Reactions A Primer on MO Theory σ-bonding in Organotransition Metal Complexes M-C Bond Energies in Organotransition Metal Complexes Thermodynamic Predictions

More information

2013 W. H. Freeman and Company. 6 Enzymes

2013 W. H. Freeman and Company. 6 Enzymes 2013 W. H. Freeman and Company 6 Enzymes CHAPTER 6 Enzymes Key topics about enzyme function: Physiological significance of enzymes Origin of catalytic power of enzymes Chemical mechanisms of catalysis

More information

Module 6 : General properties of Transition Metal Organometallic Complexes. Lecture 2 : Synthesis and Stability. Objectives

Module 6 : General properties of Transition Metal Organometallic Complexes. Lecture 2 : Synthesis and Stability. Objectives Module 6 : General properties of Transition Metal Organometallic Complexes Lecture 2 : Synthesis and Stability Objectives In this lecture you will learn the following Understand the role lead by ligands

More information

Catalysis. Catalytic nanoparticles have been used for centuries to facilitate desirable chemical reactions and to suppress unwanted byproducts.

Catalysis. Catalytic nanoparticles have been used for centuries to facilitate desirable chemical reactions and to suppress unwanted byproducts. Catalysis Catalytic nanoparticles have been used for centuries to facilitate desirable chemical reactions and to suppress unwanted byproducts. Gerhard Ertl received the 2007 Chemistry Nobel Prize for converting

More information

Heidelberg Molecular Modelling Summer School The Challenges of Transition Metal Systems

Heidelberg Molecular Modelling Summer School The Challenges of Transition Metal Systems Heidelberg Molecular Modelling Summer School The Challenges of Transition Metal Systems Dr Rob Deeth Inorganic Computational Chemistry Group University of Warwick UK verview Is molecular modelling of TM

More information

EPIC LIGAND SURVEY: CARBON MONOXIDE

EPIC LIGAND SURVEY: CARBON MONOXIDE EPIC LIGAND SURVEY: CARBON MONOXIDE As a young, growing field, organometallic chemistry may be taught in many ways. Some professors (e.g., Shaugnessy) spend a significant chunk of time discussing ligands,

More information

Chapter 10: Carboxylic Acids and Their Derivatives

Chapter 10: Carboxylic Acids and Their Derivatives Chapter 10: Carboxylic Acids and Their Derivatives The back of the white willow tree (Salix alba) is a source of salicylic acid which is used to make aspirin (acetylsalicylic acid) The functional group

More information

CH 3 TMG, DMF N H 3 CO 2 S. (PPh 3 ) 2 Pd 0

CH 3 TMG, DMF N H 3 CO 2 S. (PPh 3 ) 2 Pd 0 1. (a) rovide a reasonable mechanism for the following transformation. I S 2 C 3 C 3 ( 3 ) 2 2, CuI C 3 TMG, DMF 3 C 2 S TMG = Me 2 Me 2 ICu ( 3 ) 2 0 I S 2 C 3 S 2 C 3 Cu I 3 3 3 C 2 S I 3 3 3 C 2 S 3

More information

Andrew Yeung CHEM636

Andrew Yeung CHEM636 Andrew Yeung CHEM636 Scope verview olyketones and their synthesis Timeline of development Catalyst selection alladium vs. nickel Ligands Mechanism Initiation & termination ropagation roperties Low T g

More information

SOD ACTIVITY OF IMMOBILIZED ENZYME MIMICKING COMPLEXES

SOD ACTIVITY OF IMMOBILIZED ENZYME MIMICKING COMPLEXES István Szilágyi a, Imre Labádi a, Klára Hernádi b, István Pálinkó c and Tamás Kiss a,d SOD ACTIVITY OF IMMOBILIZED EZYME MIMICKIG COMPLEXES a Department of Inorganic and Analytical Chemistry, University

More information

Bio-inspired C-H functionalization by metal-oxo complexes

Bio-inspired C-H functionalization by metal-oxo complexes 1 Literature Seminar Bio-inspired C-H functionalization by metal-oxo complexes 2016. 7. 23. Nagashima Nozomu 2 C-H functionalization by enzymes Enzymes enable aliphatic C-H functionalization 3 P450 oxidation

More information

Lecture 14 (10/18/17) Lecture 14 (10/18/17)

Lecture 14 (10/18/17) Lecture 14 (10/18/17) Lecture 14 (10/18/17) Reading: Ch6; 190-191, 194-195, 197-198 Problems: Ch6 (text); 7, 24 Ch6 (study guide-facts); 4, 13 NEXT Reading: Ch6; 198-203 Ch6; Box 6-1 Problems: Ch6 (text); 8, 9, 10, 11, 12,

More information

Chapter 2 The Elementary Steps in TM Catalysis

Chapter 2 The Elementary Steps in TM Catalysis hapter 2 The Elementary Steps in TM atalysis + + ligand exchange A oxidative addition > n + A B n+2 reductive elimination < B n n+2 oxidative coupling + M' + M' transmetallation migratory insertion > (carbo-,

More information

Hydrogen-Mediated C-C Bond Formation

Hydrogen-Mediated C-C Bond Formation EPFL - ISIC - LSPN Hydrogen-Mediated C-C Bond Formation History and selected examples The Research of Prof. Michael Krische (University of Texas at Austin) LSPN Group Seminar Mathias Mamboury Table of

More information

Planar-Chiral Phosphine-Olefin Ligands Exploiting a (Cyclopentadienyl)manganese(I) Scaffold to Achieve High Robustness and High Enantioselectivity

Planar-Chiral Phosphine-Olefin Ligands Exploiting a (Cyclopentadienyl)manganese(I) Scaffold to Achieve High Robustness and High Enantioselectivity Planar-Chiral Phosphine-Olefin Ligands Exploiting a (Cyclopentadienyl)manganese(I) Scaffold to Achieve High Robustness and High Enantioselectivity Reporter: Cong Liu Checker: Hong-Qiang Shen Date: 2017/02/27

More information

L. METALS IN REDOX CATALYSIS

L. METALS IN REDOX CATALYSIS Metals in Redox Reactions L. METALS IN REDOX CATALYSIS While metals can assist a lot of important chemistry without themselves acting as reactants, they are uniquely able to serve a direct role in oxidation

More information

MITOCW watch?v=gboyppj9ok4

MITOCW watch?v=gboyppj9ok4 MITOCW watch?v=gboyppj9ok4 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

More information

The following molecules are related:

The following molecules are related: Isolobal Analogy Inclusion of the ligand η-c 5 H 5 - which, as a donor of 3 π-electron pairs formally occupies 3 coordination sites, yields the analogies: The following molecules are related: 1 Isolobal

More information

Hydrides and Dihydrogen as Ligands: Hydrogenation Catalysis

Hydrides and Dihydrogen as Ligands: Hydrogenation Catalysis Hydrides and Dihydrogen as Ligands: Hydrogenation Catalysis Synthesis of Organometallic Complex Hydrides Reaction of MCO with OH -, H -, or CH 2 CHR 2 M(CO) n + OH - = M(CO) n-1 (COOH) - = HM(CO) n-1 -

More information

Halogen Bond Applications in Organic Synthesis. Literature Seminar 2018/7/14 M1 Katsuya Maruyama

Halogen Bond Applications in Organic Synthesis. Literature Seminar 2018/7/14 M1 Katsuya Maruyama Halogen Bond Applications in Organic Synthesis Literature Seminar 2018/7/14 M1 Katsuya Maruyama 1 Contents 1. Introduction 2. Property of Halogen Bond 3. Application to Organic Synthesis 2 1. Introduction

More information

2054, Chap. 8, page 1

2054, Chap. 8, page 1 2054, Chap. 8, page 1 I. Metabolism: Energetics, Enzymes, and Regulation (Chapter 8) A. Energetics and work 1. overview a. energy = ability to do work (1) chemical, transport, mechanical (2) ultimate source

More information

N-Heterocyclic Carbenes (NHCs)

N-Heterocyclic Carbenes (NHCs) N-Heterocyclic Carbenes (NHCs) In contrast to Fischer and Schrock type carbenes NHCs are extremely stable, inert ligands when complexed to a metal centre. Similar to phosphine ligands they are electronically

More information

C H activation of aliphatic amines without unnecessary mask M2 Takaya Togo

C H activation of aliphatic amines without unnecessary mask M2 Takaya Togo C H activation of aliphatic amines without unnecessary mask 2017.11.25 M2 Takaya Togo 1 Outline 1.Introduction 2.Free amines as DG Discovery of new activation mode Mechanistic studies Application of the

More information

COMBINATORIAL CHEMISTRY: CURRENT APPROACH

COMBINATORIAL CHEMISTRY: CURRENT APPROACH COMBINATORIAL CHEMISTRY: CURRENT APPROACH Dwivedi A. 1, Sitoke A. 2, Joshi V. 3, Akhtar A.K. 4* and Chaturvedi M. 1, NRI Institute of Pharmaceutical Sciences, Bhopal, M.P.-India 2, SRM College of Pharmacy,

More information

RESEARCH HIGHLIGHTS. Model Complexes for Studying Heterometallic Effects Relevant to Fuel Cell Chemistry

RESEARCH HIGHLIGHTS. Model Complexes for Studying Heterometallic Effects Relevant to Fuel Cell Chemistry RESEARCH HIGHLIGHTS From the Resnick Sustainability Institute Graduate Research Fellows at the California Institute of Technology Model Complexes for Studying Heterometallic Effects Relevant to Fuel Cell

More information

Enzyme function: the transition state. Enzymes & Kinetics V: Mechanisms. Catalytic Reactions. Margaret A. Daugherty A B. Lecture 16: Fall 2003

Enzyme function: the transition state. Enzymes & Kinetics V: Mechanisms. Catalytic Reactions. Margaret A. Daugherty A B. Lecture 16: Fall 2003 Lecture 16: Enzymes & Kinetics V: Mechanisms Margaret A. Daugherty Fall 2003 Enzyme function: the transition state Catalytic Reactions A B Catalysts (e.g. enzymes) act by lowering the transition state

More information

Catalytic Reactions. Intermediate State in Catalysis. Lecture 16: Catalyzed reaction. Uncatalyzed reaction. Enzymes & Kinetics V: Mechanisms

Catalytic Reactions. Intermediate State in Catalysis. Lecture 16: Catalyzed reaction. Uncatalyzed reaction. Enzymes & Kinetics V: Mechanisms Enzyme function: the transition state Catalytic Reactions Lecture 16: Enzymes & Kinetics V: Mechanisms Margaret A. Daugherty Fall 2003 A B Catalysts (e.g. enzymes) act by lowering the transition state

More information

Transition Metal Chemistry

Transition Metal Chemistry Transition Metal Chemistry 2 2011.12.2 Ⅰ Fundamental Organometallic Reactions Following four reactions are important formal reaction patterns in organotransition metal complexes, which would conveniently

More information

H Organometallic Catalysis in Industry

H Organometallic Catalysis in Industry H Organometallic Catalysis in Industry Some terminology: Catalytic cycles: a circular path meant to show productive reactions, in order, that lead from the catalytically active species and its reaction

More information

Recommended Reading: 23, 29 (3rd edition); 22, 29 (4th edition) Ch 102 Problem Set 7 Due: Thursday, June 1 Before Class. Problem 1 (1 points) Part A

Recommended Reading: 23, 29 (3rd edition); 22, 29 (4th edition) Ch 102 Problem Set 7 Due: Thursday, June 1 Before Class. Problem 1 (1 points) Part A Recommended Reading: 23, 29 (3rd edition); 22, 29 (4th edition) Ch 102 Problem Set 7 Due: Thursday, June 1 Before Class Problem 1 (1 points) Part A Kinetics experiments studying the above reaction determined

More information

PERP Program New Report Alert

PERP Program New Report Alert PERP Program New Report Alert June 2004 Nexant s ChemSystems Process Evaluation/Research Planning (PERP) Program has published a new report, /Cellulose Acetate (03/04S1). Processing Routes to There are

More information

Lecture 15: Enzymes & Kinetics. Mechanisms ROLE OF THE TRANSITION STATE. H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl. Margaret A. Daugherty.

Lecture 15: Enzymes & Kinetics. Mechanisms ROLE OF THE TRANSITION STATE. H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl. Margaret A. Daugherty. Lecture 15: Enzymes & Kinetics Mechanisms Margaret A. Daugherty Fall 2004 ROLE OF THE TRANSITION STATE Consider the reaction: H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl Reactants Transition state Products

More information

THE ORGANOMETALLIC CHEMISTRY OF THE TRANSITION METALS

THE ORGANOMETALLIC CHEMISTRY OF THE TRANSITION METALS THE ORGANOMETALLIC CHEMISTRY OF THE TRANSITION METALS Second Edition ROBERT H. CRABTREE Yale University New Haven, Connecticut A Wiley-Interscience Publication JOHN WILEY & SONS New York / Chichester /

More information

Catalytic alkylation of remote C H bonds enabled by proton-coupled electron transfer

Catalytic alkylation of remote C H bonds enabled by proton-coupled electron transfer Catalytic alkylation of remote C bonds enabled by proton-coupled electron transfer Reporter: Ji Zhou Checker: Shubo u Date: 2016/11/14 Choi, G. J.; Zhu, Q.-L.; Miller, D. C.; Gu, C. J.; Knowles, R. R.

More information

Enzyme Catalysis & Biotechnology

Enzyme Catalysis & Biotechnology L28-1 Enzyme Catalysis & Biotechnology Bovine Pancreatic RNase A Biochemistry, Life, and all that L28-2 A brief word about biochemistry traditionally, chemical engineers used organic and inorganic chemistry

More information

C a h p a t p e t r e r 6 E z n y z m y e m s

C a h p a t p e t r e r 6 E z n y z m y e m s Chapter 6 Enzymes 4. Examples of enzymatic reactions acid-base catalysis: give and take protons covalent catalysis: a transient covalent bond is formed between the enzyme and the substrate metal ion catalysis:

More information

Investigation of the Role and Form. Formation. Michael Enright

Investigation of the Role and Form. Formation. Michael Enright Investigation of the Role and Form of Silver Catalysts in C N Bond Formation Michael Enright Ripon College Importance Carbon Nitrogen Bonds Medicine Biological compounds Make C N bonds whenever we want

More information

Basic Organometallic Chemistry : Concepts, Syntheses, and Applications of Transition Metals. Table Of Contents: Foreword

Basic Organometallic Chemistry : Concepts, Syntheses, and Applications of Transition Metals. Table Of Contents: Foreword Basic Organometallic Chemistry : Concepts, Syntheses, and Applications of Transition Metals Table Of Contents: Foreword v Preface vii List of abbreviations ix Chapter 1 Introduction 1 (15) 1.1 What is

More information

A. Reaction Mechanisms and Catalysis (1) proximity effect (2) acid-base catalysts (3) electrostatic (4) functional groups (5) structural flexibility

A. Reaction Mechanisms and Catalysis (1) proximity effect (2) acid-base catalysts (3) electrostatic (4) functional groups (5) structural flexibility (P&S Ch 5; Fer Ch 2, 9; Palm Ch 10,11; Zub Ch 9) A. Reaction Mechanisms and Catalysis (1) proximity effect (2) acid-base catalysts (3) electrostatic (4) functional groups (5) structural flexibility B.

More information

Nucleophilic attack on ligand

Nucleophilic attack on ligand Nucleophilic attack on ligand Nucleophile "substitutes" metal hapticity usually decreases xidation state mostly unchanged Competition: nucleophilic attack on metal usually leads to ligand substitution

More information

O CH 3. Mn CH 3 OC C. 16eelimination

O CH 3. Mn CH 3 OC C. 16eelimination igratory Insertion igratory Insertion/Elimination 1 A migratory insertion reaction is when a cisoidal anionic and neutral ligand on a metal complex couple together to generate a new coordinated anionic

More information

Energy and Cells. Appendix 1. The two primary energy transformations in plants are photosynthesis and respiration.

Energy and Cells. Appendix 1. The two primary energy transformations in plants are photosynthesis and respiration. Energy and Cells Appendix 1 Energy transformations play a key role in all physical and chemical processes that occur in plants. Energy by itself is insufficient to drive plant growth and development. Enzymes

More information

ACTIVATION OF C H BONDS BY LOW-VALENT METAL COMPLEXES ( THE ORGANOMETALLIC CHEMISTRY )

ACTIVATION OF C H BONDS BY LOW-VALENT METAL COMPLEXES ( THE ORGANOMETALLIC CHEMISTRY ) CHAPTER IV ACTIVATION OF C H BONDS BY LOW-VALENT METAL COMPLEXES ( THE ORGANOMETALLIC CHEMISTRY ) n the end of the 1960s the leading specialist in homogeneous catalysis Jack Halpern wrote [1]: to develop

More information

Amines. Amines are organic compounds containing a nitrogen functionality. primary secondary tertiary quaternary

Amines. Amines are organic compounds containing a nitrogen functionality. primary secondary tertiary quaternary Amines Amines are organic compounds containing a nitrogen functionality Depending upon the number of alkyl, or aryl, groups attached to nitrogen determines its classification, or order 2 primary secondary

More information

CHEM Core Chemistry 3. Reaction Mechanisms in Organometallic Chemistry

CHEM Core Chemistry 3. Reaction Mechanisms in Organometallic Chemistry E3012 - ore hemistry 3 eaction echanisms in Organometallic hemistry In an earlier section of this lecture course we considered the mechanisms of substitution reactions in organometallic species, and noted

More information

Marvin 5.4 A new generation of structure indexing at Elsevier. Dr. Michael Maier, Dr. Heike Nau, Elsevier

Marvin 5.4 A new generation of structure indexing at Elsevier. Dr. Michael Maier, Dr. Heike Nau, Elsevier Marvin 5.4 A new generation of structure indexing at Elsevier Dr. Michael Maier, Dr. Heike Nau, Elsevier Agenda Elsevier: Reaxys database Compound classes Structure requirements Marvin 5.4 Decision process

More information

Course 201N 1 st Semester Inorganic Chemistry Instructor: Jitendra K. Bera

Course 201N 1 st Semester Inorganic Chemistry Instructor: Jitendra K. Bera andout-10 ourse 201N 1 st Semester 2006-2007 Inorganic hemistry Instructor: Jitendra K. Bera ontents 3. rganometallic hemistry omogeneous atalysis lefin ydrogenation; ydroformylation; Monsanto Acetic acid

More information

Recent Advances of Alkyne Metathesis. Group Meeting Timothy Chang

Recent Advances of Alkyne Metathesis. Group Meeting Timothy Chang Recent Advances of Alkyne Metathesis Group Meeting Timothy Chang 11-09-10 Fischer Carbyne and Schrock Alkylidyne Fischer Doublet LX type 4e Schrock Quartet X 3 type 6e -1-3 lone pair covalent p-back bonding

More information

Coordination Compounds

Coordination Compounds Coordination Compounds 1. What is a coordination compound composed of? a. Metal Ion b. Ligand c. Counter Ion 2. What is a complex ion? The metal ion and ligand combination. 3. What is a counter ion? An

More information

Structure. Extremely interesting BPs (very high Tm ~ C) Excellent thermic and mechanical properties

Structure. Extremely interesting BPs (very high Tm ~ C) Excellent thermic and mechanical properties tructure Extremely interesting BPs (very high Tm ~ 220-230 C) Excellent thermic and mechanical properties Limitations: no straigthforward synthetic pathways available (Expensive material) Applications:

More information

Theoretical studies on the chemical activation of carbon dioxide

Theoretical studies on the chemical activation of carbon dioxide Theoretical studies on the chemical activation of carbon dioxide h. D. theses Gábor Schubert Supervisor Dr. Imre ápai Budapest University of Technology and Economics, Faculty of Chemical Engineering Chemical

More information

Chapter 7: Alcohols, Phenols and Thiols

Chapter 7: Alcohols, Phenols and Thiols Chapter 7: Alcohols, Phenols and Thiols 45 -Alcohols have the general formula R-OH and are characterized by the presence of a hydroxyl group, -OH. -Phenols have a hydroxyl group attached directly to an

More information

Metalloporphyrin. ~as efficient Lewis acid catalysts with a unique reaction-field~ and. ~Synthetic study toward complex metalloporphyrins~

Metalloporphyrin. ~as efficient Lewis acid catalysts with a unique reaction-field~ and. ~Synthetic study toward complex metalloporphyrins~ Metalloporphyrin ~as efficient Lewis acid catalysts with a unique reaction-field~ and ~Synthetic study toward complex metalloporphyrins~ Literature Seminar Kenta Saito (D1) 1 Topics Chapter 1 ~as efficient

More information

BIOLOGICAL SCIENCE. Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge. FIFTH EDITION Freeman Quillin Allison

BIOLOGICAL SCIENCE. Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge. FIFTH EDITION Freeman Quillin Allison BIOLOGICAL SCIENCE FIFTH EDITION Freeman Quillin Allison 8 Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge Roadmap 8 In this chapter you will learn how Enzymes use

More information

Reaction Mechanisms - Ligand Substitutions. ML n-x P x + xl

Reaction Mechanisms - Ligand Substitutions. ML n-x P x + xl Reaction chanisms - igand Substitutions igand Substitutions 1 A substitution reaction is one in which an existing ligand on a metal center is replaced by another ligand. Exactly how this occurs depends

More information

N-HETEROCYCLIC CARBENES: STRUCTURE AND PROPERTIES

N-HETEROCYCLIC CARBENES: STRUCTURE AND PROPERTIES N-HETEROCYCLIC CARBENES: STRUCTURE AND PROPERTIES Zachery Matesich 24 February 2015 Roadmap 2 Introduction Synthetic Methods History of NHCs Properties of NHCs Nature of the carbene Structural properties

More information

Organic Chemistry Laboratory Summer Lecture 6 Transition metal organometallic chemistry and catalysis July

Organic Chemistry Laboratory Summer Lecture 6 Transition metal organometallic chemistry and catalysis July 344 Organic Chemistry Laboratory Summer 2013 Lecture 6 Transition metal organometallic chemistry and catalysis July 30 2013 Summary of Grignard lecture Organometallic chemistry - the chemistry of compounds

More information

Name CHM 4610/5620 Fall 2016 December 15 FINAL EXAMINATION SOLUTIONS

Name CHM 4610/5620 Fall 2016 December 15 FINAL EXAMINATION SOLUTIONS Name CHM 4610/5620 Fall 2016 December 15 FINAL EXAMINATION SOLUTIONS I. (80 points) From the literature... A. The synthesis and properties of copper(ii) complexes with ligands containing phenanthroline

More information

Organometallic Chemistry Solutions

Organometallic Chemistry Solutions Organometallic Chemistry Solutions Give the denticity and hapticity of the ligands in the following complexes: Just because this complex is drawn with the iron centre bound to two distinct alkene units

More information