Structure. Extremely interesting BPs (very high Tm ~ C) Excellent thermic and mechanical properties

Size: px
Start display at page:

Download "Structure. Extremely interesting BPs (very high Tm ~ C) Excellent thermic and mechanical properties"

Transcription

1 tructure Extremely interesting BPs (very high Tm ~ C) Excellent thermic and mechanical properties Limitations: no straigthforward synthetic pathways available (Expensive material) Applications: biomedical devices Left-handed Helicoidal chain ight-handed Helicoidal chain Ikada et al. Macromolecules 1987

2 Through polymerization catalysis of lactide with a well-defined catalyst Possibility of a controlled polymerization process affording polymers with well-defined chain length and stereoregularity 1) M- Catalyst 2) Hydrolysis n H Dimers of lactic acid Poly(lactic acid)

3 General Mechanism for the ing-opening Polymerization of Lactides by Metal Alkoxides Complexes LM LM LM n M = oxophilic and electropositive (Mg, Ca, Al, Y, Ti, Zr, Zn,) Important features of the catalyst: - Lewis acidity of M - ucleophilicity de - - ature of the ligand L LM Living polymerization (in the ideal case) n

4 (D,L)-LA Al( i Pr) 3 (1 mol%) H 2n Atatic Poly(lactic) acid Amorphous Biodegradable Positive Aspect: Living Polymerization (control of the polymer chain length) egative Aspect: o discrimination between the two lactide enantiomers o stereoregularity in the prepared PLA

5 tereoselective Polymerization of rac-lactide: Access to stereoregular PLAs Al Me cat.: 1% mol. (L)-lactide (D)-lactide rac-lactide Isotactic tereoblock Poly(lactide) Properties: ew material, extremely high melting point (T m up to 190 C) And highlyresistant - Importance of the use of a well-defined and single-site catalyst Le Borgne, A.; Vincens, V.; Jouglard, M.; passky,. Makromol. Chem., Macromol. ymp. 1993, 73, 37. omura,.; Ishii,.; Akakura, M.; Aoi, K. J. Am. Chem. oc. 2002, 124, 5938.

6 LAl n - 1 LAl n initial insertion of (,)-lactide LAl n - 1 LAl n initial insertion of (,)-lactide The last inserted lactide unit stereocontrols the insertion of the subsequent unit transesterification hydrolysis Isotactic tereoblock PLA H n n'

7 H n Commercial Poly(lactic acid) T m = 162 C Extremely interesting BPs (very high Tm ~230 C) Excellent mechanical properties Isotactic tereoblock Poly(lactic acid) (Tm~ 190 C) Inter-molecular Chain interactions Intra-molecular Chain interactions The «tereocomplex Character» improves its thermal properties

8 Enantioselective Polymerization Principle: In an enantioselective polymerization, one enantiomer of a racemic monomer mixture is preferentially polymerized to give an optically active polymer (with a specific chain stereochemistry) Enantiopure Catalyst A A racemic 50% conversion Major advantage: - btention of a polymer with a controlled stereochemistry

9 The use of enantiomerically pure Al Complexes: Enantioselective Polymerization of Lactides Interest: Access to stereoregular PLA polymers Al Me ()-L*Al (L)-LA (D)-LA racemic ()-L*Al (D)-lactide polymerized preferentially (optically active isotactic Poly(D-lactide) At 50% conversion, ee (unreacted monomer) = 80% ee k D /k L = 20 passky Macromol. Chem. Phys. 1996, 197, 2627.

10 Formation of new materials via the formation of enantiomeric poly(l-la) and poly(d-la) block polymers Al Me ()-L*Al ()-L*Al racemic (L)-LA (D)-LA racemic mith et al. JAC 2000, 122, ()-L*Al ()-L*Al Due to chain transfer during the polymerization process Poly(L-lactide) (isotactic) Poly(D-lactide) (isotactic) Isotactic tereoblock Poly(lactide) Properties: ew material, extremely high melting point (T m = 187 C) And highly resistant

11 L* () Al L* () Al initial insertion of (,)-lactide initial insertion of (,)-lactide n - 1 n'-1 L* () Al L* () Al n n' transesterification L*Al = "chiral pocket" that induces stereocontrol L*Al n n'

12 Importance of the Metal Catalyst Activity: Y >, n > Al > Ti, Zr tereoregularity: Al >, n, Y > Ti, Zr > Toxicity: n whereas are biocompatible Cost: Y is an expensive metal Lactide Monomer High purity required for high activity (it costs!!!)

13 Interest: - use of metal-free catalysts (because of toxicity problems) - no need to remove metal traces prior to polymer processing (costly) Approach: - use of very nucleophilic organic species to ring-open lactide - the ring-opened species ring-opens another lactide unit and so on. Most efficient ucleophiles to date: dimethylamino- -pyridine (DMAP) -heterocyclic carbenes (highly nucleophilic)

14 Atactic PLA - H H Waymouth, Hedrick et al. JAC 2005, 127, 9079.

15 «H»

16 Cyclic PLAs are more thermally stable linear PLAs Waymouth, Hedrick et al. Angew. Chem. Int. Ed. 2007, 46, 2627

17

18 rganocatalysis: P of lactide thanks to supramolecular recognition Waymouth et al. J. Am. Chem. oc Use of a thiourea-amine Bifunctional catalyst such as 1

19 From:

20 Poly(hydroalkanoates) : PHAs PHAs are naturally produced by micro-organisms from various carbon sources (typically from the sugar family) ome micro-organismsmay accumulate PHA From 30% to 80 % of cellular dry weight Depending on the carbon source, different monomers and thus Polymers may be obtained. Polyhydrobutyrate (PHB) is the main polymer of this family PHB PHB n PHV m (Biopol, Monsanto, 20% HV) Major problem: the extraction and recovery steps are expensive

21 - First observed in bacteria by Lemoigne et al. in the 1920s ptically active macromolecules (PHBs) used as a «carbon reserves» by bacteria

22 Biosynthesis of PHB Acetic acid Implicated enzymes: (1) ketothiolase: dimerizes acetyl-coa (2) reductase: hydrogenation to ()-3-hydroxy-butyryl-CoA (3) ynthase (or polymerase): polymerisation: access to PHB

23 Two thiol groups within the polymerase enzyme are believed to be involved in the initiation and propagation polymerisation process.

24 PHB is a highly crystalline biodegradable and biocompatible polymer (Tg = 5 C, Tm = 153 C)

25

Biorenewable Polymers 1: The Isotactic Polymerisation of Lactide

Biorenewable Polymers 1: The Isotactic Polymerisation of Lactide 4A3 Advanced Polymer Synthesis Biorenewable Polymers 1: The Isotactic Polymerisation of Lactide Dr. Ed Marshall Rm: M220, RCS 1 e.marshall@imperial.ac.uk www.ch.ic.ac.uk/marshall/4a3.html 4A3 - Slide 1

More information

Overview on Biodegradable Polymers and the Specific Case of Poly(lac=c acid)

Overview on Biodegradable Polymers and the Specific Case of Poly(lac=c acid) verview on Biodegradable Polymers and the Specific Case of Poly(lac=c acid) Samuel Dagorne Equipe «Synthèse, éac5vité et Catalyse rganométalliques» (SC) Ins5tut de Chimie Université de Strasbourg Ins5tut

More information

Polylactic acids produced from l- and dl-lactic acid anhydrosulfite: stereochemical aspects

Polylactic acids produced from l- and dl-lactic acid anhydrosulfite: stereochemical aspects JPOL 3576 Polymer 40 (1999) 5073 5078 Polylactic acids produced from l- and dl-lactic acid anhydrosulfite: stereochemical aspects A.J. Amass a, *, K.L.R. N Goala a, B.J. Tighe a, F. Schué b a Speciality

More information

Sommai Pivsa-Art *, Thikanda Tong-ngok, Supansa Junngam, Rutchaneekorn Wongpajan and Weraporn Pivsa-Art

Sommai Pivsa-Art *, Thikanda Tong-ngok, Supansa Junngam, Rutchaneekorn Wongpajan and Weraporn Pivsa-Art Available online at www.sciencedirect.com Energy Procedia 34 (2013 ) 604 609 10th Eco-Energy and Materials Science and Engineering (EMSES2012) Synthesis of Poly(D-lactic acid) Using a 2-Steps Direct Polycondensation

More information

ISCHIA ADVANCED SCHOOL OF ORGANIC CHEMISTRY

ISCHIA ADVANCED SCHOOL OF ORGANIC CHEMISTRY ewis acid activation ewis base activation ISCIA ADVACED SC F GAIC CEMISTY Dual in Enantioselective Synthesis of Cyanohydrins Me A A Me UM ewis base catalysis is the process by which an electronpair donor

More information

Biodegradable Polymers

Biodegradable Polymers Biodegradable Polymers The evolution of biomaterials materials for passive implants and devices Biofunctional materials 1 Design of biomaterials (Biocompatible) Processable Sterilizable Possibility to

More information

- Overview of polymeriza1on catalysis

- Overview of polymeriza1on catalysis - verview of polymeriza1on catalysis Different coordina-on polymeriza-on mechanisms: RP, RMP, (meth)acrylate polymeriza6on, olefin polymeriza6on. Different catalysts: Metal- based catalysts, organic catalysts

More information

ALUMINUM(III) COMPLEXES. Keywords: Cyclic polyesters, Biodegradable polymers, ε-caprolactone

ALUMINUM(III) COMPLEXES. Keywords: Cyclic polyesters, Biodegradable polymers, ε-caprolactone SYNTHESIS OF CYCLIC POLY(ε-CAPROLACTONE) USING ALUMINUM(III) COMPLEXES Pisanu Pisitsopon a, Phonpimon Wongmahasirikun b, Khamphee Phomphrai *,b a Department of Chemical Engineering, School of Energy Science

More information

Chiral Ionic Liquids (CILs) in Asymmetric Synthesis: The story so far.

Chiral Ionic Liquids (CILs) in Asymmetric Synthesis: The story so far. Chiral Ionic Liquids (CILs) in Asymmetric Synthesis: The story so far. Literature Presentation Aman Desai 06.16.06 1. Angew. Chem. Int. Ed. 2006, 45, 3689 2. Angew. Chem. Int. Ed. 2006, 45, 3093 3. Tetrahedron:

More information

Lecture 6: Transition-Metal Catalysed C-C Bond Formation

Lecture 6: Transition-Metal Catalysed C-C Bond Formation Lecture 6: Transition-Metal Catalysed C-C Bond Formation (a) Asymmetric allylic substitution 1 u - d u (b) Asymmetric eck reaction 2 3 Ar- d (0) Ar 2 3 (c) Asymmetric olefin metathesis alladium π-allyl

More information

Asymmetric Lewis Base Strategies for Heterocycle Synthesis

Asymmetric Lewis Base Strategies for Heterocycle Synthesis Asymmetric Lewis Base trategies for eterocycle ynthesis Dr Andrew mith EatCEM, chool of Chemistry, University of t Andrews 1st cottish-japanese ymposium of rganic Chemistry, University of Glasgow Friday

More information

Non-Linear Effects in Asymmetric Catalysis: A Useful Tool in Understanding Reaction Mechanisms. Group Meeting Aaron Bailey 12 May 2009

Non-Linear Effects in Asymmetric Catalysis: A Useful Tool in Understanding Reaction Mechanisms. Group Meeting Aaron Bailey 12 May 2009 Non-Linear Effects in Asymmetric Catalysis: A Useful Tool in Understanding Reaction chanisms Group eting Aaron Bailey 12 May 2009 What is a Non-Linear Effect? In asymmetric catalysis, the ee (er) of the

More information

CH 2 = CH - CH =CH 2

CH 2 = CH - CH =CH 2 MULTIPLE CHOICE QUESTIONS 1. Styrene is almost a unique monomer, in that it can be polymerized by practically all methods of chain polymerization. A. Free radical B. Anionic C. Cationic D. Co-ordination

More information

Kinetic Resolutions. Some definitions and examples Resolution: A process leading to the separation of enantiomers, or derivatives thereof.

Kinetic Resolutions. Some definitions and examples Resolution: A process leading to the separation of enantiomers, or derivatives thereof. Material outline: For the Scientist in you: Definitions Theoretical treatment Kinetic esolutions General eferences: Vedejs, ACIEE, 2005, 3974 Jacobsen, Adv. Syn. Cat. 2001, 5 Kagan, Topics in Stereochemistry,

More information

"-Amino Acids: Function and Synthesis

-Amino Acids: Function and Synthesis "-Amino Acids: Function and Synthesis # Conformations of "-Peptides # Biological Significance # Asymmetric Synthesis Sean Brown MacMillan Group eting ovember 14, 2001 Lead eferences: Cheng,. P.; Gellman,

More information

The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: favored. disfavored. favored. disfavored

The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: favored. disfavored. favored. disfavored The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: Z-enolates: M 2 M 2 syn 2 C 2 favored 2 M 2 anti disfavored E-enolates: M 2 2 C 3 C 3 C 2 favored 2 M M disfavored In

More information

Chapter 5 Stereochemistry. Stereoisomers

Chapter 5 Stereochemistry. Stereoisomers Chapter 5 Stereochemistry Stereoisomers Same bonding sequence Different arrangement in space Example: OOC-C=C-COO has two geometric (cis-trans) isomers: COO COO COO COO Stereochemistry Slide 5-2 1 Chirality

More information

RAPID COMMUNICATION. Synthesis of Disyndiotactic Polylactide INTRODUCTION EXPERIMENTAL

RAPID COMMUNICATION. Synthesis of Disyndiotactic Polylactide INTRODUCTION EXPERIMENTAL RAPID COMMUNICATION Synthesis of Disyndiotactic Polylactide M. BERO, P. DOBRZYŃSKI, J. KASPERCZYK Centre of Polymer Chemistry, Polish Academy of Sciences, 41-800 Zabrze, Poland, ul. M. Curie Sklodowskiej

More information

Catalysis & Sustainable Processes

Catalysis & Sustainable Processes Catalysis & Sustainable Processes The Polymers Story 8 lectures http://www.kcpc.usyd.edu.au/cem3113.html username: chem3 password: carbon12 Lecturer: Associate Professor Sébastien Perrier s.perrier@chem.usyd.edu.au;

More information

Racemic catalysis through asymmetric activation*

Racemic catalysis through asymmetric activation* Pure Appl. Chem., Vol. 73, No. 2, pp. 255 259, 2001. 2001 IUPAC Racemic catalysis through asymmetric activation* Koichi Mikami, Toshinobu Korenaga, Yousuke Matsumoto, Makoto Ueki, Masahiro Terada, and

More information

Oligolactate-Grafted Dextran Hydrogels: Detection of Stereocomplex Crosslinks by X-ray Diffraction

Oligolactate-Grafted Dextran Hydrogels: Detection of Stereocomplex Crosslinks by X-ray Diffraction Oligolactate-Grafted Dextran Hydrogels: Detection of Stereocomplex Crosslinks by X-ray Diffraction S. J. de Jong, 1 C.F. van Nostrum, 1 L.M. J. Kroon-Batenburg, 2 J.J. Kettenes-van den Bosch, 3 W. E. Hennink

More information

Biodegradable Solid Polymeric Materials (continued)

Biodegradable Solid Polymeric Materials (continued) Biodegradable Solid Polymeric Materials (continued) Last time: chemistry and physical chemistry of degrading polymeric solids for biomaterials Today: Factors controlling polymer degradation rates Theory

More information

R 2 R 4 Ln catalyst. This manuscript describes the methods for the synthesis and application of group 4 metallocene bis(trimethylsilyl)acetylene

R 2 R 4 Ln catalyst. This manuscript describes the methods for the synthesis and application of group 4 metallocene bis(trimethylsilyl)acetylene VII Abstracts 2011 p1 2.12.15 rganometallic Complexes of Scandium, Yttrium, and the Lanthanides P. Dissanayake, D. J. Averill, and M. J. Allen This manuscript is an update to the existing Science of Synthesis

More information

Supramolecular catalysis

Supramolecular catalysis Supramolecular catalysis Catalyst: a chemical species that accelerates a chemical reactions without being consumed rganometallic catalyst: soluble metal complex with organic ligands that accelerates the

More information

Stereoselective reactions of the carbonyl group

Stereoselective reactions of the carbonyl group 1 Stereoselective reactions of the carbonyl group We have seen many examples of substrate control in nucleophilic addition to the carbonyl group (Felkin-Ahn & chelation control) If molecule does not contain

More information

Zr-Catalyzed Carbometallation

Zr-Catalyzed Carbometallation -Catalyzed Carbometallation C C C C ML n C C ML n ML n C C C C ML n ML n C C ML n Wipf Group esearch Topic Seminar Juan Arredondo November 13, 2004 Juan Arredondo @ Wipf Group 1 11/14/2004 Carbometallation

More information

11 Homogeneous Catalyst Design for the Synthesis of Aliphatic Polycarbonates and Polyesters

11 Homogeneous Catalyst Design for the Synthesis of Aliphatic Polycarbonates and Polyesters j343 11 Homogeneous Catalyst Design for the Synthesis of Aliphatic Polycarbonates and Polyesters Geoffrey W. Coates and Ryan C. Jeske 11.1 Introduction Synthetic polymers are more important now than at

More information

Rhodium Catalyzed Alkyl C-H Insertion Reactions

Rhodium Catalyzed Alkyl C-H Insertion Reactions Rhodium Catalyzed Alkyl C-H Insertion Reactions Rh Rh Jeff Kallemeyn 5/17/05 1. Cyclopropanation The Versatile and Reactive Rhodium Carbene R + Et Rh 2 (Ac) 4 R C 2 Et N 2 2. [2,3] sigmatropic rearrangement

More information

Chiral Supramolecular Catalyst for Asymmetric Reaction

Chiral Supramolecular Catalyst for Asymmetric Reaction Chiral Supramolecular Catalyst for Asymmetric Reaction 2017/1/21 (Sat.) Literature Seminar Taiki Fujita (B4) 1 Introduction Rational design of chiral ligands remains very difficult. Conventional chiral

More information

Young Chemist s Panel - Review Meeting 2012

Young Chemist s Panel - Review Meeting 2012 Asymmetric Nucleophilic Catalysis Young Chemist s Panel - Review Meeting 2012 26th th November 2012 Dr. Dave Carbery, Department of Chemistry, University of Bath Setting the Context Catalysing Acyl Transfer

More information

In recent years, Al(salen) complexes [where salen is N,N bis(salicylaldimine)-1,2-ethylenediamine]

In recent years, Al(salen) complexes [where salen is N,N bis(salicylaldimine)-1,2-ethylenediamine] Study of ligand substituent effects on the rate and stereoselectivity of lactide polymerization using aluminum salen-type initiators Pimpa Hormnirun, Edward L. Marshall, Vernon C. Gibson*, Robert I. Pugh,

More information

Stereochemistry. In organic chemistry, subtle differences in spatial arrangements can give rise to prominent effects.

Stereochemistry. In organic chemistry, subtle differences in spatial arrangements can give rise to prominent effects. Stereochemistry This is study of the 3 dimensional arrangement in space of molecules. In organic chemistry, subtle differences in spatial arrangements can give rise to prominent effects. E.g. the isomers

More information

Fisika Polimer Ariadne L Juwono. Sem /2007

Fisika Polimer Ariadne L Juwono. Sem /2007 Chapter 4. Ionic and coordination (addition) polymerization 4.1. Similarities and contrast on ionic polymerization 4.2. Cationic polymerization 4.3. Anionic polymerization 4.4. Coordination polymerization

More information

Evidence for Ester-Exchange Reactions and Cyclic Oligomer Formation in the Ring-Opening Polymerization of Lactide with Aluminum Complex Initiators

Evidence for Ester-Exchange Reactions and Cyclic Oligomer Formation in the Ring-Opening Polymerization of Lactide with Aluminum Complex Initiators Macromolecules 1996, 29, 6461-6465 6461 Evidence for Ester-Exchange Reactions and Cyclic Oligomer Formation in the Ring-Opening Polymerization of Lactide with Aluminum Complex Initiators Giorgio Montaudo*

More information

The structures and common names of two amino acids are shown. Draw the structure of the zwitterion of proline.

The structures and common names of two amino acids are shown. Draw the structure of the zwitterion of proline. Q1.(a) The structures and common names of two amino acids are shown. (i) Draw the structure of the zwitterion of proline. Draw the structure of the tripeptide formed when a proline molecule bonds to two

More information

PART I FUNDAMENTALS OF SUPRAMOLECULAR POLYMERS COPYRIGHTED MATERIAL

PART I FUNDAMENTALS OF SUPRAMOLECULAR POLYMERS COPYRIGHTED MATERIAL PART I FUNDAMENTALS OF SUPRAMOLECULAR POLYMERS COPYRIGHTED MATERIAL CHAPTER 1 A BRIEF INTRODUCTION TO SUPRAMOLECULAR CHEMISTRY IN A POLYMER CONTEXT RAYMOND J. THIBAULT and VINCENT M. ROTELLO 1.1. INTRODUCTION

More information

Asymmetric Nucleophilic Catalysis

Asymmetric Nucleophilic Catalysis Asymmetric ucleophilic Catalysis Chiral catalyst X 2 Chiral catalyst X = alkyl, X 1 2 1 Vedejs, E.; Daugulis,. J. Am. Chem. Soc. 2003, 125, 4166-4173 Shaw, S. A.; Aleman,.; Vedejs, E. J. Am. Chem. Soc.

More information

Structure and Properties of Polymers Prepared by Polymerization of 2,2-Dimethyl-1,3-Propandiol and - Caprolactone Monomer

Structure and Properties of Polymers Prepared by Polymerization of 2,2-Dimethyl-1,3-Propandiol and - Caprolactone Monomer 78 ITB J. Sci. Vol. 41 A, No. 2, 2009, 78-87 Structure and Properties of Polymers Prepared by Polymerization of 2,2-Dimethyl-1,3-Propandiol and - Caprolactone Monomer I Made Arcana*, M. Hasan, Shinta Dewi

More information

Supporting Information for: Using a Lipase as a High Throughput Screening Method for Measuring the Enantiomeric. Excess of Allylic Acetates

Supporting Information for: Using a Lipase as a High Throughput Screening Method for Measuring the Enantiomeric. Excess of Allylic Acetates Supporting Information for: Using a Lipase as a High Throughput Screening Method for Measuring the Enantiomeric Excess of Allylic Acetates M. Burak Onaran and Christopher T. Seto* Department of Chemistry,

More information

A Highly Efficient Organocatalyst for Direct Aldol Reactions of Ketones and Aldehydes

A Highly Efficient Organocatalyst for Direct Aldol Reactions of Ketones and Aldehydes A ighly Efficient rganocatalyst for Direct Aldol Reactions of Ketones and Aldehydes Zhuo Tang, Zhi-ua Yang, Xiao-ua Chen, Lin-Feng Cun, Ai-Qiao Mi, Yao-Zhong Jiang, and Liu-Zhu Gong Contribution from the

More information

Supplementary Material

Supplementary Material 10.1071/CH17506_AC CSIRO 2018 Australian Journal of Chemistry 2018, 71(5), 341-347 Supplementary Material Magnesium alkoxide complexes of (benzimidazolylmethyl)amino ligands: Synthesis and applications

More information

Switchable Catalysis

Switchable Catalysis Switchable Catalysis hν 1 hν 2 Tiffany Chen MacMillan Lab June 5, 2018 Switchable Catalysis: Inspiration from ature the synthetic machinery of natural systems makes complex polymers with fine temporal

More information

1. Addition of HBr to alkenes

1. Addition of HBr to alkenes eactions of Alkenes I eading: Wade chapter 8, sections 8-1- 8-8 tudy Problems: 8-47, 8-48, 8-55, 8-66, 8-67, 8-70 Key Concepts and kills: Predict the products of additions to alkenes, including regiochemistry

More information

Stereoselective reactions of enolates

Stereoselective reactions of enolates 1 Stereoselective reactions of enolates Chiral auxiliaries are frequently used to allow diastereoselective enolate reactions Possibly the most extensively studied are the Evan s oxazolidinones These are

More information

Electrophilic Carbenes

Electrophilic Carbenes Electrophilic Carbenes The reaction of so-called stabilized diazo compounds with late transition metals produces a metal carbene intermediate that is electrophilic. The most common catalysts are Cu(I)

More information

The Types of Catalysis

The Types of Catalysis The Types of Catalysis Heterogeneous Catalysis: Homogeneous Catalysis: Enzyme Catalysis: catalyst and reactants in different phase most common example: solid catalyst, fluid reactants by far the largest

More information

Repeated insertion. Multiple insertion leads to dimerization, oligomerization or polymerization. κ 1: mainly dimerization κ

Repeated insertion. Multiple insertion leads to dimerization, oligomerization or polymerization. κ 1: mainly dimerization κ Repeated insertion ultiple insertion leads to dimerization, oligomerization or polymerization. k prop Et Key factor: k CT / k prop = κ κ 1: mainly dimerization κ 0.1-1.0: oligomerization (always mixtures)

More information

Degradability of Polymers for Implantable Biomedical Devices

Degradability of Polymers for Implantable Biomedical Devices Int. J. Mol. Sci. 2009, 10, 4033-4065; doi:10.3390/ijms10094033 eview OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Degradability of Polymers for Implantable

More information

Isomerism and Carbonyl Compounds

Isomerism and Carbonyl Compounds Isomerism and Carbonyl Compounds 18 Section B Answer all questions in the spaces provided. 7 Esters have many important commercial uses such as solvents and artificial flavourings in foods. Esters can

More information

Synthesis of Lactide from Oligomeric PLA: Effects of Temperature, Pressure, and Catalyst

Synthesis of Lactide from Oligomeric PLA: Effects of Temperature, Pressure, and Catalyst Macromolecular Research, Vol. 14, No. 5, pp 510-516 (2006) Synthesis of Lactide from Oligomeric PLA: Effects of Temperature, Pressure, and Catalyst Dong Keun Yoo and Dukjoon Kim* Department of Chemical

More information

water methanol dimethyl ether Ether can only act as a hydrogen bond acceptor H-bond acceptor O R

water methanol dimethyl ether Ether can only act as a hydrogen bond acceptor H-bond acceptor O R Chapter 14: Ethers and Epoxides; Thiols and Sulfides 14.1 Introduction to Ethers An ether group is an oxygen atom that is bonded to two carbons. The ether carbons can be part of alkyl, aryl, or vinyl groups.

More information

Midterm Exam #1 /310 CHEM 6352 Fall 2012

Midterm Exam #1 /310 CHEM 6352 Fall 2012 Midterm Exam #1 /310 CEM 6352 Fall 2012 ( %) Name ct 5 th, 2012 18:30-21:00 You may NT use any references or aids to complete the following with the exception of a chemical model set and the scrap paper

More information

ADVANCED CHEMISTRY 2

ADVANCED CHEMISTRY 2 ADVANCED CHEMISTRY 2 Philip Matthews ±m±l CAMBRIDGE UNIVERSITY PRESS Acknowledgements How to use this book INORGANIC CHEMISTRY 88 Periodicity of physical properties 88.1 Periodicity of ionisation energies

More information

Direct Organocatalytic Enantioselective Mannich Reactions of Ketimines: An Approach to Optically Active Quaternary α-amino Acid Derivatives

Direct Organocatalytic Enantioselective Mannich Reactions of Ketimines: An Approach to Optically Active Quaternary α-amino Acid Derivatives Direct rganocatalytic Enantioselective Mannich eactions of Ketimines: An Approach to ptically Active Quaternary α-amino Acid Derivatives Wei Zhang, Steen Saaby, and Karl Anker Jorgensen The Danish ational

More information

Suggested solutions for Chapter 41

Suggested solutions for Chapter 41 s for Chapter 41 41 PBLEM 1 Explain how this synthesis of amino acids, starting with natural proline, works. Explain the stereoselectivity of each step after the first. C 2 C 2 3 CF 3 C 2 2 Pd 2 C 2 +

More information

Molybdenum-Catalyzed Asymmetric Allylic Alkylation

Molybdenum-Catalyzed Asymmetric Allylic Alkylation Molybdenum-Catalyzed Asymmetric Allylic Alkylation X MoL n u u * Tommy Bui 9/14/04 Asymmetric Allylic Alkylation from a Synthetic Viewpoint X X M u u * and/or u form a C-C bond with the creation of a new

More information

Nuggets of Knowledge for Chapter 12 Alkenes (II) Chem reaction what is added to the C=C what kind of molecule results addition of HX HX only

Nuggets of Knowledge for Chapter 12 Alkenes (II) Chem reaction what is added to the C=C what kind of molecule results addition of HX HX only I. Addition Reactions of Alkenes Introduction Nuggets of Knowledge for Chapter 12 Alkenes (II) Chem 2310 An addition reaction always involves changing a double bond to a single bond and adding a new bond

More information

Alkenes, Important Synthetic Intermediates.

Alkenes, Important Synthetic Intermediates. UTLIE 535 SESSI 08 (2007) Page 73 Alkenes, Important Synthetic Intermediates. 1. We have discussed the synthesis of alkenes. 1.1. There are many more protocols than the ones we have discussed. 1.2. Some

More information

Enantioselective Protonations

Enantioselective Protonations Enantioselective Protonations Marc Timo Gieseler 25.02.2013 15.03.2013 Group Seminar AK Kalesse 1 verview Introduction Enantioselective Protonation of Cyclic Substrates Enantioselective Protonation of

More information

Acetyl CoA Synthase: Nature s Monsanto Acetic Acid Catalyst. By: Seth Cory and Trang Nguyen CHEM 462 Dr. Marcetta Y. Darensbourg

Acetyl CoA Synthase: Nature s Monsanto Acetic Acid Catalyst. By: Seth Cory and Trang Nguyen CHEM 462 Dr. Marcetta Y. Darensbourg Acetyl CoA ynthase: ature s Monsanto Acetic Acid Catalyst 1 By: eth Cory and Trang guyen CHEM 462 Dr. Marcetta Y. Darensbourg utline Industrial Process: Monsanto Acetic Acid Catalysis Reaction Mechanism

More information

Disulfide Exchange in Hydrogen-Bonded Cyclic Assemblies: Stereochemical Self-Selection by Double Dynamic Chemistry

Disulfide Exchange in Hydrogen-Bonded Cyclic Assemblies: Stereochemical Self-Selection by Double Dynamic Chemistry Disulfide Exchange in Hydrogen-Bonded Cyclic Assemblies: Stereochemical Self-Selection by Double Dynamic Chemistry A. Tessa ten Cate, Patricia Y. W. Dankers, Rint P. Sijbesma,* and E. W. Meijer* Laboratory

More information

Chiral Bronsted Acids as Catalysts

Chiral Bronsted Acids as Catalysts Chiral Bronsted Acids as Catalysts Short Literature Seminar 6/3/08 Dustin aup BIL Derived osphoric Acids - First reported in 1992 as a ligand by irrung and coworkers. 4 h 2 irrung Tet. Lett. 1992, 33,

More information

Shi Asymmetric Epoxidation

Shi Asymmetric Epoxidation Shi Asymmetric Epoxidation Chiral dioxirane strategy: R 3 + 1 xone, ph 10.5, K 2 C 3, H 2, C R 3 formed in situ catalyst (10-20 mol%) is prepared from D-fructose, and its enantiomer from L-sorbose oxone,

More information

Polymer Chemistry - Ring-Opening-Polymerisation (ROP)

Polymer Chemistry - Ring-Opening-Polymerisation (ROP) Polymer Chemistry - Ring-Opening-Polymerisation (ROP) Aims of this part: General Mechanism Polyesters from Ring-Opening Polymerisation Formation of Nylon 6 (and similar) Polymerisation of N-Carboxy-Anhydrids

More information

Reaction Kinetics for the Synthesis of Oligomeric Poly(lactic acid)

Reaction Kinetics for the Synthesis of Oligomeric Poly(lactic acid) Macromolecular Research, Vol. 13, No. 1, pp 68-72 (2005) Reaction Kinetics for the Synthesis of Oligomeric Poly(lactic acid) Dong Keun Yoo and Dukjoon Kim* Department of Chemical Engineering, Polymer Technology

More information

The biomolecules of terrestrial life

The biomolecules of terrestrial life Functional groups in biomolecules Groups of atoms that are responsible for the chemical properties of biomolecules The biomolecules of terrestrial life Planets and Astrobiology (2017-2018) G. Vladilo 1

More information

CHEM 261 Oct 11, Diastereomers. Enantiomers. Pheromones: from Greek pherein horman meaning to carry excitement. Discovered by Adolf Butenanot.

CHEM 261 Oct 11, Diastereomers. Enantiomers. Pheromones: from Greek pherein horman meaning to carry excitement. Discovered by Adolf Butenanot. EM 26 ct, 208 REALL: is Trans Trans Diastereomers Enantiomers Enantiomers have opposite stereochemistry at every stereocenter (chiral center) Diastereomers are all stereoisomers that are not enantiomers

More information

THERMAL AND MECHANICAL PROPERTIES OF PLA /PEG BLEND AND ITS NANOCOMPOSITES

THERMAL AND MECHANICAL PROPERTIES OF PLA /PEG BLEND AND ITS NANOCOMPOSITES THERMAL AND MECHANICAL PROPERTIES OF PLA /PEG BLEND AND ITS NANOCOMPOSITES H. Çelebi a*, A.Kurt b a Department of Chemical Engineering, Anadolu University, 26550 Eskisehir, TURKEY b Department of Advanced

More information

Organometallic Study Meeting Chapter 17. Catalytic Carbonylation

Organometallic Study Meeting Chapter 17. Catalytic Carbonylation rganometallic Study Meeting Chapter 17. Catalytic Carbonylation 17.1 verview C or 3 3 C 3 C C 3 horrcat. Ar-X or alkene ' d cat. 2011/10/6 K.isaki or ' or N n 2 1 alkene, 2 Coorhcat. d cat. alkene C carbon

More information

Asymmetric Autocatalysis Triggered by Carbon Isotope ( 13 C/ 12 C) Chirality

Asymmetric Autocatalysis Triggered by Carbon Isotope ( 13 C/ 12 C) Chirality Asymmetric Autocatalysis Triggered by Carbon Isotope ( 13 C/ 12 C) Chirality Hong Ren 06-19-09 Asymmetric Autocatalysis Triggered by Carbon Isotope ( 13 C/ 12 C) Chirality Hong Ren 06-19-09 Asymmetric

More information

Induced Circular Dichroism of Stereoregular Vinyl Polymers

Induced Circular Dichroism of Stereoregular Vinyl Polymers Induced Circular Dichroism of Stereoregular Vinyl Polymers Lung-Chi Chen, Yung-Cheng Mao, Shih-Chieh Lin, Ming-Chia Li, Rong-Ming Ho*, Jing-Cherng Tsai* Supplementary Information Figure S1. 13 C NMR (125

More information

Chiral Amplification. Literature Talk Fabian Schneider Konstanz, Universität Konstanz

Chiral Amplification. Literature Talk Fabian Schneider Konstanz, Universität Konstanz Chiral Amplification Literature Talk Fabian Schneider Konstanz, 18.10.2017 Overview 1) Motivation 2) The nonlinear Effect in asymmetric catalysis - First encounters - Basic principles - Formalization and

More information

Supporting information. Direct Enantioselective Aldol Reactions catalyzed by a Proline-Thiourea Host- Guest Complex

Supporting information. Direct Enantioselective Aldol Reactions catalyzed by a Proline-Thiourea Host- Guest Complex Supporting information Direct Enantioselective Aldol Reactions catalyzed by a Proline-Thiourea Host- Guest Complex Ömer Reis, Serkan Eymur, Barbaros Reis, Ayhan S. Demir* Department of Chemistry, Middle

More information

Theoretical Problems

Theoretical Problems FINAL REPORT 27 th IChO July 12-17 Beijing CHINA 19 Theoretical Problems Notes: Give your solutions and answers only on the answer sheets. Begin, when the bell rings. The total time for you is 5 hours.

More information

The aza-baylis-hillman Reaction: Mechanism, Asymmetric Catalysis, & Abnormal Adducts. Larry Wolf SED Group Meeting

The aza-baylis-hillman Reaction: Mechanism, Asymmetric Catalysis, & Abnormal Adducts. Larry Wolf SED Group Meeting The aza-baylis-hillman Reaction: Mechanism, Asymmetric Catalysis, & Abnormal Adducts Larry Wolf SED Group Meeting 04-10-07 Outline Brief historical account and Utility Mechanism Different methods for asymmetric

More information

sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito

sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito 1 sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito 2016. 1. 30 1. Introduction 2 About Carbene 3 Brief history of carbene (~2000) Carbene Neutral compounds featuring a divalent carbon atom with only

More information

Page 2. Q1.Repeating units of two polymers, P and Q, are shown in the figure below.

Page 2. Q1.Repeating units of two polymers, P and Q, are shown in the figure below. Q1.Repeating units of two polymers, P and Q, are shown in the figure below. (a) Draw the structure of the monomer used to form polymer P. Name the type of polymerisation involved. Monomer Type of polymerisation...

More information

When something goes wrong. Goya: Mother showing her derformed child to two women Louvre, Paris

When something goes wrong. Goya: Mother showing her derformed child to two women Louvre, Paris 1 ew Catalytic Asymmestric eactions Karl Anker Jørgensen Danish ational eserach Foundation: Center for Catalysis Department of Chemistry, Aarhus University Denmark kaj@chem.au.dk When something goes wrong

More information

Asymmetric Autocatalysis and the Origin of Homochirality of Biomolecules

Asymmetric Autocatalysis and the Origin of Homochirality of Biomolecules Research from Soai s group Asymmetric Autocatalysis and the Origin of Homochirality of Biomolecules Kenso SOAI Department of Applied Chemistry, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo

More information

Asymmetric Organocatalytic Strecker-Type Reactions of Aliphatic N,N- Dialkylhydrazones

Asymmetric Organocatalytic Strecker-Type Reactions of Aliphatic N,N- Dialkylhydrazones Asymmetric Organocatalytic Strecker-Type Reactions of Aliphatic N,N- Dialkylhydrazones Aurora Martínez-Muñoz, David Monge,* Eloísa Martín-Zamora, Eugenia Marqués-López, Eleuterio Álvarez, Rosario Fernández,*

More information

SCH 302. Tutorial PART B ORGANIC SYNTHESIS

SCH 302. Tutorial PART B ORGANIC SYNTHESIS SCH 302 (STEREOCHEMISTRY AND SYNTHESIS OF ORGANIC COMPOUNDS) Tutorial 2 2016 PART B ORGANIC SYNTHESIS 1 QUESTION 1 Relationships between Terms (a) Relate between the terms: i. Asymmetric induction and

More information

Chapter 14. Principles of Catalysis

Chapter 14. Principles of Catalysis Organometallics Study Meeting 2011/08/28 Kimura Chapter 14. Principles of Catalysis 14. 1. General Principles 14.1.1. Definition of a Catalyst 14.1.2. Energetics of Catalysis 14.1.3. Reaction Coordinate

More information

Chemistry 5.07SC Biological Chemistry I Fall Semester, 2013

Chemistry 5.07SC Biological Chemistry I Fall Semester, 2013 Chemistry 5.07SC Biological Chemistry I Fall Semester, 2013 Lecture 9 Biochemical Transformations I. Carbon-carbon bond forming and cleaving reactions in Biology (see the Lexicon). Enzymes catalyze a limited

More information

molecules ISSN

molecules ISSN Molecules 2001, 6, 988-995 molecules ISS 1420-3049 http://www.mdpi.org ovel Chiral Switching Ligands for Enantioselective Asymmetric eductions of Prochiral Ketones S. arasimhan 1,, S. Swarnalakshmi 2,.

More information

American Chemical Society. ACS Student Chapter Green Chemistry Activity CCEW 2018

American Chemical Society. ACS Student Chapter Green Chemistry Activity CCEW 2018 ACS Student Chapter Green Chemistry Activity CCEW 2018 Starting an ACS Student Chapter Identify at least 6 student members of the ACS at your school Identify a faculty member to serve as the chapter faculty

More information

Introduction to Macromolecular Chemistry

Introduction to Macromolecular Chemistry Introduction to Macromolecular Chemistry aka polymer chemistry Mondays, 8.15-9.45 am except for the following dates: 01.+29.05, 05.+12.06., 03.07. Dr. Christian Merten, Ruhr-Uni Bochum, 2017 www.ruhr-uni-bochum.de/chirality

More information

CHEM 251 (4 credits): Description

CHEM 251 (4 credits): Description CHEM 251 (4 credits): Intermediate Reactions of Nucleophiles and Electrophiles (Reactivity 2) Description: An understanding of chemical reactivity, initiated in Reactivity 1, is further developed based

More information

1.1 Basic Polymer Chemistry. 1.2 Polymer Nomenclature. 1.3 Polymer Synthesis. 1.4 Chain Growth Polymerization. Polymer =

1.1 Basic Polymer Chemistry. 1.2 Polymer Nomenclature. 1.3 Polymer Synthesis. 1.4 Chain Growth Polymerization. Polymer = 1.1 Basic Polymer hemistry Polymers are the largest class of soft materials: over 100 billion pounds of polymers made in US each year lassification systems 1.2 Polymer Nomenclature Polymer = Monomer =

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2008 69451 Weinheim, Germany Supporting Information for Chiral Brönsted Acid Catalyzed Asymmetric Baeyer-Villiger Reaction of 3-Substituted Cyclobutanones Using Aqueous

More information

Completely Alternating Copolymerization of CO 2 and Epoxides to Polycarbonates

Completely Alternating Copolymerization of CO 2 and Epoxides to Polycarbonates Completely Alternating Copolymerization of C 2 and Epoxides to Polycarbonates Donald J. Darensbourg Texas A&M University, Department of Chemistry djdarens@mail.chem.tamu.edu + + n 2 Greener Synthesis of

More information

Introduction to Macromolecular Chemistry

Introduction to Macromolecular Chemistry Introduction to Macromolecular Chemistry aka polymer chemistry Mondays, 8.15-9.45 am except for the following dates: 01.+29.05, 05.+12.06., 03.07. Dr. Christian Merten, Ruhr-Uni Bochum, 2017 www.ruhr-uni-bochum.de/chirality

More information

Chiral Brønsted Acid Catalysis

Chiral Brønsted Acid Catalysis Chiral Brønsted Acid Catalysis Aryl Aryl Aryl Aryl S CF 3 2 P Fe CF 3 CF 3 2 Jack Liu ov. 16, 2004 CF 3 Introduction Chiral Brønsted acid catalysis in nature: enzymes and peptides Chiral Brønsted acid

More information

KJM 3200 Required Reading (Pensum), Fall 2016

KJM 3200 Required Reading (Pensum), Fall 2016 KJM 3200 Required Reading (Pensum), Fall 2016 John McMurry: Organic Chemistry 8 nd ed. or Paula Y. Bruice, Organic Chemistry 7 nd ed. as specified below, as specified below. Lise-Lotte Gundersen KJM 3200.

More information

CHT402 Recent Advances in Homogeneous Catalysis Organocatalysis Workshop

CHT402 Recent Advances in Homogeneous Catalysis Organocatalysis Workshop CT402 Recent Advances in omogeneous Catalysis rganocatalysis Workshop Dr Louis C. Morrill School of Chemistry, Cardiff University Main Building, Rm 1.47B MorrillLC@cardiff.ac.uk For further information

More information

Available chemicals from the catalog (the starting sources of carbon compounds will continually decrease as we learn new reactions.

Available chemicals from the catalog (the starting sources of carbon compounds will continually decrease as we learn new reactions. ucleophilic ubstitution & Elimination Chemistry Beauchamp 1 Available chemicals from the catalog (the starting sources of carbon compounds will continually decrease as we learn new reactions. ources of

More information

Asymmetric Transfer Hydrogenation: A Suitable Tool for the Synthesis of the Precursors of Pharmaceutical Substances

Asymmetric Transfer Hydrogenation: A Suitable Tool for the Synthesis of the Precursors of Pharmaceutical Substances Department of Organic Technology Specialized Laboratory for Drug Production programme (N111049) and Organic Technology programme (N111025) Asymmetric Transfer Hydrogenation: A Suitable Tool for the Synthesis

More information

Making Plastics from Carbon Dioxide: Copolymerization of Epoxides and CO 2

Making Plastics from Carbon Dioxide: Copolymerization of Epoxides and CO 2 Making Plastics from Carbon Dioxide: Copolymerization of Epoxides and C 2 Contents: I Global warming II Utilization of C 2 III Copolymerization of epoxides and C 2 a Background of copolymerization of epoxides

More information

Chiral Brønsted Acid Catalysis

Chiral Brønsted Acid Catalysis another. 1 One interesting aspect of chiral Brønsted acid catalysis is that the single s orbital of hydrogen Chiral Brønsted Acid Catalysis Reported by Matthew T. Burk December 3, 2007 INTRODUCTION The

More information

Conformational Analysis

Conformational Analysis Conformational Analysis C01 3 C C 3 is the most stable by 0.9 kcal/mole C02 K eq = K 1-1 * K 2 = 0.45-1 * 0.048 = 0.11 C04 The intermediate in the reaction of 2 has an unfavorable syn-pentane interaction,

More information

a-aminoallylation of Aldehydes with Ammonia: Stereoselective Synthesis of Homoallylic Primary Amines

a-aminoallylation of Aldehydes with Ammonia: Stereoselective Synthesis of Homoallylic Primary Amines a-aminoallylation of Aldehydes with Ammonia: Stereoselective Synthesis of omoallylic Primary Amines 1 3 2 3 ML n 1 2 2 3 Masaharu Sugiura, Keiichi irano and Shu Kobayashi JACS ASAP ryan Wakefield @ Wipf

More information