Heidelberg Molecular Modelling Summer School The Challenges of Transition Metal Systems

Size: px
Start display at page:

Download "Heidelberg Molecular Modelling Summer School The Challenges of Transition Metal Systems"

Transcription

1 Heidelberg Molecular Modelling Summer School The Challenges of Transition Metal Systems Dr Rob Deeth Inorganic Computational Chemistry Group University of Warwick UK

2 verview Is molecular modelling of TM systems a challenge? Certainly! But compared to what? General features of Molecular Modelling Specific features of Transition Metal chemistry

3 General Issues Quantum versus Classical Quantum Generality Accuracy? Speed Classical Generality? Accuracy? Speed

4 Quantum Mechanics Paul A. M. Dirac The underlying physical laws necessary for the mathematical theory of a large part physics and the whole of chemistry are thus completely known... HΨ = EΨ and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble Proc. Roy. Soc. A, 1929, 123, 714

5 QM: Practical Implementation EXACT treatment Relaivity ucl-ucl QM exchange (Born-ppenheimer) Exact e - -e - QM exchange Average e - -e - exchange (Hartree-Fock Approximation The first ab initio M theory)

6 The Big Hurdle The Variational Principle states that the lower the energy, the more accurate the calculation. This places a fundamental limit on HF model. e HF - E = e corr e corr is the CRREATI EERGY HF averages the instantaneous e - -e - interactions which is a poor treatment of electron correlation. e corr is small (ish) for light organic atoms but e corr is uncomfortably big for TM atoms.

7 Improving Hartree-Fock HF is a single configuration model and will always have a correlation error. By including multiple configurations, the HF approximation can be progressively improved. These better methods are forms of Configuration Interaction (CI) CI reduces the correlation error but it is computationally expensive which severely reduces the size of system (~100 atoms).

8 DFT to the Rescue The Density Functional Theorem states that the ground state total energy, E, is a unique functional of the electron density, ρ. E = F[ρ] The theorem includes A the electron correlation. Practical DFT uses approximate functionals but it s still faster and more accurate than HF. DFT is the best QM method for large TM systems.

9 Classical Methods Dispense with quantum effects Treat molecule as set of balls connected by springs - Molecular Mechanics Mathematically simpler than QM But Fast Can treat very large systems ( 000s atoms) Parametric: The results are only as good as the parameters

10 The Challenges The challenges of modelling TM systems can be put into context by comparing TM chemistry with organic chemistry Diversity Structural complexity Electronic complexity Magnetic complexity

11 Diversity Carbon is but one element There are 30 transition elements

12 Structural Complexity: Coordination umber Carbon nly three coordination numbers Angles around carbon always the same for a given hybridisation TM inear: MX, XMX, XMMX Bent: MX 2 Trigonal and pyramidal: MX 3 Tetrahedral and planar: MX 4 Square pyramidal and trigonal bipyramidal: MX 5 ctahedral MX 6 Higher coordination numbers

13 Structural Complexity: igands TMs bind to many different elements including themselves Electronegative elements stabilise higher oxidation states - Werner type coordination complexes Carbon donors stabilise lower oxidation states - organometallic chemistry (andis)

14 Electronic Complexity Most organic compounds are diamagnetic with large separation between ground and excited states Many TM systems are paramagnetic with small separations between ground and excited states Carbon has three formal oxidation states TM centres can have many more Jahn-Teller effects

15 Magnetic Complexity Paramagnetic TM complexes do not show free-radical behaviour Multiple spin states for same formal oxidation state Spin state affected by both coordination geometry and ligands eed to understand something about the electronic structure of metal complexes

16 Asymmetric Catalysis Catalytic selectivity much more subtle Both pathways are feasible if e.e. < 100%, one has a higher rate High e.e. implies diastereomeric TSs only differ by a few kcal mol -1 Absolute QM resolution ~ 5 kcal mol -1 QM still K in principle due to cancellation of errors But

17 Asymmetric Diels-Alder Reaction R C 5 H 6 Cu 2+ R' R' R R Cu R R'' R 2 R 2 R 2 R 2 n R 2 R 2 R 1 R 1

18 Conformational Searching May be many energetically accessible TSs which differ only in ligand conformations eed to be able to sample conformational space QM too slow

19 Molecular Mechanics E tot = ΣE str + ΣE bend + ΣE tor + ΣE vdw + ΣE C Fast (big systems, dynamics) Accurate (experimental information built in to Force Field parameters) Works well for organics and TM complexes with regular coordination environments Can we use a normal approach?

20 Metal Contribution R' R' R Cu R Cu χ R'' Cu Cu Planar catalyst Tetrahedral catalyst

21 MM Model Use Molecular perating Environment (ME) Model twist via torsion around dummy bond

22 Twisting Potentials Parameterise MM to match DFT profile rel. energy / kcal mol χ / DFT MM difference MM, parameterised

23 Transition State MM parametric so cannot access TS DFT to the rescue! n1 n2

24 Modelling Strategy ew MM parameters for Cu- interactions Torsional term around dummy bond based on DFT energetics C-C bonds from DFT TS constrained in MM o electrostatics Isolated molecules Conformational space covered by 1000 step stochastic search

25 Regiochemistry Correctly predict endo isomer Endo rationalised on electronic grounds but MM has no electronic terms Endo preference is steric % H (H) Me Et ipr ipr, expt. tbu tbu, expt. Ph Ph, expt. ind ind, expt. thn exo endo

26 Enantioselectivity E.e.s correct sense but agreement with experiment patchy % H (H) Me Et ipr ipr, expt. tbu tbu, expt. Ph Ph, expt. ind ind, expt. thn n1 n2

27 Conclusions: Pure MM Relatively crude approach gave good results Regiochemistry good, enantioselectivity less good but at least model is not overly biased in favour of one direction of attack But, improvements needed Metal: need to capture electronic effects at Cu centre More flexible treatment of TS geometry (orrby and andis) Include solvent/counter ion interactions

28 Electronic Effects Problem: conventional MM requires independent FF parameters for high spin d 8 (octahedral) i- 2.1Å versus low spin d 8 (planar) i- 1.9Å Answer: add FSE directly to MM igand Field Molecular Mechanics (FMM) FMM should capture d electronic effects directly

29 d rbitals Many structural, electronic and magnetic properties of TM species can be traced back to the behaviour of the d electrons. In octahedral symmetry, the five d orbitals split (remember what they look like?) e g M n+ d 10Dq oct Free M n+ ion t 2g Point charge q = ze M n+ in octehdral crystal field

30 ctahedral [M 6 ] σ-only ligand leaves t 2g orbitals degenerate π donors decrease oct π acceptors increase oct 4p 4s 3d Metal t 1u * a 1g * e g * t 2g e g a 1g igands empty π* σ igands t 2g * e g * e g * e g * t 2g t 2g π acceptor 10Dq increases σ only t 2g * t 2g π donor 10Dq decreases igands π (filled) t 1u ctahedral M 6

31 Jahn-Teller Distortions The d electrons are structurally and energetically non-innocent. The effect can be correlated with changes in the IGAD FIED STABIISATI EERGY (FSE) E.g.: d 9 [Cu 6 ]: E JT electronic driving force d x 2 -y 2 e g E JT E JT d z 2 Cu -δ t 2g +2δ

32 Spin State Effects d x 2 -y 2 e g The structures of d 8 i(ii) complexes are determined by the FSE t 2g d z 2 i d x 2 -y 2 e g 2 E JT d z 2 i t 2g

33 igand Field Molecular Mechanics Augment conventional MM E tot = ΣE str + ΣE bend + ΣE tor + ΣE vdw + ΣE C + FSE Programming implications Molecular perating Environment (ME) Full modelling package GUI Scientific Vector anguage Applications Programming Interface

34 FMM: d 9 Cu(II) ME parameters All Cu- 1.93Å Molecular perating Environment DMMIME Dr atalie Fey Ben Williams-Hubbard FMM parameters (MMFF94-TM) Cu- ax 2.29Å (2.32) Cu- eq 2.05Å (2.06)

35 Conclusions DFT good but too slow MM fast but needs parameters TMs structurally/electronically and magnetically complex TMs a challenge for any modelling method

Coordination Chemistry: Bonding Theories. Crystal Field Theory. Chapter 20

Coordination Chemistry: Bonding Theories. Crystal Field Theory. Chapter 20 Coordination Chemistry: Bonding Theories Crystal Field Theory Chapter 0 Review of the Previous Lecture 1. We discussed different types of isomerism in coordination chemistry Structural or constitutional

More information

Ligand Field Theory, Density Functional Theory and Molecular Mechanics: Adventures with d-electrons

Ligand Field Theory, Density Functional Theory and Molecular Mechanics: Adventures with d-electrons Ligand Field Theory, Density Functional Theory and Molecular Mechanics: Adventures with d-electrons Dr Rob Deeth Inorganic Computational Chemistry Group Overview The Density Functional Theory revolution

More information

Chemistry 3211 Coordination Chemistry Part 3 Ligand Field and Molecular Orbital Theory

Chemistry 3211 Coordination Chemistry Part 3 Ligand Field and Molecular Orbital Theory Chemistry 3211 Coordination Chemistry Part 3 Ligand Field and Molecular Orbital Theory Electronic Structure of Six and Four-Coordinate Complexes Using Crystal Field Theory, we can generate energy level

More information

Computational Chemistry. An Introduction to Molecular Dynamic Simulations

Computational Chemistry. An Introduction to Molecular Dynamic Simulations Computational Chemistry An Introduction to Molecular Dynamic Simulations Computational chemistry simulates chemical structures and reactions numerically, based in full or in part on the fundamental laws

More information

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education Session 1 Introduction to Computational Chemistry 1 Introduction to Computational Chemistry Computational (chemistry education) and/or (Computational chemistry) education First one: Use computational tools

More information

Orbitals and energetics

Orbitals and energetics Orbitals and energetics Bonding and structure Molecular orbital theory Crystal field theory Ligand field theory Provide fundamental understanding of chemistry dictating radionuclide complexes Structure

More information

Chem Spring, 2018 Assignment 1 - Solutions

Chem Spring, 2018 Assignment 1 - Solutions Chem 370 - Spring, 2018 Assignment 1 - Solutions 2.15 a. The possible values are shown in the following table. rbital l m l 5d 2-2, -1, 0, +1, +2 4f 3-3, -2, -1, 0, +1, +2, +3 7g 4-4, -3, -2, -1, 0, +1,

More information

RDCH 702 Lecture 4: Orbitals and energetics

RDCH 702 Lecture 4: Orbitals and energetics RDCH 702 Lecture 4: Orbitals and energetics Molecular symmetry Bonding and structure Molecular orbital theory Crystal field theory Ligand field theory Provide fundamental understanding of chemistry dictating

More information

Electronic structure Crystal-field theory Ligand-field theory. Electronic-spectra electronic spectra of atoms

Electronic structure Crystal-field theory Ligand-field theory. Electronic-spectra electronic spectra of atoms Chapter 19 d-metal complexes: electronic structure and spectra Electronic structure 19.1 Crystal-field theory 19.2 Ligand-field theory Electronic-spectra 19.3 electronic spectra of atoms 19.4 electronic

More information

Crystal Field Theory

Crystal Field Theory Crystal Field Theory It is not a bonding theory Method of explaining some physical properties that occur in transition metal complexes. Involves a simple electrostatic argument which can yield reasonable

More information

If you put an electron into the t 2g, like that for Ti 3+, then you stabilize the barycenter of the d orbitals by 0.4 D o.

If you put an electron into the t 2g, like that for Ti 3+, then you stabilize the barycenter of the d orbitals by 0.4 D o. Crystal Field Stabilization Energy Week 2-1 Octahedral Symmetry (O h ) If you put an electron into the t 2g, like that for Ti 3+, then you stabilize the barycenter of the d orbitals by 0.4 D o. Each additional

More information

Section 6 Questions from Shriver and Atkins

Section 6 Questions from Shriver and Atkins Section 6 Questions from Shriver and tkins 4.35 Remember, softness increases as you go down a group, and both Zn and Hg are in Group 12. Hg 2+ is a very soft acid, so it is only realistically able to form

More information

Lecture Presentation. Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory

Lecture Presentation. Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory Lecture Presentation Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory Predicting Molecular Geometry 1. Draw the Lewis structure. 2. Determine the number

More information

Chapter 13: Phenomena

Chapter 13: Phenomena Chapter 13: Phenomena Phenomena: Scientists measured the bond angles of some common molecules. In the pictures below each line represents a bond that contains 2 electrons. If multiple lines are drawn together

More information

Review questions CHAPTER 5. Practice exercises 5.1 F F 5.3

Review questions CHAPTER 5. Practice exercises 5.1 F F 5.3 CHAPTER 5 Practice exercises 5.1 S 5.3 5.5 Ethane is symmetrical, so does not have a dipole moment. However, ethanol has a polar H group at one end and so has a dipole moment. 5.7 xygen has the valence

More information

Inorganic Chemistry Laboratory

Inorganic Chemistry Laboratory Inorganic Chemistry Laboratory Lab 8 Experiment 12 (p.117) The Paramagnetic Complex Mn(acac) 3 1 N 2 2s 2 2p 3 Electron Configurations 2 2s 2 2p 4 What are some consequences of the different electron configurations?

More information

7.2 Dipolar Interactions and Single Ion Anisotropy in Metal Ions

7.2 Dipolar Interactions and Single Ion Anisotropy in Metal Ions 7.2 Dipolar Interactions and Single Ion Anisotropy in Metal Ions Up to this point, we have been making two assumptions about the spin carriers in our molecules: 1. There is no coupling between the 2S+1

More information

11/14/2014. Chemical Bonding. Richard Philips Feynman, Nobel Laureate in Physics ( )

11/14/2014. Chemical Bonding. Richard Philips Feynman, Nobel Laureate in Physics ( ) Chemical Bonding Lewis Theory Valence Bond VSEPR Molecular rbital Theory 1 "...he [his father] knew the difference between knowing the name of something and knowing something" Richard Philips eynman, Nobel

More information

Chapter 20 d-metal complexes: electronic structures and properties

Chapter 20 d-metal complexes: electronic structures and properties CHEM 511 Chapter 20 page 1 of 21 Chapter 20 d-metal complexes: electronic structures and properties Recall the shape of the d-orbitals... Electronic structure Crystal Field Theory: an electrostatic approach

More information

Electronic structure / bonding in d-block complexes

Electronic structure / bonding in d-block complexes LN05-1 Electronic structure / bonding in d-block complexes Many, many properties of transition metal complexes (coordination number, structure, colour, magnetism, reactivity) are very sensitive to the

More information

Other Crystal Fields

Other Crystal Fields Other Crystal Fields! We can deduce the CFT splitting of d orbitals in virtually any ligand field by " Noting the direct product listings in the appropriate character table to determine the ways in which

More information

CHEMISTRY - MCMURRY 7E CH.7 - COVALENT BONDING AND ELECTRON DOT STRUCTURES

CHEMISTRY - MCMURRY 7E CH.7 - COVALENT BONDING AND ELECTRON DOT STRUCTURES !! www.clutchprep.com CONCEPT: ELECTRONIC GEOMETRY When drawing a compound you have to take into account two different systems of geometrical shape. The simpler system known as electronic geometry or shape

More information

489--Lectures 3 and 4. Fundamentals of Inorganic Chemistry

489--Lectures 3 and 4. Fundamentals of Inorganic Chemistry 489--Lectures 3 and 4 Fundamentals of Inorganic Chemistry (with special relevance to biological systems) Some slides courtesy of Prof. Xuan Zhao (U. Memphis) and Prof. Yi Lu (U. Illinois) Fundamentals

More information

Chem 673, Problem Set 5 Due Tuesday, December 2, 2008

Chem 673, Problem Set 5 Due Tuesday, December 2, 2008 Chem 673, Problem Set 5 Due Tuesday, December 2, 2008 (1) (a) Trigonal bipyramidal (tbp) coordination is fairly common. Calculate the group overlaps of the appropriate SALCs for a tbp with the 5 d-orbitals

More information

1. For both these compounds, the formal oxidation state is Mn(II), which is d 5.

1. For both these compounds, the formal oxidation state is Mn(II), which is d 5. Sample final exam answers 1. For both these compounds, the formal oxidation state is Mn(II), which is d 5. Since NCS is a weak-field, high-spin ligand (from the spectrochemical series), the electron configuration

More information

AN INTRODUCTION TO MOLECULAR ORBITALS

AN INTRODUCTION TO MOLECULAR ORBITALS AN INTRODUCTION TO MOLECULAR ORBITALS by YVES JEAN and FRANCOIS VOLATRON translated and edited by Jeremy Burdett New York Oxford OXFORD UNIVERSITY PRESS 1993 Contents Introduction, xiii I INTRODUCTION

More information

Crystal Field Theory

Crystal Field Theory 6/4/011 Crystal Field Theory It is not a bonding theory Method of explaining some physical properties that occur in transition metal complexes. Involves a simple electrostatic argument which can yield

More information

What Do Molecules Look Like?

What Do Molecules Look Like? What Do Molecules Look Like? The Lewis Dot Structure approach provides some insight into molecular structure in terms of bonding, but what about 3D geometry? Recall that we have two types of electron pairs:

More information

Molecular Orbital Theory (MOT)

Molecular Orbital Theory (MOT) Molecular Orbital Theory (MOT) In this section, There are another approach to the bonding in metal complexes: the use of molecular orbital theory (MOT). In contrast to crystal field theory, the molecular

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: and ybridization of Atomic rbitals Chapter 10 Valence shell electron pair repulsion (VSEPR) model: Predict the geometry of the molecule from the electrostatic repulsions between the

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals 1 Chemical Bonding II Molecular Geometry (10.1) Dipole Moments (10.2) Valence Bond Theory (10.3) Hybridization of Atomic Orbitals

More information

Chapter 10. Structure Determines Properties! Molecular Geometry. Chemical Bonding II

Chapter 10. Structure Determines Properties! Molecular Geometry. Chemical Bonding II Chapter 10 Chemical Bonding II Structure Determines Properties! Properties of molecular substances depend on the structure of the molecule The structure includes many factors, including: the skeletal arrangement

More information

Inorganic Chemistry I (June 2005) NMR Methods in Inorganic Chemistry. Answer parts (a) AND (b) AND EITHER part (c) OR part (d).

Inorganic Chemistry I (June 2005) NMR Methods in Inorganic Chemistry. Answer parts (a) AND (b) AND EITHER part (c) OR part (d). Inorganic Chemistry I (June 2005) Question 1 NMR Methods in Inorganic Chemistry Answer parts (a) AND (b) AND EITER part (c) OR part (d). (a) Answer ALL parts of this question. i) Show how the sensitivity

More information

Organic Chemistry. Review Information for Unit 1. VSEPR Hybrid Orbitals Polar Molecules

Organic Chemistry. Review Information for Unit 1. VSEPR Hybrid Orbitals Polar Molecules rganic hemistry Review Information for Unit 1 VSEPR ybrid rbitals Polar Molecules VSEPR The valence shell electron pair repulsion model (VSEPR) can be used to predict the geometry around a particular atom

More information

; (c) [Li] [: O :] [Li]. 5a. The electrostatic potential map that corresponds to IF is the one with the most red in it. ... C C H

; (c) [Li] [: O :] [Li]. 5a. The electrostatic potential map that corresponds to IF is the one with the most red in it. ... C C H hapter 10 Answers ractice Examples 1a Mg 1b n, Ge, [: Br :], K, : e: + 2 : : +, [Tl ] +, 2 : : [] 2a (a) [a] [ ] [a] ; (b) [Mg] [: :] [Mg] [: :] [Mg] 2+ 3 2+ 3 2+ 2+ 2b (a) [: I :] [a] [: I :] 2+ 2 ; (b)

More information

Chapters 8 and 9. Octet Rule Breakers Shapes

Chapters 8 and 9. Octet Rule Breakers Shapes Chapters 8 and 9 Octet Rule Breakers Shapes Bond Energies Bond Energy (review): The energy needed to break one mole of covalent bonds in the gas phase Breaking bonds consumes energy; forming bonds releases

More information

Chapter 8. Molecular Shapes. Valence Shell Electron Pair Repulsion Theory (VSEPR) What Determines the Shape of a Molecule?

Chapter 8. Molecular Shapes. Valence Shell Electron Pair Repulsion Theory (VSEPR) What Determines the Shape of a Molecule? PowerPoint to accompany Molecular Shapes Chapter 8 Molecular Geometry and Bonding Theories Figure 8.2 The shape of a molecule plays an important role in its reactivity. By noting the number of bonding

More information

Inorganic Chemistry GARY L. MIESSLER DONALD A. TARR. St. Olaf College Northfield, Minnesota

Inorganic Chemistry GARY L. MIESSLER DONALD A. TARR. St. Olaf College Northfield, Minnesota Inorganic Chemistry GARY L. MIESSLER DONALD A. TARR St. Olaf College Northfield, Minnesota Contents PREFACE xiii 1 INTRODUCTION TO INORGANIC CHEMISTRY 1 1-1 What Is Inorganic Chemistry? 1 1-2 Contrasts

More information

Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories

Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories C h e m i s t r y 1 A : C h a p t e r 1 0 P a g e 1 Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories Homework: Read Chapter 10: Work out sample/practice

More information

Bonding in Coordination Compounds. Crystal Field Theory. Bonding in Transition Metal Complexes

Bonding in Coordination Compounds. Crystal Field Theory. Bonding in Transition Metal Complexes Bonding in Transition Metal Complexes 1) Crystal Field Theory (ligand field theory) Crystal Field Theory Treat igands as negative charges (they repel the e- in the d orbitals deals only with d orbitals

More information

Coordination Compounds

Coordination Compounds Coordination Compounds 1. What is a coordination compound composed of? a. Metal Ion b. Ligand c. Counter Ion 2. What is a complex ion? The metal ion and ligand combination. 3. What is a counter ion? An

More information

Downloaded from

Downloaded from 1 Class XII: Chemistry Chapter 9: Coordination Compounds 1. Difference between coordination compound and double bond: Coordination compound A coordination compound contains a central metal atom or ion

More information

Homework #7. Chapter 14. Covalent Bonding Orbitals

Homework #7. Chapter 14. Covalent Bonding Orbitals omework #7 hapter 14 ovalent Bonding rbitals 7. Both M theory and LE model use quantum mechanics to describe bonding. In the LE model, wavefunctions on one atom are mixed to form hybridized orbitals. In

More information

Asymmetric Catalysis by Lewis Acids and Amines

Asymmetric Catalysis by Lewis Acids and Amines Asymmetric Catalysis by Lewis Acids and Amines Asymmetric Lewis acid catalysis - Chiral (bisooxazoline) copper (II) complexes - Monodentate Lewis acids: the formyl -bond Amine catalysed reactions Asymmetric

More information

Module 10 : Reaction mechanism. Lecture 1 : Oxidative addition and Reductive elimination. Objectives. In this lecture you will learn the following

Module 10 : Reaction mechanism. Lecture 1 : Oxidative addition and Reductive elimination. Objectives. In this lecture you will learn the following Module 10 : Reaction mechanism Lecture 1 : Oxidative addition and Reductive elimination Objectives In this lecture you will learn the following The oxidative addition reactions. The reductive elimination

More information

Bonding in Octahedral and Tetrahedral Metal Complexes. Predict how the d orbitals are affected by the Metal- Ligand Bonding

Bonding in Octahedral and Tetrahedral Metal Complexes. Predict how the d orbitals are affected by the Metal- Ligand Bonding Bonding in Octahedral and Tetrahedral Metal Complexes 327 Molecular Orbital Theory and Crystal Field/Ligand Field Theory Predict how the d orbitals are affected by the Metal- Ligand Bonding d z 2, d x

More information

Chiral Catalyst II. Palladium Catalysed Allylic Displacement ( -allyl complexes) 1. L n Pd(0) 2. Nuc

Chiral Catalyst II. Palladium Catalysed Allylic Displacement ( -allyl complexes) 1. L n Pd(0) 2. Nuc Chiral Catalyst II ast lecture we looked at asymmetric catalysis for oxidation and reduction Many other organic transformations, this has led to much investigation Today we will look at some others...

More information

Ab initio calculations for potential energy surfaces. D. Talbi GRAAL- Montpellier

Ab initio calculations for potential energy surfaces. D. Talbi GRAAL- Montpellier Ab initio calculations for potential energy surfaces D. Talbi GRAAL- Montpellier A theoretical study of a reaction is a two step process I-Electronic calculations : techniques of quantum chemistry potential

More information

For more info visit Chemical bond is the attractive force which holds various constituents together in a molecule.

For more info visit  Chemical bond is the attractive force which holds various constituents together in a molecule. Chemical bond:- Chemical bond is the attractive force which holds various constituents together in a molecule. There are three types of chemical bonds: Ionic Bond, Covalent Bond, Coordinate Bond. Octet

More information

Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland

Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland 1) Question. Two methods which are widely used for the optimization of molecular geometies are the Steepest descents and Newton-Raphson

More information

Electron Geometry Hybrid Orbitals

Electron Geometry Hybrid Orbitals Molecular Shape and Hybridized Orbitals CH2000: Introduction to General Chemistry, Plymouth State University Introduction: In chemistry, the three dimensional shape of a molecule is as important as the

More information

The VSEPR Model applied to Steric Numbers 2 through 4. (VSEPR Part 3)

The VSEPR Model applied to Steric Numbers 2 through 4. (VSEPR Part 3) This work is licensed by Shawn Shields under a Creativ e Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The VSPR Model applied to Steric Numbers 2 through 4. (VSPR Part 3) By Shawn

More information

CBSE Class-12 Chemistry Quick Revision Notes Chapter-09: Co-ordination Compounds

CBSE Class-12 Chemistry Quick Revision Notes Chapter-09: Co-ordination Compounds CBSE Class-12 Chemistry Quick Revision Notes Chapter-09: Co-ordination Compounds Co-ordination compounds: a) A coordination compound contains a central metal atom or ion surrounded by number of oppositely

More information

The d-block elements. Transition metal chemistry is d-orbitals/electrons

The d-block elements. Transition metal chemistry is d-orbitals/electrons The d-block elements d-block elements include Sc-Zn, Y-Cd, a(or u)-hg. Transition metal chemistry is d-orbitals/electrons H&S, Fig 1.1, p. 15 Properties of transition metal ions are very sensitive to the

More information

Inorganic Chemistry Laboratory

Inorganic Chemistry Laboratory Inorganic Chemistry Laboratory Lab 8 Experiment 12 (p.117) The Paramagnetic Complex Mn(acac) 3 1 N 2 2s 2 2p 3 Electron Configurations 2 2s 2 2p 4 What are some consequences of the different electron configurations?

More information

Chapter 10 Shapes of Molecules. Dr. Sapna Gupta

Chapter 10 Shapes of Molecules. Dr. Sapna Gupta Chapter 10 Shapes of Molecules Dr. Sapna Gupta Shapes of Molecules - Importance All molecules have a 3D orientations; even the diatomic ones because atoms have a volume. In case of tri atomic or polyatomic

More information

Lecture 11: Transition metals (1) Basics and magnetism

Lecture 11: Transition metals (1) Basics and magnetism Lecture 11: Transition metals (1) Basics and magnetism Oxidation states in transition metal compounds Ligand field theory Magnetism Susceptibility Temperature dependence Magnetic moments Figure: Wikipedia

More information

Drawing Lewis Structures

Drawing Lewis Structures Chapter 2 - Basic Concepts: molecules Bonding models: Valence-Bond Theory (VB) and Molecular Orbital Theory (MO) Lewis acids and bases When both of the electrons in the covalent bond formed by a Lewis

More information

A Summary of Organometallic Chemistry

A Summary of Organometallic Chemistry A Summary of Organometallic Chemistry Counting valence electrons (v.e.) with the ionic model 1. Look at the total charge of the complex Ph 3 P Cl Rh Ph 3 P PPh 3 OC CO 2 Fe OC CO Co + charge:0 charge:

More information

Chapter 4. Molecular Structure and Orbitals

Chapter 4. Molecular Structure and Orbitals Chapter 4 Molecular Structure and Orbitals Chapter 4 Table of Contents (4.1) (4.2) (4.3) (4.4) (4.5) (4.6) (4.7) Molecular structure: The VSEPR model Bond polarity and dipole moments Hybridization and

More information

Chapter 9 Molecular Geometry and Bonding Theories

Chapter 9 Molecular Geometry and Bonding Theories Lecture Presentation Chapter 9 Geometry James F. Kirby Quinnipiac University Hamden, CT Shapes Lewis Structures show bonding and lone pairs, but do not denote shape. However, we use Lewis Structures to

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information

Dr. Fred O. Garces Chemistry 201

Dr. Fred O. Garces Chemistry 201 23.4 400! 500! 600! 800! The relationship between Colors, Metal Complexes and Gemstones Dr. Fred O. Garces Chemistry 201 Miramar College 1 Transition Metal Gems Gemstone owe their color from trace transition-metal

More information

Inorganic Chemistry with Doc M. Fall Semester, 2012 Day 21. Transition Metals Complexes V: Reaction Mechanisms

Inorganic Chemistry with Doc M. Fall Semester, 2012 Day 21. Transition Metals Complexes V: Reaction Mechanisms Inorganic Chemistry with Doc M. Fall Semester, 2012 Day 21. Transition Metals Complexes V: Reaction Mechanisms Name(s): Element: Topics: 1. Substitution reactions: dissociative v. associative 4. Pseudorotation

More information

Structural Bioinformatics (C3210) Molecular Mechanics

Structural Bioinformatics (C3210) Molecular Mechanics Structural Bioinformatics (C3210) Molecular Mechanics How to Calculate Energies Calculation of molecular energies is of key importance in protein folding, molecular modelling etc. There are two main computational

More information

Chapter 11 Answers. Practice Examples

Chapter 11 Answers. Practice Examples hapter Answers Practice Examples a. There are three half-filled p orbitals on, and one half-filled 5p orbital on I. Each halffilled p orbital from will overlap with one half-filled 5p orbital of an I.

More information

The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then

The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then 1 The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then filled with the available electrons according to

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9 Molecular Geometry and Bonding Theories MOLECULAR SHAPES 2 Molecular Shapes Lewis Structures show bonding and lone pairs do not denote shape Use Lewis Structures to determine shapes Molecular

More information

Magnetic Properties: NMR, EPR, Susceptibility

Magnetic Properties: NMR, EPR, Susceptibility Magnetic Properties: NMR, EPR, Susceptibility Part 3: Selected 5f 2 systems Jochen Autschbach, University at Buffalo, jochena@buffalo.edu J. Autschbach Magnetic Properties 1 Acknowledgments: Funding: Current

More information

Chapter 10 Molecular Geometry and Chemical Bonding Theory. Copyright Cengage Learning. All rights reserved. 10 1

Chapter 10 Molecular Geometry and Chemical Bonding Theory. Copyright Cengage Learning. All rights reserved. 10 1 Chapter 10 Molecular Geometry and Chemical Bonding Theory Copyright Cengage Learning. All rights reserved. 10 1 Molecular geometry is the general shape of a molecule, as determined by the relative positions

More information

Electron Geometry Hybrid Orbitals

Electron Geometry Hybrid Orbitals Molecular Shape and Hybridized Orbitals CH2000: Introduction to General Chemistry, Plymouth State University, Fall 2014 Introduction: In chemistry, the three dimensional shape of a molecule is as important

More information

Chapters 9&10 Structure and Bonding Theories

Chapters 9&10 Structure and Bonding Theories Chapters 9&10 Structure and Bonding Theories Ionic Radii Ions, just like atoms, follow a periodic trend in their radii. The metal ions in a given period are smaller than the non-metal ions in the same

More information

Chapter 10. Geometry

Chapter 10. Geometry Chapter 10 Molec cular Geometry 1 CHAPTER OUTLINE Molecular Geometry Molecular Polarity VSEPR Model Summary of Molecular Shapes Hybridization Molecular Orbital Theory Bond Angles 2 MOLECULAR GEOMETRY Molecular

More information

Close agreement between the orientation dependence of hydrogen bonds observed in protein structures and quantum mechanical calculations

Close agreement between the orientation dependence of hydrogen bonds observed in protein structures and quantum mechanical calculations Close agreement between the orientation dependence of hydrogen bonds observed in protein structures and quantum mechanical calculations Alexandre V. Morozov, Tanja Kortemme, Kiril Tsemekhman, David Baker

More information

Complexes that undergo complete ligand exchange within 1 minute at 25 C are labile. Henry Taube ( ), Nobel laureate of 1983

Complexes that undergo complete ligand exchange within 1 minute at 25 C are labile. Henry Taube ( ), Nobel laureate of 1983 Complexes that undergo complete ligand exchange within 1 minute at 25 C are labile. Henry Taube (1915-2005), Nobel laureate of 1983 Which d n configuration should provide inert octahedral complexes? Inert

More information

Lecture 30 Chapter 10 Sections 1-2. Orbital overlap = bonding Molecular orbitals Hybrid orbitals

Lecture 30 Chapter 10 Sections 1-2. Orbital overlap = bonding Molecular orbitals Hybrid orbitals Lecture 30 Chapter 10 Sections 1-2 Orbital overlap = bonding Molecular orbitals Hybrid orbitals Announcements CAPA #17 due tomorrow Seminar Friday 3:00 Seminar Tuesday 11:00 Bond Lengths and Energies Bond

More information

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model.

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model. Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model. Determine whether a molecule is polar or nonpolar based

More information

CHEMISTRY - ZUMDAHL 2E CH.4 - MOLECULAR STRUCTURE AND ORBITALS.

CHEMISTRY - ZUMDAHL 2E CH.4 - MOLECULAR STRUCTURE AND ORBITALS. !! www.clutchprep.com CONCEPT: ELECTRONIC GEOMETRY When drawing a compound you have to take into account two different systems of geometrical shape. The simpler system known as electronic geometry or shape

More information

Bonding in Molecules Covalent Bonding

Bonding in Molecules Covalent Bonding Bonding in Molecules Covalent Bonding The term covalent implies sharing of electrons between atoms. Valence electrons and valence shell orbitals - nly valence electrons are used for bonding: ns, np, nd

More information

Introduction to Hartree-Fock Molecular Orbital Theory

Introduction to Hartree-Fock Molecular Orbital Theory Introduction to Hartree-Fock Molecular Orbital Theory C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology Origins of Mathematical Modeling in Chemistry Plato (ca. 428-347

More information

Conjugated Systems. With conjugated double bonds resonance structures can be drawn

Conjugated Systems. With conjugated double bonds resonance structures can be drawn Conjugated Systems Double bonds in conjugation behave differently than isolated double bonds With conjugated double bonds resonance structures can be drawn With isolated double bonds cannot draw resonance

More information

Electronic Spectra of Coordination Compounds

Electronic Spectra of Coordination Compounds Electronic Spectra of Coordination Compounds Microstates and free-ion terms for electron configurations Identify the lowest-energy term Electronic Spectra of Coordination Compounds Identify the lowest-energy

More information

Molecular Orbitals in Inorganic Chemistry. Dr. P. Hunt Rm 167 (Chemistry)

Molecular Orbitals in Inorganic Chemistry. Dr. P. Hunt Rm 167 (Chemistry) Molecular rbitals in Inorganic Chemistry Dr. P. unt p.hunt@imperial.ac.uk Rm 167 (Chemistry) http://www.ch.ic.ac.uk/hunt/ Lecture 2 utline L2 build a M diagram to show you the process quick revision stage

More information

Chapter 25 Transition Metals and Coordination Compounds Part 2

Chapter 25 Transition Metals and Coordination Compounds Part 2 Chapter 25 Transition Metals and Coordination Compounds Part 2 Bonding in Coordination Compounds Valence Bond Theory Coordinate covalent bond is between: completely filled atomic orbital and an empty atomic

More information

Molecular shape is only discussed when there are three or more atoms connected (diatomic shape is obvious).

Molecular shape is only discussed when there are three or more atoms connected (diatomic shape is obvious). Chapter 10 Molecular Geometry (Ch9 Jespersen, Ch10 Chang) The arrangement of the atoms of a molecule in space is the molecular geometry. This is what gives the molecules their shape. Molecular shape is

More information

QUANTUM CHEMISTRY FOR TRANSITION METALS

QUANTUM CHEMISTRY FOR TRANSITION METALS QUANTUM CHEMISTRY FOR TRANSITION METALS Outline I Introduction II Correlation Static correlation effects MC methods DFT III Relativity Generalities From 4 to 1 components Effective core potential Outline

More information

The shape of simple molecules (and parts of larger molecules) can be easily predicted using the VSEPR model

The shape of simple molecules (and parts of larger molecules) can be easily predicted using the VSEPR model 1 PREDICTING MOLECULAR SHAPE The shape of simple molecules (and parts of larger molecules) can be easily predicted using the VSEPR model VSEPR = Valence Shell Electron Pair Repulsion Model - Each BOND

More information

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij )

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij ) MO Calculation for a Diatomic Molecule Introduction The properties of any molecular system can in principle be found by looking at the solutions to the corresponding time independent Schrodinger equation

More information

The dative covalent bond acts like an ordinary covalent bond when thinking about shape so in NH 4. the shape is tetrahedral

The dative covalent bond acts like an ordinary covalent bond when thinking about shape so in NH 4. the shape is tetrahedral 1.3 Bonding Definition Ionic bonding is the electrostatic force of attraction between oppositely charged ions formed by electron transfer. Metal atoms lose electrons to form ve ions. Non-metal atoms gain

More information

Why study protein dynamics?

Why study protein dynamics? Why study protein dynamics? Protein flexibility is crucial for function. One average structure is not enough. Proteins constantly sample configurational space. Transport - binding and moving molecules

More information

SHAPES OF MOLECULES (VSEPR MODEL)

SHAPES OF MOLECULES (VSEPR MODEL) 1 SAPES MLEULES (VSEPR MDEL) Valence Shell Electron-Pair Repulsion model - Electron pairs surrounding atom spread out as to minimize repulsion. - Electron pairs can be bonding pairs (including multiple

More information

Lecture 4: Band theory

Lecture 4: Band theory Lecture 4: Band theory Very short introduction to modern computational solid state chemistry Band theory of solids Molecules vs. solids Band structures Analysis of chemical bonding in Reciprocal space

More information

CHEM J-3 June 2014

CHEM J-3 June 2014 CEM1101 2014-J-3 June 2014 (R)-Carvone is a typical terpene, a class of compounds widely distributed in nature. n the structure of (R)-carvone below, circle all of the carbon atoms with trigonal planar

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories PART I Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information

Lecture 17 - Covalent Bonding. Lecture 17 - VSEPR and Molecular Shape. Lecture 17 - Introduction. Lecture 17 - VSEPR and Molecular Shape

Lecture 17 - Covalent Bonding. Lecture 17 - VSEPR and Molecular Shape. Lecture 17 - Introduction. Lecture 17 - VSEPR and Molecular Shape Chem 103, Section F0F Unit VI - Compounds Part II: Covalent Compounds Lecture 17 Using the Valence-Shell Electron-Pair Repulsion (VSEPR) Theory to predict molecular shapes Molecular shape and polarity

More information

Molecular Geometry and Bonding Theories. Molecular Shapes. Molecular Shapes. Chapter 9 Part 2 November 16 th, 2004

Molecular Geometry and Bonding Theories. Molecular Shapes. Molecular Shapes. Chapter 9 Part 2 November 16 th, 2004 Molecular Geometry and Bonding Theories Chapter 9 Part 2 November 16 th, 2004 8 Molecular Shapes When considering the geometry about the central atom, we consider all electrons (lone pairs and bonding

More information

Lecture 17: VSEPR & polarity 2

Lecture 17: VSEPR & polarity 2 Lecture 17: VSEPR & polarity 2 Read: BLB 9.3 HW: BLB 9.33,35,38 Sup 9:8 11 molecular geometry molecular polarity Exam #2: Monday, March 2 @ 6:30; review previous material, so you UNDERSTAND what we ve

More information

Molecular Modeling 1: Classic Molecular Modeling

Molecular Modeling 1: Classic Molecular Modeling Molecular Modeling 1: Classic Molecular Modeling Author: J. M. McCormick* Last Update: January 31, 2011 Introduction Dalton's Atomic Theory revolutionized chemistry by explaining chemical properties in

More information

Chapter 10 Chemical Bonding II

Chapter 10 Chemical Bonding II Chapter 10 Chemical Bonding II Valence Bond Theory Valence Bond Theory: A quantum mechanical model which shows how electron pairs are shared in a covalent bond. Bond forms between two atoms when the following

More information

The Relativistic Jahn-Teller Effect

The Relativistic Jahn-Teller Effect The Relativistic Jahn-Teller Effect Wolfgang Domcke Technical University of Munich Leonid V. Poluyanov Russian Academy of Sciences, Moscow 31.08.010 JT Conference Fribourg 010 1 Motivation Science 33,

More information