Supporting Information. Diffusion Limited Cargo Loading of an Engineered Protein Container Reinhard Zschoche and Donald Hilvert

Size: px
Start display at page:

Download "Supporting Information. Diffusion Limited Cargo Loading of an Engineered Protein Container Reinhard Zschoche and Donald Hilvert"

Transcription

1 Supporting Information Diffusion Limited Cargo Loading of an Engineered Protein Container Reinhard Zschoche and Donald Hilvert Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland Supporting Data Figure S1 ph dependence of TOP36+ fluorescence S2 Figure S2 Size exclusion chromatograms of AaLS 13 capsid containing a mixture of S2 GFP36+/TOP36+ at different ionic strengths Figure S3 Negative staining transmission electron microscopy pictures of AaLS 13 S3 capsids at different ionic strengths Figure S4 FRET between GFP36+ and TOP36+ in absence and presence of AaLS 13 S4 capsids as a function of ionic strength Figure S5 Strategy for obtaining homo and heterogeneously labeled AaLS 13 A85C S5 capsids Figure S6 Exchange of AaLS 13 subunits between assembled capsids S6 Figure S7 Comparison of the dependence of guest encapsulation on ionic strength as S7 measured by FRET and calculated from k on and k off. Figure S8 Encapsulation kinetics and stability of the resulting capsid cargo complex for S8 AaLS neg Figure S9 Semi quantitative analysis of FRET within the AaLS 13 capsid S9 Estimation of AaLS 13 capsid composition from FRET efficiencies References S10 S12 S1

2 Figure S1. ph dependence of TOP36+ fluorescence free in solution (black diamonds) and contained in AaLS 13 capsids (red squares). Figure S2. Size exclusion chromatograms of AaLS 13 capsid containing a 1:4 mixture of GFP36+/TOP36+ at different ionic strengths (50 mm NaPi, 5 mm EDTA, ph 8.0 and varying concentrations of NaCl). (A) Absorption at 280 nm for AaLS 13 and guests. (B) Absorption at 513 nm for GFP36+ and TOP36+. Note: below 400 mm NaCl, free GFP36+ and TOP36+ adhere to the stationary phase (cross linked agarose). S2

3 Figure S3. Negative staining transmission electron microscopy pictures of AaLS 13 capsids at different ionic strengths (50 mm NaPi, 5 mm EDTA, ph 8.0 and varying concentrations of NaCl). S3

4 Figure S4. FRET between GFP36+ and TOP36+ in the absence (empty symbols) or presence of AaLS 13 capsid (full symbols) as a function of ionic strength. (A) Ionic strength modulated by addition of NaCl. (B) Ionic strength modulated by addition of Na2SO4. Note: Ionic strength is calculated by 0.5. As is apparent from the different inflection points for NaCl and Na2SO4, the Coulombic energy does not scale with the ionic strength, but rather the Debye length κ 1 which is given by. or /. /.1 S4

5 Figure S5. Strategy for obtaining homo and heterogeneously labeled AaLS 13 A85C capsids. Purification by metal affinity chromatography from cell lysate at an ionic strength of 250 mm afforded exclusively pentameric capsid fragments. These fragments were covalently labeled with either ATTO495 maleimide or ATTO565 maleimide. Increasing the ionic strength to 750 mm gave homogeneously labeled assembled capsids after one week at room temperature. Incubating a 1:1 mixture of AaLS 13 A85C(ATTO495) and AaLS 13 A85C(ATTO565) yielded capsids containing both fluorescent labels, which served as a positive control for subsequent experiments. S5

6 Figure S6. Exchange of AaLS 13 subunits between assembled capsids. (A) Emission spectra of AaLS 13 capsid labeled with both ATTO495 and ATTO565 (pink) or a mixture of AaLS 13 capsids labeled with either ATTO495 or ATTO565 after 1 min (black), 100 min (dark grey), 1 day (grey) and 4 days (light grey) upon excitation at 450 nm. (B) Time dependence of the ratio of ATTO565 (586 nm) to ATTO495 (524 nm) emission upon excitation at 450 nm after mixing AaLS 13 capsids labeled with either ATTO495 or ATTO565 (black squares). The ratio for AaLS 13 capsids containing both fluorophores is shown as a pink line. S6

7 Figure S7. Comparison of the ionic strength dependence of guest encapsulation by AaLS 13 measured by FRET and calculated from k on and k off. The experimentally determined relative fluorescence at 525 nm and 508 nm for a mixture of GFP36+/TOP36+ indicates the extent of encapsulation as a function of ionic strength (red squares; data are identical to Figure 3B). The fraction of guests encapsulated at 1 µm guest and 5 µm AaLS 13 (concentration with respect to monomer) was calculated from the K D value and is shown as a blue line. The dissociation constant for binding of GFP36+ or TOP36+ to AaLS 13 was estimated using the equation and the rate constants 10 and. The parameters a = 29.1 ± 0.6 and b = 42.5 ± 1.0 M 1/2 were determined by a linear fit of the logarithmized rate of guest exchange versus the square root of ionic strength for an AaLS 13 capsid containing 32 guests per 180 mer capsid (Figure 4D). S7

8 Figure S8. Kinetics of encapsulation and guest exchange for AaLS neg. A) Fluorescence emission at 500±5 nm (green) and >515 nm (orange) after mixing 20 µm empty AaLS neg capsids with 4 µm 1:4 GFP36+/TOP36+ at I = 350 mm in a stopped flow apparatus. B) Time dependent emission at 525 nm upon mixing AaLS neg (red) or AaLS 13 (black) capsids containing GFP36+ with capsids containing TOP36+ (30 guests/180 mer capsid, I = 350 mm). The different endpoints reflect higher FRET efficiencies likely caused by denser loading of the smaller AaLS neg capsids (diameter = 28.6 ± 2.6 nm versus 35.4 ± 3.2 nm for AaLS 13). S8

9 Figure S9. Semi quantitative analysis of FRET within the AaLS 13 capsid. (A) Schematic representation of one GFP36+ donor (green) surrounded by four TOP36+ (orange) as FRET acceptors (purple arrows) and one GFP36+ homo FRET partner (magenta arrows). (B) FRETefficiencies as a function of the guest:capsid protein ratio, measured (diamonds) and calculated upper limit for different oligomeric states given an orientation factor κ 2 of 2/3 and an inner diameter d = 26 nm. S9

10 Estimation of AaLS 13 capsid composition from FRET efficiencies In the absence of structural data for AaLS 13 capsids, the number of subunits can be estimated from 2 dimensional electron microscopy images. The measured diameter would be consistent with icosahedrally symmetric capsids having T=3 or T=4 symmetry (180 or 240 subunits, respectively). 2 Comparing FRET efficiencies between guests encapsulated in AaLS 13 with values estimated for common capsid geometries could potentially provide insights into the capsid s quaternary state. Since the absorption and emission spectra, as well as the quantum yields of GFP36+ and TOP36+, are similar to their uncharged precursors, 3 a Förster distance of 5.6 nm can be approximated, the same value as for GFP YFP assuming rapid randomization of relative fluorophore orientation. 4 The ratio of guest to AaLS 13 subunits is easily determined spectrophotometrically. Placing n points on a sphere such that their mutual distances R are maximized is referred to as the Tammes problem, and the solutions for n = were retrieved from Tables of Spherical Codes, published electronically at NeilSloane.com/packings. 5,6 For n > 130, the angular separation was approximated with Tóth s formula, eq (1) The radius of the sphere on which the chromophores are placed when encapsulated in AaLS 13 was estimated to be 13 nm by subtracting the thickness of the wall (5.0 nm) and the radius of GFP36+ (1.5 nm) from the outer radius of a filled capsid (19.5 nm). 8 The loading capacity of AaLS 13 is about 0.2 GFP36+ per monomer. This ratio corresponds to 12 guests per 60 mer (T=1), 36 guests per 180 mer (T=3) and so on, resulting in higher fluorophore density and thus FRET efficiency if a larger triangular number is assumed for a capsid of defined diameter. FRET efficiency, E 0, between one donor and acceptor is calculated by eq. 2. To account for the presence of multiple acceptors in the vicinity of a FRET donor, we used a model proposed by Fábián et al. to calculate the FRET efficiency, En, for one donor and n acceptors (eq. 3). 9 For an AaLS 13 capsid filled with a 1:4 mixture of GFP36+/TOP36+ we assumed FRET between one GFP36+ donor and four TOP36+ acceptors (Figure S9A). (2) (3) The fluorescence emission was decomposed into contributions from GFP36+ (ID) and TOP36+ (I A ), using a e UV Vis IR Spectral Software 2.0 (FluorTools, Crosstalk (direct excitation of TOP36+) was determined from the emission spectrum of a GFP36+/TOP36+ mixture in the absence of capsid and the correction included in the equation for ratiometric FRET. 10 Since donor and acceptor emission are marginally separated and quantum yields not significantly different, no corresponding corrections were employed to calculate the FRET efficiency with eq. 4. S10

11 (4) Assuming identical capsid diameters and guest:capsid subunit ratios, capsids composed of a higher number of subunits would be more densely loaded and thus exhibit higher FRET (Figure S9B). Although the agreement is imperfect, experimentally observed FRET efficiencies are most compatible with the AaLS 13 capsid being a 240 mer (T=4), a number consistent with geometric constraints. However, a value of 2/3 as orientation factor κ 2 used to determine the Förster distance 4 likely leads to overestimation of the calculated FRET efficiencies because the criterion of fast rotational randomization within the lifetime of the excited state cannot possibly be fulfilled for encapsulated proteins. 11 Consequently, we cannot exclude that the number of subunits is even higher than 240. S11

12 References (1) Israelachvili, J. N. In Intermolecular and Surface Forces (Third Edition); Elsevier, 2011; pp (2) Wörsdörfer, B.; Woycechowsky, K. J.; Hilvert, D. Science 2011, 331, (3) Cubitt, A. B.; Woollenweber, L. A.; Heim, R. Methods Cell Biol. 1999, 58, (4) Patterson, G. H.; Piston, D. W.; Barisas, B. G. Anal. Biochem. 2000, 284, (5) Conway, J. H.; Sloane, N. J. A. Sphere packings, lattices and groups; 3rd ed.; Springer: New York, (6) Rurup, W. F.; Verbij, F.; Koay, M. S. T.; Blum, C.; Subramaniam, V.; Cornelissen, J. J. L. M. Biomacromolecules 2014, 15, (7) Fejes Tóth, L. Jber. dtsch. Math. Ver. 1943, 53, (8) Wörsdörfer, B.; Pianowski, Z.; Hilvert, D. J. Am. Chem. Soc. 2012, 134, (9) Fábián, Á. I.; Rente, T.; SzölloSi, J.; Matyus, L.; Jenei, A. ChemPhysChem 2010, 11, (10) McCann, J. J.; Choi, U. B.; Zheng, L.; Weninger, K.; Bowen, M. E. Biophys. J. 2010, 99, (11) van der Meer, B. W.; van der Meer, D. M.; Vogel, S. S. In FRET Förster Resonance Energy Transfer; Wiley VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; pp S12

single-molecule fluorescence resonance energy transfer

single-molecule fluorescence resonance energy transfer single-molecule fluorescence resonance energy transfer (2) determing the Förster radius: quantum yield, donor lifetime, spectral overlap, anisotropy michael börsch 26/05/2004 1 fluorescence (1) absorbance

More information

Supplementary Figure 1. SDS-PAGE analysis of GFP oligomer variants with different linkers. Oligomer mixtures were applied to a PAGE gel containing

Supplementary Figure 1. SDS-PAGE analysis of GFP oligomer variants with different linkers. Oligomer mixtures were applied to a PAGE gel containing Supplementary Figure 1. SDS-PAGE analysis of GFP oligomer variants with different linkers. Oligomer mixtures were applied to a PAGE gel containing 0.1% SDS without boiling. The gel was analyzed by a fluorescent

More information

Lecture 5. Anisotropy decay/data analysis. Enrico Gratton

Lecture 5. Anisotropy decay/data analysis. Enrico Gratton Lecture 5. Anisotropy decay/data analysis Enrico Gratton Anisotropy decay Energy-transfer distance distributions Time resolved spectra Excited-state reactions Basic physics concept in polarization The

More information

Co-localization, FRET

Co-localization, FRET Co-localization, FRET Last class FRAP Diffusion This class Co-localization Correlation FRET Co-localization Can you infer function of protein from it s intracellular location How do you measure if two

More information

Supplemental Materials and Methods

Supplemental Materials and Methods Supplemental Materials and Methods Time-resolved FRET (trfret) to probe for changes in the Box A/A stem upon complex assembly U3 MINI was folded and the decay of Fl fluorescence was measured at 20 ºC (see

More information

FROM LOCALIZATION TO INTERACTION

FROM LOCALIZATION TO INTERACTION EPFL SV PTBIOP FROM LOCALIZATION TO INTERACTION BIOP COURSE 2015 COLOCALIZATION TYPICAL EXAMPLE EPFL SV PTBIOP Vinculin Alexa568 Actin Alexa488 http://www.olympusconfocal.com/applications/colocalization.html

More information

Self-assembled Nanoscale DNA-porphyrin Complex for. Artificial Light-harvesting

Self-assembled Nanoscale DNA-porphyrin Complex for. Artificial Light-harvesting Supporting Information for Self-assembled Nanoscale DNA-porphyrin Complex for Artificial Light-harvesting Jakob G. Woller, Jonas K. Hannestad, and Bo Albinsson Department of Chemical and Biological Engineering/Physical

More information

Chapter 2 Energy Transfer Review

Chapter 2 Energy Transfer Review Chapter 2 Energy Transfer Review In this chapter, we discuss the basic concepts of excitation energy transfer, making the distinction between radiative and nonradiative, and giving a brief overview on

More information

Supporting Information

Supporting Information Supporting Information Cyclodextrin Supramolecular Complex as Water Soluble Ratiometric Sensor for ferric Ion Sensing Meiyun Xu, Shuizhu Wu,* Fang Zeng, Changmin Yu College of Materials Science & Engineering,

More information

3) In CE separation is based on what two properties of the solutes? (3 pts)

3) In CE separation is based on what two properties of the solutes? (3 pts) Final Exam Chem 311 Fall 2002 December 16 Name 1) (3 pts) In GC separation is based on the following two properties of the solutes a) polarity and size b) vapor pressure and molecular weight c) vapor pressure

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2012 69451 Weinheim, Germany Bound Cations Significantly Stabilize the Structure of Multiprotein Complexes in the Gas Phase** Linjie Han, Suk-Joon Hyung, and Brandon T.

More information

Fluorescence Resonance Energy Transfer (FRET) Microscopy

Fluorescence Resonance Energy Transfer (FRET) Microscopy Fluorescence Resonance Energy Transfer () Microscopy Mike Lorenz Optical Technology Development mlorenz@mpi-cbg.de -FLM course, May 2009 What is fluorescence? Stoke s shift Fluorescence light is always

More information

Isolation & Purification of Proteoglycans (PGs) and Glycosaminoglycans (GAGs) PEG Trainee Lecture July 23, 2012

Isolation & Purification of Proteoglycans (PGs) and Glycosaminoglycans (GAGs) PEG Trainee Lecture July 23, 2012 Isolation & Purification of Proteoglycans (PGs) and Glycosaminoglycans (GAGs) PEG Trainee Lecture July 23, 2012 Most Common Extraction Procedure for PGs 4 M Guanidine-HCl Detergents such as 2% CHAPS or

More information

Single-Molecule Methods I - in vitro

Single-Molecule Methods I - in vitro Single-Molecule Methods I - in vitro Bo Huang Macromolecules 2014.03.10 F 1 -ATPase: a case study Membrane ADP ATP Rotation of the axle when hydrolyzing ATP Kinosita group, 1997-2005 Single Molecule Methods

More information

Fluorescence (Notes 16)

Fluorescence (Notes 16) Fluorescence - 2014 (Notes 16) XV 74 Jablonski diagram Where does the energy go? Can be viewed like multistep kinetic pathway 1) Excite system through A Absorbance S 0 S n Excite from ground excited singlet

More information

Survival Strategy: Photosynthesis

Survival Strategy: Photosynthesis Energy and Electron Transfer Survival Strategy: Photosynthesis Light Energy Harvested by Plants 6 CO 2 + 6 H 2 O + light energy C 6 H 12 O 6 + 6 O 2 Importance of Photosynthesis Provides energy for plants

More information

Fluorescence Spectroscopy

Fluorescence Spectroscopy Fluorescence Spectroscopy Frequency and time dependent emission Emission and Excitation fluorescence spectra Stokes Shift: influence of molecular vibrations and solvent Time resolved fluorescence measurements

More information

Supporting Information

Supporting Information Supporting Information Characterizing the Effect of Salt and Surfactant Concentration on the Counter-ion Atmosphere around Surfactant Stabilized SWCNTs using Analytical Ultracentrifugation Stephanie Lam

More information

Organic Molecular Solids

Organic Molecular Solids Markus Schwoerer, Hans Christoph Wolf Organic Molecular Solids BICENTENNIAL BICENTENNIAL WILEY-VCH Verlag GmbH & Co. KGaA VII Contents 1 Introduction 1 1.1 What are Organic Solids? 1 1.2 What are the Special

More information

Semiconductor quantum dots

Semiconductor quantum dots Semiconductor quantum dots Quantum dots are spherical nanocrystals of semiconducting materials constituted from a few hundreds to a few thousands atoms, characterized by the quantum confinement of the

More information

ATOM atomov - indivisible

ATOM atomov - indivisible Structure of matter ATOM atomov - indivisible Greek atomists - Democrite and Leukip 300 b.c. R. Bošković - accepts the concept of atom and defines the force J. Dalton - accepts the concept of atom and

More information

Reconfigurable DNA Origami Nanocapsule for ph- Controlled Encapsulation and Display of Cargo

Reconfigurable DNA Origami Nanocapsule for ph- Controlled Encapsulation and Display of Cargo Supporting Information Reconfigurable DNA Origami Nanocapsule for ph- Controlled Encapsulation and Display of Cargo Heini Ijäs, Iiris Hakaste, Boxuan Shen, Mauri A. Kostiainen, and Veikko Linko* Biohybrid

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2008 69451 Weinheim, Germany Ternary Complexes Comprising Cucurbit[10]uril, Porphyrins, and Guests Supporting Information Angew. Chem. by Simin Liu, Atindra D. Shukla,

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2013. Supporting Information for Adv. Mater., DOI: 10.1002/adma.201301472 Reconfigurable Infrared Camouflage Coatings from a Cephalopod

More information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008 Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008 Highly Sensitive and Fast Responsive Fluorescence Turn-on Chemodosimeter for Cu 2+ and its Application in Live Cell

More information

Aula 5 e 6 Transferência de Energia e Transferência de Elétron Caminhos de espécies fotoexcitadas

Aula 5 e 6 Transferência de Energia e Transferência de Elétron Caminhos de espécies fotoexcitadas Fotoquímica Aula 5 e 6 Transferência de Energia e Transferência de Elétron Prof. Amilcar Machulek Junior IQ/USP - CEPEMA Caminhos de espécies fotoexcitadas 1 Diagrama de Jablonski S 2 Relaxation (τ < 1ps)

More information

Introduction... Theory Influence of Excitation Pulse Shape...

Introduction... Theory Influence of Excitation Pulse Shape... 1. Fluorescence Anisotropy: Theory and Applications Robert F. Steiner 1.1. 1.2. 1.3. 1.4. 1.5. 1.6. Introduction... Theory... 1.2.1. Meaning of Anisotropy... 1.2.2. Influence of Excitation Pulse Shape...

More information

Supplementary figure 1 Application of tmfret in LeuT. (a) To assess the feasibility of using tmfret for distance-dependent measurements in LeuT, a

Supplementary figure 1 Application of tmfret in LeuT. (a) To assess the feasibility of using tmfret for distance-dependent measurements in LeuT, a Supplementary figure 1 Application of tmfret in LeuT. (a) To assess the feasibility of using tmfret for distance-dependent measurements in LeuT, a series of tmfret-pairs comprised of single cysteine mutants

More information

Rotational Brownian motion; Fluorescence correlation spectroscpy; Photobleaching and FRET. David A. Case Rutgers, Spring 2009

Rotational Brownian motion; Fluorescence correlation spectroscpy; Photobleaching and FRET. David A. Case Rutgers, Spring 2009 Rotational Brownian motion; Fluorescence correlation spectroscpy; Photobleaching and FRET David A. Case Rutgers, Spring 2009 Techniques based on rotational motion What we studied last time probed translational

More information

New insight into the dynamical system of αb-crystallin oligomers

New insight into the dynamical system of αb-crystallin oligomers Supplementary Materials New insight into the dynamical system of αb-crystallin oligomers Rintaro Inoue*, Takumi Takata, Norihiko Fujii, Kentaro Ishii, Susumu Uchiyama, Nobuhiro Sato, Yojiro Oba, Kathleen

More information

Supplementary information

Supplementary information Supplementary information doi: 10.1038/nchem.247 Amyloid!-Protein Oligomerization and the Importance of Tetramers and Dodecamers in the Aetiology of Alzheimer s Disease Summer L. Bernstein, Nicholas F.

More information

Supporting information

Supporting information Supporting information Fluorescent derivatives of AC-42 to probe bitopic orthosteric/allosteric binding mechanisms on muscarinic M1 receptors Sandrine B. Daval, Céline Valant, Dominique Bonnet, Esther

More information

Förster Energy Transfer - AKA - Fluorescence Resonance Energy Transfer

Förster Energy Transfer - AKA - Fluorescence Resonance Energy Transfer örster Energy Transfer - K - luorescence esonance Energy Transfer 1. Origins: Theory of Energy Transfer developed by T. örster (örster. 1948. nnalen der Physi. :55-75.). evelopment of ET as a Spectroscopic

More information

X-Ray transitions to low lying empty states

X-Ray transitions to low lying empty states X-Ray Spectra: - continuous part of the spectrum is due to decelerated electrons - the maximum frequency (minimum wavelength) of the photons generated is determined by the maximum kinetic energy of the

More information

Protein-Ligand Interactions: hydrodynamics and calorimetry

Protein-Ligand Interactions: hydrodynamics and calorimetry Protein-Ligand Interactions: hydrodynamics and calorimetry Approach Stephen E. Harding Babur Z. Chowdhry OXFORD UNIVERSITY PRESS , New York Oxford University Press, 2001 978-0-19-963746-1 List of protocols

More information

Bonding in solids The interaction of electrons in neighboring atoms of a solid serves the very important function of holding the crystal together.

Bonding in solids The interaction of electrons in neighboring atoms of a solid serves the very important function of holding the crystal together. Bonding in solids The interaction of electrons in neighboring atoms of a solid serves the very important function of holding the crystal together. For example Nacl In the Nacl lattice, each Na atom is

More information

The Aβ40 and Aβ42 peptides self-assemble into separate homomolecular fibrils in binary mixtures but cross-react during primary nucleation

The Aβ40 and Aβ42 peptides self-assemble into separate homomolecular fibrils in binary mixtures but cross-react during primary nucleation Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2015 The Aβ40 and Aβ42 peptides self-assemble into separate homomolecular fibrils in binary

More information

Modern Physics for Frommies IV The Universe - Small to Large Lecture 4

Modern Physics for Frommies IV The Universe - Small to Large Lecture 4 Fromm Institute for Lifelong Learning University of San Francisco Modern Physics for Frommies IV The Universe - Small to Large Lecture 4 3 February 06 Modern Physics IV Lecture 4 Agenda Administrative

More information

1. Transition dipole moment

1. Transition dipole moment 1. Transition dipole moment You have measured absorption spectra of aqueous (n=1.33) solutions of two different chromophores (A and B). The concentrations of the solutions were the same. The absorption

More information

Supplementary information

Supplementary information Supplementary information Figure S1 Mass spectrum of a 3 µm solution of Hsp90 2 incubated with FKBP51 and FKBP52 at 6 µm concentrations. This spectrum illustrates the mass spectral assignment protocol

More information

4 Single molecule FRET

4 Single molecule FRET 4 Single molecule FRET FRET basics Energie Dipole-dipole interaction Teil I SM Fluo, Kap. 4 FRET FRET basics transfer rate (from Fermis Golden Rule) k t = 1 0 1 r 6 apple 2 9 ln(10) n 4 N A 128 5 Z d f

More information

Introduction to Chromatographic Separations

Introduction to Chromatographic Separations Introduction to Chromatographic Separations Analysis of complex samples usually involves previous separation prior to compound determination. Two main separation methods instrumentation are available:

More information

Chapter 31 Atomic Physics

Chapter 31 Atomic Physics 100 92 86 100 92 84 100 92 84 98 92 83 97 92 82 96 91 80 96 91 76 95 91 74 95 90 68 95 89 67 95 89 66 94 87 93 86 No. of Students in Range Exam 3 Score Distribution 25 22 20 15 10 10 5 3 2 0 0 0 0 0 0

More information

THE NATURE OF THE ATOM. alpha particle source

THE NATURE OF THE ATOM. alpha particle source chapter THE NATURE OF THE ATOM www.tutor-homework.com (for tutoring, homework help, or help with online classes) Section 30.1 Rutherford Scattering and the Nuclear Atom 1. Which model of atomic structure

More information

Structure of Crystalline Solids

Structure of Crystalline Solids Structure of Crystalline Solids Solids- Effect of IMF s on Phase Kinetic energy overcome by intermolecular forces C 60 molecule llotropes of Carbon Network-Covalent solid Molecular solid Does not flow

More information

Rapid sizing of quantum dots and nanoparticles

Rapid sizing of quantum dots and nanoparticles Rapid sizing of quantum dots and nanoparticles Keywords: Hydrodynamic radius, diffusion coefficient, sizing, Taylor dispersion analysis, non-organic, quantum dots, quality control, gold nanoparticles Summary

More information

LS1a Fall 2014 Problem Set #2 Due Monday 10/6 at 6 pm in the drop boxes on the Science Center 2 nd Floor

LS1a Fall 2014 Problem Set #2 Due Monday 10/6 at 6 pm in the drop boxes on the Science Center 2 nd Floor LS1a Fall 2014 Problem Set #2 Due Monday 10/6 at 6 pm in the drop boxes on the Science Center 2 nd Floor Note: Adequate space is given for each answer. Questions that require a brief explanation should

More information

Modern Optical Spectroscopy

Modern Optical Spectroscopy Modern Optical Spectroscopy With Exercises and Examples from Biophysics and Biochemistry von William W Parson 1. Auflage Springer-Verlag Berlin Heidelberg 2006 Verlag C.H. Beck im Internet: www.beck.de

More information

Supporting Information

Supporting Information Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2013 Photochemistry of N-Methylformamide: Matrix Isolation and Nonadiabatic Dynamics Rachel Crespo-Otero, [a] Artur Mardyukov,

More information

Supplementary Information

Supplementary Information Supplementary Information Mechanical unzipping and rezipping of a single SNARE complex reveals hysteresis as a force-generating mechanism Duyoung Min, Kipom Kim, Changbong Hyeon, Yong Hoon Cho, Yeon-Kyun

More information

Detection of Mercury(II) and Lead(II) with Graphene Oxide- Based Biosensors

Detection of Mercury(II) and Lead(II) with Graphene Oxide- Based Biosensors Detection of Mercury(II) and Lead(II) with Graphene Oxide- Based Biosensors Ming Li, Nianqiang (Nick) Wu* Mechanical & Aerospace Engineering West Virginia University Morgantown, WV 26506 Presentation Outline

More information

Antibiotic Selectivity for Prokaryotic vs. Eukaryotic Decoding Sites Yun Xie, Andrew Dix, and Yitzhak Tor*

Antibiotic Selectivity for Prokaryotic vs. Eukaryotic Decoding Sites Yun Xie, Andrew Dix, and Yitzhak Tor* Antibiotic Selectivity for Prokaryotic vs. Eukaryotic Decoding Sites Yun Xie, Andrew Dix, and Yitzhak Tor* Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0358

More information

PDBe TUTORIAL. PDBePISA (Protein Interfaces, Surfaces and Assemblies)

PDBe TUTORIAL. PDBePISA (Protein Interfaces, Surfaces and Assemblies) PDBe TUTORIAL PDBePISA (Protein Interfaces, Surfaces and Assemblies) http://pdbe.org/pisa/ This tutorial introduces the PDBePISA (PISA for short) service, which is a webbased interactive tool offered by

More information

CHARGE CARRIERS PHOTOGENERATION. Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 23-27th, 2015

CHARGE CARRIERS PHOTOGENERATION. Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 23-27th, 2015 CHARGE CARRIERS PHOTOGENERATION Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 23-27th, 2015 Charge carriers photogeneration: what does it mean? Light stimulus

More information

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester SOLID STATE PHYSICS Second Edition J. R. Hook H. E. Hall Department of Physics, University of Manchester John Wiley & Sons CHICHESTER NEW YORK BRISBANE TORONTO SINGAPORE Contents Flow diagram Inside front

More information

Nature Structural and Molecular Biology: doi: /nsmb Supplementary Figure 1. Definition and assessment of ciap1 constructs.

Nature Structural and Molecular Biology: doi: /nsmb Supplementary Figure 1. Definition and assessment of ciap1 constructs. Supplementary Figure 1 Definition and assessment of ciap1 constructs. (a) ciap1 constructs used in this study are shown as primary structure schematics with domains colored as in the main text. Mutations

More information

Modelling against small angle scattering data. Al Kikhney EMBL Hamburg, Germany

Modelling against small angle scattering data. Al Kikhney EMBL Hamburg, Germany Modelling against small angle scattering data Al Kikhney EMBL Hamburg, Germany Validation of atomic models CRYSOL Rigid body modelling SASREF BUNCH CORAL Oligomeric mixtures OLIGOMER Flexible systems EOM

More information

Chapter 29 Molecular and Solid-State Physics

Chapter 29 Molecular and Solid-State Physics Chapter 29 Molecular and Solid-State Physics GOALS When you have mastered the content of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms, and

More information

ph-responsive assembly and disassembly of a supramolecular cryptand-based pseudorotaxane driven by π-π stacking interaction

ph-responsive assembly and disassembly of a supramolecular cryptand-based pseudorotaxane driven by π-π stacking interaction ph-responsive assembly and disassembly of a supramolecular cryptand-based pseudorotaxane driven by π-π stacking interaction Xuzhou Yan, Mingming Zhang, Peifa Wei, Bo Zheng, Xiaodong Chi, Xiaofan Ji, and

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2015. Supporting Information for Adv. Mater., DOI: 10.1002/adma.201502134 Stable Metallic 1T-WS 2 Nanoribbons Intercalated with Ammonia

More information

I. Proteomics by Mass Spectrometry 1. What is an internal standard and what does it accomplish analytically?

I. Proteomics by Mass Spectrometry 1. What is an internal standard and what does it accomplish analytically? Name I. Proteomics by Mass Spectrometry 1. What is an internal standard and what does it accomplish analytically? Internal standards are standards added intentionally to all samples, standards and blanks.

More information

Biochemistry. Biochemical Techniques HPLC

Biochemistry. Biochemical Techniques HPLC Description of Module Subject Name Paper Name 12 Module Name/Title 13 1. Objectives 1.1. To understand the basic concept and principle of 1.2. To understand the components and techniques of 1.3. To know

More information

Lecture 6: Individual nanoparticles, nanocrystals and quantum dots

Lecture 6: Individual nanoparticles, nanocrystals and quantum dots Lecture 6: Individual nanoparticles, nanocrystals and quantum dots Definition of nanoparticle: Size definition arbitrary More interesting: definition based on change in physical properties. Size smaller

More information

Electronic Processes on Semiconductor Surfaces during Chemisorption

Electronic Processes on Semiconductor Surfaces during Chemisorption Electronic Processes on Semiconductor Surfaces during Chemisorption T. Wolkenstein Translatedfrom Russian by E. M. Yankovskii Translation edited in part by Roy Morrison CONSULTANTS BUREAU NEW YORK AND

More information

Molecular Physics. Attraction between the ions causes the chemical bond.

Molecular Physics. Attraction between the ions causes the chemical bond. Molecular Physics A molecule is a stable configuration of electron(s) and more than one nucleus. Two types of bonds: covalent and ionic (two extremes of same process) Covalent Bond Electron is in a molecular

More information

Electronic Supporting Information Measuring Viscosity inside Mesoporous Silica Using Protein-Bound Molecular Rotor Probe

Electronic Supporting Information Measuring Viscosity inside Mesoporous Silica Using Protein-Bound Molecular Rotor Probe Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2018 Electronic Supporting Information Measuring Viscosity inside Mesoporous Silica

More information

Chemistry 111 Syllabus

Chemistry 111 Syllabus Chemistry 111 Syllabus Chapter 1: Chemistry: The Science of Change The Study of Chemistry Chemistry You May Already Know The Scientific Method Classification of Matter Pure Substances States of Matter

More information

Supplementary Materials

Supplementary Materials Supplementary Materials Sample characterization The presence of Si-QDs is established by Transmission Electron Microscopy (TEM), by which the average QD diameter of d QD 2.2 ± 0.5 nm has been determined

More information

Bonding and Dynamics. Outline Bonding and Dynamics Water Interactions Self Ionization of Water Homework

Bonding and Dynamics. Outline Bonding and Dynamics Water Interactions Self Ionization of Water Homework Liquid Water Structure In liquid water, most of the water molecules have the same local environment as in ice but the long range structure of ice disappears due to motion of the molecules. Bonds between

More information

Fluorescence 2009 update

Fluorescence 2009 update XV 74 Fluorescence 2009 update Jablonski diagram Where does the energy go? Can be viewed like multistep kinetic pathway 1) Excite system through A Absorbance S 0 S n Excite from ground excited singlet

More information

BMB Class 17, November 30, Single Molecule Biophysics (II)

BMB Class 17, November 30, Single Molecule Biophysics (II) BMB 178 2018 Class 17, November 30, 2018 15. Single Molecule Biophysics (II) New Advances in Single Molecule Techniques Atomic Force Microscopy Single Molecule Manipulation - optical traps and tweezers

More information

Fluorescence Resonance Energy Transfer (FRET) in Polymer Films and Polymer Blends

Fluorescence Resonance Energy Transfer (FRET) in Polymer Films and Polymer Blends Fluorescence Resonance Energy Transfer (FRET) in Polymer Films and Polymer Blends Neda Felorzabihi, Jeffrey C. Haley, Pablo Froimowicz, Ghasem R. Bardajee and Mitchell. Winnik epartment of Chemical Engineering

More information

The broad topic of physical metallurgy provides a basis that links the structure of materials with their properties, focusing primarily on metals.

The broad topic of physical metallurgy provides a basis that links the structure of materials with their properties, focusing primarily on metals. Physical Metallurgy The broad topic of physical metallurgy provides a basis that links the structure of materials with their properties, focusing primarily on metals. Crystal Binding In our discussions

More information

Operational lifetimes of organic light-emitting diodes dominated by Förster

Operational lifetimes of organic light-emitting diodes dominated by Förster Operational lifetimes of organic light-emitting diodes dominated by Förster resonance energy transfer Hirohiko Fukagawa *, Takahisa Shimizu, Yukiko Iwasaki, and Toshihiro Yamamoto Japan Broadcasting Corporation

More information

(Supplementary Information)

(Supplementary Information) (Supplementary Information) Peptidomimetic-based Multi-Domain Targeting Offers Critical Evaluation of Aβ Structure and Toxic Function Sunil Kumar 1*, Anja Henning-Knechtel 2, Mazin Magzoub 2, and Andrew

More information

Bistable Polyaromatic Aminoboranes: Bright Solid State Emission and Mechanochromism

Bistable Polyaromatic Aminoboranes: Bright Solid State Emission and Mechanochromism Supporting Information Bistable Polyaromatic Aminoboranes: Bright Solid State Emission and Mechanochromism Neena K. Kalluvettukuzhy and Pakkirisamy Thilagar* Department of Inorganic and Physical Chemistry,

More information

Supporting Information. for. Angew. Chem. Int. Ed Wiley-VCH 2006

Supporting Information. for. Angew. Chem. Int. Ed Wiley-VCH 2006 Supporting Information for Angew. Chem. Int. Ed. 200604995 Wiley-VCH 2006 69451 Weinheim, Germany Response to shape emerges in a complex biochemical network and its simple chemical analogue Christian J.

More information

The photoluminescent graphene oxide serves as an acceptor rather. than a donor in the fluorescence resonance energy transfer pair of

The photoluminescent graphene oxide serves as an acceptor rather. than a donor in the fluorescence resonance energy transfer pair of Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 20XX The photoluminescent graphene oxide serves as an acceptor rather than a donor in the fluorescence

More information

Gold-poly(N-isopropylacrylamide) core-shell colloids with homogeneous density profiles: A small angle scattering study

Gold-poly(N-isopropylacrylamide) core-shell colloids with homogeneous density profiles: A small angle scattering study Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Supporting Information Gold-poly(N-isopropylacrylamide) core-shell colloids with

More information

3. Write ground-state electron configurations for any atom or ion using only the Periodic Table. (Sections 8.3 & 9.2)

3. Write ground-state electron configurations for any atom or ion using only the Periodic Table. (Sections 8.3 & 9.2) Lecture 2: learning objectives, readings, topics, and resources: 1. Understand the significance of the quantum numbers, understand how they can be used to code for the electron energy levels within atoms

More information

Interaction mechanism for energy transfer from Ce to Tb ions in silica

Interaction mechanism for energy transfer from Ce to Tb ions in silica Interaction mechanism for energy transfer from Ce to Tb ions in silica HAA Seed Ahmed 1,2, W-S Chae 3, OM Ntwaeaborwa 1 and RE Kroon 1 1 Department of Physics, University of the Free State, South Africa

More information

Singlet. Fluorescence Spectroscopy * LUMO

Singlet. Fluorescence Spectroscopy * LUMO Fluorescence Spectroscopy Light can be absorbed and re-emitted by matter luminescence (photo-luminescence). There are two types of luminescence, in this discussion: fluorescence and phosphorescence. A

More information

Role of Coherent Low-Frequency Motion in Excited-State. Proton Transfer of Green Fluorescent Protein Studied by

Role of Coherent Low-Frequency Motion in Excited-State. Proton Transfer of Green Fluorescent Protein Studied by Role of Coherent Low-Frequency Motion in Ecited-State Proton Transfer of Green Fluorescent Protein Studied by Time-Resolved Impulsive Stimulated Raman Spectroscopy Tomotsumi Fujisawa, Hikaru Kuramochi,

More information

Advanced Studies in Physical Chemistry

Advanced Studies in Physical Chemistry Advanced Studies in Physical Chemistry Molecular modelling-workshop 781626S Lectures 8 Practical exercise, 782624S Molecular Modelling, or 782625S Quantum Chemistry After this course the student is familiar

More information

Supporting Information

Supporting Information Supporting Information Multifunctional Albumin-MnO 2 Nanoparticles Modulate Solid Tumor Microenvironment by Attenuating Hypoxia, Acidosis, Vascular Endothelial Growth Factor and Enhance Radiation Response

More information

University of Groningen

University of Groningen University of Groningen Uniform exciton fluorescence from individual molecular nanotubes immobilized on solid substrates Eisele, Doerthe M.; Knoester, Jasper; Kirstein, Stefan; Rabe, Juergen P.; Vanden

More information

Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015,

Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015, Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015, Course,Informa5on, BIOC%530% GraduateAlevel,discussion,of,the,structure,,func5on,,and,chemistry,of,proteins,and, nucleic,acids,,control,of,enzyma5c,reac5ons.,please,see,the,course,syllabus,and,

More information

A ratiometric fluorescent probe for specific detection of cysteine over. homocysteine and glutathione based on the drastic distinction in the

A ratiometric fluorescent probe for specific detection of cysteine over. homocysteine and glutathione based on the drastic distinction in the Supporting Information for A ratiometric fluorescent probe for specific detection of cysteine over homocysteine and glutathione based on the drastic distinction in the kinetic profiles Lin Yuan, Weiying

More information

Supporting Protocol This protocol describes the construction and the force-field parameters of the non-standard residue for the Ag + -site using CNS

Supporting Protocol This protocol describes the construction and the force-field parameters of the non-standard residue for the Ag + -site using CNS Supporting Protocol This protocol describes the construction and the force-field parameters of the non-standard residue for the Ag + -site using CNS CNS input file generatemetal.inp: remarks file generate/generatemetal.inp

More information

Triangulating Nucleic Acid Conformations Using Multicolor Surface Energy Transfer

Triangulating Nucleic Acid Conformations Using Multicolor Surface Energy Transfer Triangulating Nucleic cid Conformations Using Multicolor Surface Energy Transfer Supporting Information Ryan. Riskowski 1, Rachel E. rmstrong 2, Nancy L. Greenbaum 3, Geoffrey F. Strouse 1,2 * 1 Molecular

More information

The Effect of Water and Confinement on Self-Assembly of

The Effect of Water and Confinement on Self-Assembly of Supporting Information: The Effect of Water and Confinement on Self-Assembly of Imidazolium Based Ionic Liquids at Mica Interface H.-W. Cheng, J.-N. Dienemann, P. Stock, C. Merola, Y.-J. Chen and M. Valtiner*

More information

Supplementary Information for

Supplementary Information for Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 014 Supplementary Information for High Resolution Mapping of Oxygen Reduction Reaction

More information

Supporting Information

Supporting Information Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2013 Expansion of Access Tunnels and Active-Site Cavities Influence Activity of Haloalkane Dehalogenases in Organic Cosolvents

More information

Organic Electronic Devices

Organic Electronic Devices Organic Electronic Devices Week 4: Organic Photovoltaic Devices Lecture 4.1: Overview of Organic Photovoltaic Devices Bryan W. Boudouris Chemical Engineering Purdue University 1 Lecture Overview and Learning

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supporting Information Kinetic Resolution of Constitutional Isomers Controlled by Selective Protection inside a Supramolecular Nanocapsule Simin Liu, Haiying Gan, Andrew T. Hermann,

More information

Dust emission. D.Maino. Radio Astronomy II. Physics Dept., University of Milano. D.Maino Dust emission 1/24

Dust emission. D.Maino. Radio Astronomy II. Physics Dept., University of Milano. D.Maino Dust emission 1/24 Dust emission D.Maino Physics Dept., University of Milano Radio Astronomy II D.Maino Dust emission 1/24 New insight on Dust Emission Before WMAP and Planck with only COBE-DMR, dust is well described by

More information

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL INSTITUTE OF TECHNOLOGY SCHEME OF EVAUATION MANIPA INSTITUTE OF TECHNOOGY MANIPA UNIVERSITY, MANIPA SECOND SEMESTER B.Tech. END-SEMESTER EXAMINATION - MAY SUBJECT: ENGINEERING PHYSICS (PHY/) Time: 3 Hrs. Max. Marks: 5 Note: Answer

More information

Advanced Fluorescence Microscopy I: Fluorescence (Foster) Resonance Energy Transfer

Advanced Fluorescence Microscopy I: Fluorescence (Foster) Resonance Energy Transfer Advanced Fluorescence Microscopy I: Fluorescence (Foster) Resonance Energy Transfer 3.0 Pax 2.5 2.0 1200 800 400 GFP- Pax GFP-Pax + FATmCherry FAT FAT 1.5 Lifetime (ns) 0 1500 2000 2500 3000 Average lifetime

More information

Atomic and molecular interactions. Scanning probe microscopy.

Atomic and molecular interactions. Scanning probe microscopy. Atomic and molecular interactions. Scanning probe microscopy. Balázs Kiss Nanobiotechnology and Single Molecule Research Group, Department of Biophysics and Radiation Biology 27. November 2013. 2 Atomic

More information

Specific ion effects on the interaction of. hydrophobic and hydrophilic self assembled

Specific ion effects on the interaction of. hydrophobic and hydrophilic self assembled Supporting Information Specific ion effects on the interaction of hydrophobic and hydrophilic self assembled monolayers T. Rios-Carvajal*, N. R. Pedersen, N. Bovet, S.L.S. Stipp, T. Hassenkam. Nano-Science

More information