The broad topic of physical metallurgy provides a basis that links the structure of materials with their properties, focusing primarily on metals.

Size: px
Start display at page:

Download "The broad topic of physical metallurgy provides a basis that links the structure of materials with their properties, focusing primarily on metals."

Transcription

1 Physical Metallurgy The broad topic of physical metallurgy provides a basis that links the structure of materials with their properties, focusing primarily on metals.

2 Crystal Binding In our discussions of how and why structure determines physical and chemical properties of solids we will sometimes discuss atomic cohesion and the internal energy or free energy of a solid. We do this more or less from a heuristic point of view so we often neglect entropic effects. Heuristically, we consider a solid that has been assembled by a combination of interatomic attractive and repulsive forces of the general form shown below. E o is the bond energy of nn. r o is the nn spacing Energy r o E o Repulsive forces Attractive forces Interatomic distance, r Generally the attractive and repulsive interactions occur over distances greater than nn. Often approximations are made that only consider nn interactions.

3 Ionic crystals To a high level of approximation, ionic crystals are held together by attractive Coulombic forces and hard sphere (electron) core-core repulsive forces. The attractive potential energy takes the form Here, the z i are the charges (+1, -1, +2, -2, etc.) on the ions. In an ionic crystal like NaCl, these Coulombic potentials are summed over 1 st, 2 nd, 3 rd, etc., neighbors so that the attractive potential assumes the form The repulsive potential energy takes the form Then the total potential energy is the sum

4 Ionic crystals Generally both B and the exponent n are not known, however one of these can be solved for with respect to the other using the known crystal structure of the ionic compound. The lattice potential energy U o is the amount of energy released when one mole of the crystal is formed from gaseous ions which are at infinite separation. So by definition

5 Example: NaCl

6 Example: NaCl Summing these terms and noting that the z i = 1 in NaCl, B in the repulsive part of the potential is connected to the compressibility defined as The compressibility is connected to the curvature at r o (or V o )in the energy-distance curve

7 Example: NaCl Using these relations one can show that in the case of NaCl or other ionic solids with the same crystal structure n=9. Then in evaluating the U o one obtains 756 kj/mole. The experimental value is 788 kj/mole.

8 Van der Waals Bonds Dipole-Dipole, Dipole-Induced Dipole, London-Dispersion Bonds Dipole-Dipole Bonds A molecule that contains a polar covalent bond has a permanent electric dipole moment due to charge separation. When 2 such molecules are in close proximity they will attract one another forming a weak bond ~ 0.1 ev. +C O +C O Dipole-Induced Dipole Bonds When a molecule with a permanent dipole approached a 2 nd molecule that is purely covalent, it can induce a time-dependent (temporary) dipole moment in this 2 nd molecule.

9 Van der Waals Bonds +C O +C C Induced Dipole-Induced Dipole or London-dispersion Bonds Electrons and nuclei are in a constant state of motion. Fluctuations can result in instantaneous dipole moments causing the molecules to attract one another if they are close enough. R C + C R R + C C R

10 Van der Waals Bonds The bonds that exist within molecules, such as covalent bonds, ionic bonds and polar covalent bonds, are part of a group of intramolecular bonds known as strong bonds. They are called strong bonds to distinguish them from another type of bond known as the weak bond. Strong bonds have a bond energy that ranges from about 2 ev to 5 ev of energy. However, weak bonds have energies that vary from 0.04 ev to 0.3 ev. Weak bonds are the bonds that exist between molecules and are therefore known as intermolecular bonds. There are three major types of weak bonds and together these weak bonds are known as van der Waals bonds (or van der Waals forces). Dipole-dipole bonds are the weak bonds that exist between two molecules as a result of their permanent dipole moments. A special type of dipole-dipole bond is the hydrogen bond, which also happens to be the strongest type of weak bond. Hydrogen bonds are dipole-dipole interactions in which at least one of the atoms involved is a hydrogen atom. Dipole-induced dipole bonds are those electric bonds that exist between a molecule with a permanent dipole moment and a molecule in which a temporary dipole moment has been induced (by the other molecule). Londondispersion bonds are those bonds that exist between molecules as a result of their instantaneous dipole moments. Instantaneous dipole moments arise in all molecules as a result of the fact that electrons are in constant state of motion.

11 Van der Waals Bonds Electric Dipole Interactions

12 Van der Waals Bonds Induced Electric Dipole Interactions Spherically symmetric e - distribution for a bare non polar atom. The center of the negative and positive charge coincide. External field Distorted e - distribution; the centers of charge no longer coincide. The magnitude of the induced dipole moment is given by where is the polarizability. The force on the induced dipole is

13 Inert-gas solids Van der Waals Bonds Induced Dipole-Induced Dipole or London-dispersion Bonds We want to calculate how the attractive interaction energy decays with distance for A pair of induced dipoles. The interaction energy is

14 Metallic Bonding We were able to get a good picture of bonding and cohesive or lattice energy in ionic and rare-gas solids from classical physics considerations. Not so for metals. Quantum mechanics is necessary to get an accurate view of cohesion and metallic properties and this is beyond the nature of the topics to be discussed in this class. The simplest metals to understand are the one electron (a single valance electron, i.e., the alkali metals such as sodium and potassium), whereas, in other metals modern approaches such as density function theory (DFT) need to be used. Cohesive energy in metallic bonding. Na metal is used as an example. The curve εε o (r ) represents the lowest energy of electrons with the wave vector k= 0, while the curve W F (r) represents an average kinetic energy per electron. εε I represents the ionization energy needed to remove the outermost 3s electron in a free Na atom to infinity and εε c is the cohesive energy. The position of the minimum in the cohesive energy gives an equilibrium interatomic distance r o.

CHAPTER 2 INTERATOMIC FORCES. atoms together in a solid?

CHAPTER 2 INTERATOMIC FORCES. atoms together in a solid? CHAPTER 2 INTERATOMIC FORCES What kind of force holds the atoms together in a solid? Interatomic Binding All of the mechanisms which cause bonding between the atoms derive from electrostatic interaction

More information

Kinetic Molecular Theory of Gases used to account for Ideal Gas Behavior when gases approach high temperatures and low pressures

Kinetic Molecular Theory of Gases used to account for Ideal Gas Behavior when gases approach high temperatures and low pressures LIQUIDS AND SOLIDS Kinetic Molecular Theory of Gases used to account for Ideal Gas Behavior when gases approach high temperatures and low pressures GASES are very different from solids and liquids. We

More information

RW Session ID = MSTCHEM1 Intermolecular Forces

RW Session ID = MSTCHEM1 Intermolecular Forces RW Session ID = MSTCHEM1 Intermolecular Forces Sections 9.4, 11.3-11.4 Intermolecular Forces Attractive forces between molecules due to charges, partial charges, and temporary charges Higher charge, stronger

More information

Chapter 3. Crystal Binding

Chapter 3. Crystal Binding Chapter 3. Crystal Binding Energy of a crystal and crystal binding Cohesive energy of Molecular crystals Ionic crystals Metallic crystals Elasticity What causes matter to exist in three different forms?

More information

liquids_solids_15dec2017_1st.notebook Liquids and solids Chapters 11 and 12

liquids_solids_15dec2017_1st.notebook Liquids and solids Chapters 11 and 12 liquids_solids_15dec2017_1st.notebook December 15, 2017 Liquids and solids Chapters 11 and 12 Intermolecular forces Intermolecular: forces between molecules Intramolecular: within molecules (i.e. covalent)

More information

Primary bonding: e- are transferred or shared Strong ( KJ/mol or 1-10 ev/atom) Secondary Bonding: no e -

Primary bonding: e- are transferred or shared Strong ( KJ/mol or 1-10 ev/atom) Secondary Bonding: no e - Types of Bondings Primary bonding: e- are transferred or shared Strong (100-1000 KJ/mol or 1-10 ev/atom) Ionic: Strong Coulomb interaction among negative atoms (have an extra electron each) and positive

More information

Intermolecular Forces I

Intermolecular Forces I I How does the arrangement of atoms differ in the 3 phases of matter (solid, liquid, gas)? Why doesn t ice just evaporate into a gas? Why does liquid water exist at all? There must be some force between

More information

Sodium, Na. Gallium, Ga CHEMISTRY Topic #2: The Chemical Alphabet Fall 2017 Dr. Susan Findlay See Exercises 9.2 to 9.7.

Sodium, Na. Gallium, Ga CHEMISTRY Topic #2: The Chemical Alphabet Fall 2017 Dr. Susan Findlay See Exercises 9.2 to 9.7. Sodium, Na Gallium, Ga CHEMISTRY 1000 Topic #2: The Chemical Alphabet Fall 2017 Dr. Susan Findlay See Exercises 9.2 to 9.7 Forms of Carbon Kinetic Molecular Theory of Matter The kinetic-molecular theory

More information

What factors affect whether something is a solid, liquid or gas? What actually happens (breaks) when you melt various types of solids?

What factors affect whether something is a solid, liquid or gas? What actually happens (breaks) when you melt various types of solids? States of Mattter What factors affect whether something is a solid, liquid or gas? What actually happens (breaks) when you melt various types of solids? What external factors affect whether something is

More information

Atomic structure & interatomic bonding. Chapter two

Atomic structure & interatomic bonding. Chapter two Atomic structure & interatomic bonding Chapter two 1 Atomic Structure Mass Charge Proton 1.67 х 10-27 kg + 1.60 х 10-19 C Neutron 1.67 х 10-27 kg Neutral Electron 9.11 х 10-31 kg - 1.60 х 10-19 C Electron

More information

Solids, Liquids and Gases

Solids, Liquids and Gases WHY? Why is water usually a liquid and not a gas? Why does liquid water boil at such a high temperature for such a small molecule? Why does ice float on water? Why do snowflakes have 6 sides? Why is I

More information

General Physical Chemistry II

General Physical Chemistry II General Physical Chemistry II Lecture 13 Aleksey Kocherzhenko October 16, 2014" Last time " The Hückel method" Ø Used to study π systems of conjugated molecules" Ø π orbitals are treated separately from

More information

IMFA s. intermolecular forces of attraction Chez Chem, LLC All rights reserved.

IMFA s. intermolecular forces of attraction Chez Chem, LLC All rights reserved. IMFA s intermolecular forces of attraction 2014 Chez Chem, LLC All rights reserved. **London Dispersion Forces Also know as Van der Waals forces A momentary non symmetrical electron distribution that can

More information

Physical Chemistry - Problem Drill 01: Chemistry and Physics Review

Physical Chemistry - Problem Drill 01: Chemistry and Physics Review Physical Chemistry - Problem Drill 01: Chemistry and Physics Review No. 1 of 10 1. Chemical bonds are considered to be the interaction of their electronic structures of bonding atoms involved, with the

More information

The change in free energy on transferring an ion from a medium of low dielectric constantε1 to one of high dielectric constant ε2:

The change in free energy on transferring an ion from a medium of low dielectric constantε1 to one of high dielectric constant ε2: The Born Energy of an Ion The free energy density of an electric field E arising from a charge is ½(ε 0 ε E 2 ) per unit volume Integrating the energy density of an ion over all of space = Born energy:

More information

For the following intermolecular forces:

For the following intermolecular forces: Lecturenotes 1 unit6_review_exercise_2017.odt Lecturenotes 2 unit6_review_exercise_2017.odt Lecturenotes 3 unit6_review_exercise_2017.odt Lecturenotes 4 unit6_review_exercise_2017.odt Answers: 1. Ionic

More information

Lattice energy of ionic solids

Lattice energy of ionic solids 1 Lattice energy of ionic solids Interatomic Forces Solids are aggregates of atoms, ions or molecules. The bonding between these particles may be understood in terms of forces that play between them. Attractive

More information

Atoms & Their Interactions

Atoms & Their Interactions Lecture 2 Atoms & Their Interactions Si: the heart of electronic materials Intel, 300mm Si wafer, 200 μm thick and 48-core CPU ( cloud computing on a chip ) Twin Creeks Technologies, San Jose, Si wafer,

More information

Intermolecular Forces

Intermolecular Forces Intermolecular Forces Molecular Compounds The simplest molecule is H 2 : Increased electron density draws nuclei together The pair of shared electrons constitutes a covalent bond. Intermolecular Forces

More information

Unit 6: Molecular Geometry

Unit 6: Molecular Geometry Unit 6: Molecular Geometry Molecular Geometry [6-5] the polarity of each bond, along with the geometry of the molecule determines Molecular Polarity. To predict the geometries of more complicated molecules,

More information

Ionic Bonds. H He: ... Li Be B C :N :O :F: :Ne:

Ionic Bonds. H He: ... Li Be B C :N :O :F: :Ne: Ionic Bonds Valence electrons - the electrons in the highest occupied energy level - always electrons in the s and p orbitals - maximum of 8 valence electrons - elements in the same group have the same

More information

Chapter 11. Intermolecular Forces, Liquids, and Solids

Chapter 11. Intermolecular Forces, Liquids, and Solids Chapter 11. Intermolecular Forces, Liquids, and Solids A Molecular Comparison of Gases, Liquids, and Solids Physical properties of substances are understood in terms of kinetic-molecular theory: Gases

More information

Name: Date: Blk: Examine your periodic table to answer these questions and fill-in-the-blanks. Use drawings to support your answers where needed:

Name: Date: Blk: Examine your periodic table to answer these questions and fill-in-the-blanks. Use drawings to support your answers where needed: Name: Date: Blk: NOTES: BONDING Examine your periodic table to answer these questions and fill-in-the-blanks. Use drawings to support your answers where needed: I. IONIC BONDING Ionic bond: formed by the

More information

Chap 10 Part 4Ta.notebook December 08, 2017

Chap 10 Part 4Ta.notebook December 08, 2017 Chapter 10 Section 1 Intermolecular Forces the forces between molecules or between ions and molecules in the liquid or solid state Stronger Intermolecular forces cause higher melting points and boiling

More information

Bonding forces and energies Primary interatomic bonds Secondary bonding Molecules

Bonding forces and energies Primary interatomic bonds Secondary bonding Molecules Chapter 2. Atomic structure and interatomic bonding 2.1. Atomic structure 2.1.1.Fundamental concepts 2.1.2. Electrons in atoms 2.1.3. The periodic table 2.2. Atomic bonding in solids 2.2.1. Bonding forces

More information

Lecture 6 - Bonding in Crystals

Lecture 6 - Bonding in Crystals Lecture 6 onding in Crystals inding in Crystals (Kittel Ch. 3) inding of atoms to form crystals A crystal is a repeated array of atoms Why do they form? What are characteristic bonding mechanisms? How

More information

ATOMIC BONDING Atomic Bonding

ATOMIC BONDING Atomic Bonding ATOMIC BONDING Atomic Bonding Primary Bonds Secondary Bonds Ionic Covalent Metallic van der Waals 1. IONIC BONDING q 11 Na & 17 Cl These two ions are attracted to eachother by the electrostatic force developed

More information

DIFFERENT TYPES OF INTEMOLECULAR FORCES INTERMOLECULAR FORCES

DIFFERENT TYPES OF INTEMOLECULAR FORCES INTERMOLECULAR FORCES DIFFERENT TYPES OF INTEMOLECULAR FORCES Do all the exercises in your studyguide COMPARISON OF THE THREE PHASES OF MATTER. Matter is anything that occupy space and has mass. There are three states of matter:

More information

-Atomic Bonding in Solids

-Atomic Bonding in Solids -Atomic Bonding in Solids Three different types of primary or chemical bond are found in solids ionic, covalent, and metallic. For each type, the bonding necessarily involves the valence electrons; furthermore,

More information

- intermolecular forces forces that exist between molecules

- intermolecular forces forces that exist between molecules Chapter 11: Intermolecular Forces, Liquids, and Solids - intermolecular forces forces that exist between molecules 11.1 A Molecular Comparison of Liquids and Solids - gases - average kinetic energy of

More information

Chapter Outline Understanding of interatomic bonding is the first step towards understanding/explaining materials properties Review of Atomic

Chapter Outline Understanding of interatomic bonding is the first step towards understanding/explaining materials properties Review of Atomic Chapter Outline Understanding of interatomic bonding is the first step towards understanding/explaining materials properties Review of Atomic Structure: Electrons, Protons, Neutrons, Quantum mechanics

More information

Chapter Outline Understanding of interatomic bonding is the first step towards understanding/explaining materials properties Review of Atomic

Chapter Outline Understanding of interatomic bonding is the first step towards understanding/explaining materials properties Review of Atomic Chapter Outline Understanding of interatomic bonding is the first step towards understanding/explaining materials properties Review of Atomic Structure: Electrons, Protons, Neutrons, Quantum mechanics

More information

Chapter 12 Section 1

Chapter 12 Section 1 hapter 12 Section 1 Kinetic Molecular Description of Liquids and Solids Noncovalent Forces Intermolecular interactions Electrostatic Forces Dispersion Forces -bonding DNA, RNA Mary J. Bojan hem 110 1 What

More information

Lecture Presentation. Chapter 11. Liquids and Intermolecular Forces. John D. Bookstaver St. Charles Community College Cottleville, MO

Lecture Presentation. Chapter 11. Liquids and Intermolecular Forces. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 11 Liquids and Intermolecular Forces John D. Bookstaver St. Charles Community College Cottleville, MO Properties of Gases, Liquids, and Solids State Volume Shape of State Density

More information

Lecture Presentation. Chapter 11. Liquids and Intermolecular Forces Pearson Education, Inc.

Lecture Presentation. Chapter 11. Liquids and Intermolecular Forces Pearson Education, Inc. Lecture Presentation Chapter 11 Liquids and States of Matter The fundamental difference between states of matter is the strength of the intermolecular forces of attraction. Stronger forces bring molecules

More information

Biophysics II. Hydrophobic Bio-molecules. Key points to be covered. Molecular Interactions in Bio-molecular Structures - van der Waals Interaction

Biophysics II. Hydrophobic Bio-molecules. Key points to be covered. Molecular Interactions in Bio-molecular Structures - van der Waals Interaction Biophysics II Key points to be covered By A/Prof. Xiang Yang Liu Biophysics & Micro/nanostructures Lab Department of Physics, NUS 1. van der Waals Interaction 2. Hydrogen bond 3. Hydrophilic vs hydrophobic

More information

States of matter Part 1

States of matter Part 1 Physical pharmacy I 1. States of matter (2 Lectures) 2. Thermodynamics (2 Lectures) 3. Solution of non-electrolyte 4. Solution of electrolyte 5. Ionic equilibria 6. Buffered and isotonic solution Physical

More information

States of matter Part 1. Lecture 1. University of Kerbala. Hamid Alghurabi Assistant Lecturer in Pharmaceutics. Physical Pharmacy

States of matter Part 1. Lecture 1. University of Kerbala. Hamid Alghurabi Assistant Lecturer in Pharmaceutics. Physical Pharmacy Physical pharmacy I 1. States of matter (2 Lectures) 2. Thermodynamics (2 Lectures) 3. Solution of non-electrolyte 4. Solution of electrolyte 5. Ionic equilibria 6. Buffered and isotonic solution Physical

More information

Chapter 14. Liquids and Solids

Chapter 14. Liquids and Solids Chapter 14 Liquids and Solids Section 14.1 Water and Its Phase Changes Reviewing What We Know Gases Low density Highly compressible Fill container Solids High density Slightly compressible Rigid (keeps

More information

Chapter 11. Intermolecular Forces and Liquids & Solids

Chapter 11. Intermolecular Forces and Liquids & Solids Chapter 11 Intermolecular Forces and Liquids & Solids The Kinetic Molecular Theory of Liquids & Solids Gases vs. Liquids & Solids difference is distance between molecules Liquids Molecules close together;

More information

Chapter 6. Chemical Bonding

Chapter 6. Chemical Bonding Chapter 6 Chemical Bonding Section 6.1 Intro to Chemical Bonding 6.1 Objectives Define chemical bond. Explain why most atoms form chemical bonds. Describe ionic and covalent bonding. Explain why most chemical

More information

Atoms can form stable units called molecules by sharing electrons.

Atoms can form stable units called molecules by sharing electrons. Atoms can form stable units called molecules by sharing electrons. The formation of molecules is the result of intramolecular bonding (within the molecule) e.g. ionic, covalent. Forces that cause the aggregation

More information

Intermolecular and Intramolecular Forces. Introduction

Intermolecular and Intramolecular Forces. Introduction Intermolecular and Intramolecular Forces Introduction Atoms can form stable units called molecules by sharing electrons. The formation of molecules is the result of intramolecular bonding (within the molecule)

More information

2.2.2 Bonding and Structure

2.2.2 Bonding and Structure 2.2.2 Bonding and Structure Ionic Bonding Definition: Ionic bonding is the electrostatic force of attraction between oppositely charged ions formed by electron transfer. Metal atoms lose electrons to form

More information

When intermolecular forces are strong, the atoms, molecules, or ions are strongly attracted to each other, and draw closer together.

When intermolecular forces are strong, the atoms, molecules, or ions are strongly attracted to each other, and draw closer together. INTERMOLECULAR FORCES: THE FORCE BEHIND VARIOUS PROPERTIES WHY? Intermolecular forces are largely responsible for the properties of affinity, solubility, volatility, melting/ boiling point, and viscosity.

More information

Chapter 10. Liquids and Solids

Chapter 10. Liquids and Solids Chapter 10 Liquids and Solids Chapter 10 Table of Contents 10.1 Intermolecular Forces 10.2 The Liquid State 10.3 An Introduction to Structures and Types of Solids 10.4 Structure and Bonding in Metals 10.5

More information

Chem 1075 Chapter 13 Liquids and Solids Lecture Outline

Chem 1075 Chapter 13 Liquids and Solids Lecture Outline Chem 1075 Chapter 13 Liquids and Solids Lecture Outline Slide 2-3 Properties of Liquids Unlike gases, liquids respond dramatically to temperature and pressure changes. We can study the liquid state and

More information

Unit 7: Basic Concepts of Chemical Bonding. Chemical Bonds. Lewis Symbols. The Octet Rule. Transition Metal Ions. Ionic Bonding 11/17/15

Unit 7: Basic Concepts of Chemical Bonding. Chemical Bonds. Lewis Symbols. The Octet Rule. Transition Metal Ions. Ionic Bonding 11/17/15 Unit 7: Basic Concepts of Chemical Bonding Topics Covered Chemical bonds Ionic bonds Covalent bonds Bond polarity and electronegativity Lewis structures Exceptions to the octet rule Strength of covalent

More information

Chapter 12 Intermolecular Forces and Liquids

Chapter 12 Intermolecular Forces and Liquids Chapter 12 Intermolecular Forces and Liquids Jeffrey Mack California State University, Sacramento Why? Why is water usually a liquid and not a gas? Why does liquid water boil at such a high temperature

More information

What determines whether a substance will be a solid, liquid, or gas? Thursday, April 24, 14

What determines whether a substance will be a solid, liquid, or gas? Thursday, April 24, 14 What determines whether a substance will be a solid, liquid, or gas? Answer: The attractive forces that exists between its particles. Answer: The attractive forces that exists between its particles. For

More information

States of Matter. Intermolecular Forces. The States of Matter. Intermolecular Forces. Intermolecular Forces

States of Matter. Intermolecular Forces. The States of Matter. Intermolecular Forces. Intermolecular Forces Intermolecular Forces Have studied INTRAmolecular forces the forces holding atoms together to form compounds. Now turn to forces between molecules INTERmolecular forces. Forces between molecules, between

More information

Comparing Ionic and Covalent Compounds

Comparing Ionic and Covalent Compounds Comparing Ionic and Covalent Compounds It takes energy to overcome the forces holding particles together. Thus, it takes energy to cause a substance to go from the liquid to the gaseous state. The boiling

More information

Big Idea: Ionic Bonds: Ionic Bonds: Metals: Nonmetals: Covalent Bonds: Ionic Solids: What ions do atoms form? Electron Electron

Big Idea: Ionic Bonds: Ionic Bonds: Metals: Nonmetals: Covalent Bonds: Ionic Solids: What ions do atoms form? Electron Electron Chapter 13: Phenomena Phenomena: Scientists measured the bond angles of some common molecules. In the pictures below each line represents a bond that contains 2 electrons. If multiple lines are drawn together

More information

Hybridisation of Atomic Orbitals

Hybridisation of Atomic Orbitals Lecture 7 CHEM101 Hybridisation of Atomic Orbitals Dr. Noha Osman Learning Outcomes Understand the valence bond theory Understand the concept of hybridization. Understand the different types of orbital

More information

Electrons and Molecular Forces

Electrons and Molecular Forces Electrons and Molecular Forces Chemistry 30 Ms. Hayduk Electron Configuration Atomic Structure Atomic Number Number of protons in the nucleus Defines the element Used to organize the periodic table 1 Bohr

More information

DEFINITION. The electrostatic force of attraction between oppositely charged ions

DEFINITION. The electrostatic force of attraction between oppositely charged ions DEFINITION The electrostatic force of attraction between oppositely charged ions Usually occurs when a metal bonds with a non-metal Ions are formed by complete electron transfer from the metal atoms to

More information

Solutions and Intermolecular Forces

Solutions and Intermolecular Forces Solutions and Intermolecular Forces REVIEW Chemical Bonds Three basic types of bonds: Ionic Electrostatic attraction between ions Covalent Sharing of electrons Metallic Metal atoms bonded to several other

More information

CH1010 Exam #2 Study Guide For reference see Chemistry: An Atoms-focused Approach by Gilbert, Kirss, and Foster

CH1010 Exam #2 Study Guide For reference see Chemistry: An Atoms-focused Approach by Gilbert, Kirss, and Foster CH1010 Exam #2 Study Guide For reference see Chemistry: An Atoms-focused Approach by Gilbert, Kirss, and Foster Chapter 3: Atomic Structure, Explaining the Properties of Elements Trends to know (and be

More information

The kinetic Molecular Theory of Liquids and solids

The kinetic Molecular Theory of Liquids and solids The kinetic Molecular Theory of Liquids and solids States of Matter The fundamental difference between states of matter is the distance between particles. 2012 Pearson Education, Inc. Intermolecular Forces

More information

Atoms, electrons and Solids

Atoms, electrons and Solids Atoms, electrons and Solids Shell model of an atom negative electron orbiting a positive nucleus QM tells that to minimize total energy the electrons fill up shells. Each orbit in a shell has a specific

More information

Chapter 10. Dipole Moments. Intermolecular Forces (IMF) Polar Bonds and Polar Molecules. Polar or Nonpolar Molecules?

Chapter 10. Dipole Moments. Intermolecular Forces (IMF) Polar Bonds and Polar Molecules. Polar or Nonpolar Molecules? Polar Bonds and Polar Molecules Chapter 10 Liquids, Solids, and Phase Changes Draw Lewis Structures for CCl 4 and CH 3 Cl. What s the same? What s different? 1 Polar Covalent Bonds and Dipole Moments Bonds

More information

Dipole-Dipole Interactions https://www.youtube.com/watch?v=cerb1d6j4-m London Dispersion Forces https://www.youtube.com/watch?

Dipole-Dipole Interactions https://www.youtube.com/watch?v=cerb1d6j4-m London Dispersion Forces https://www.youtube.com/watch? CATALYST Lesson Plan GLE Physical Science 22. Predict the kind of bond that will form between two elements based on electronic structure and electronegativity of the elements (e.g., ionic, polar, nonpolar)

More information

Chemical Bonding. Chemical Bonding 20/03/2015. The atomic radius increases from right to left. The atomic radius increases from top to bottom

Chemical Bonding. Chemical Bonding 20/03/2015. The atomic radius increases from right to left. The atomic radius increases from top to bottom Chemical Bonding Atomic Radius: This distance from the nucleus to the outermost electron. Chemical Bonding Chemistry 11 Two factors must be taken into consideration in explaining this periodic trend: Increasing

More information

Polar molecules vs. Nonpolar molecules A molecule with separate centers of positive and negative charge is a polar molecule.

Polar molecules vs. Nonpolar molecules A molecule with separate centers of positive and negative charge is a polar molecule. CHM 123 Chapter 8 8.5 8.6 Polar covalent Bonds and Dipole moments Depending on the relative electronegativities of the two atoms sharing electrons, there may be partial transfer of electron density from

More information

LONDON DISPERSION FORCES. - often called "London forces" for short. - London forces occur in all molecules, polar or nonpolar.

LONDON DISPERSION FORCES. - often called London forces for short. - London forces occur in all molecules, polar or nonpolar. 43 LONDON DISPERSION FORCES - often called "London forces" for short. - occurs because electron density is - at any given point in time - likely to be uneven across a molecule due to the simple fact that

More information

Topic 4: Chemical Bonds. IB Chemistry SL Ms. Kiely Coral Gables Senior High

Topic 4: Chemical Bonds. IB Chemistry SL Ms. Kiely Coral Gables Senior High Topic 4: Chemical Bonds IB Chemistry SL Ms. Kiely Coral Gables Senior High Bell-Ringer Draw an example of each type of intermolecular force using the following molecules: TOPIC 4 TEST NEXT CLASS MONDAY

More information

- "Intermolecular forces" is a generic term. It refers to any number of forces that exist between molecules!

- Intermolecular forces is a generic term. It refers to any number of forces that exist between molecules! 41 INTERMOLECULAR FORCES IN LIQUIDS - "Intermolecular forces" is a generic term. It refers to any number of forces that exist between molecules! - In liquids, there are three main types of intermolecular

More information

Chapter 12. Intermolecular Forces: Liquids, Solids, and Phase Changes

Chapter 12. Intermolecular Forces: Liquids, Solids, and Phase Changes Chapter 12 Intermolecular Forces: Liquids, Solids, and Phase Changes There are attractive intermolecular in all solids, liquids (called condensed phases) and gases. Molecules are held together by attractive

More information

Chapter 10 Liquids and Solids. Problems: 14, 15, 18, 21-23, 29, 31-35, 37, 39, 41, 43, 46, 81-83, 87, 88, 90-93, 99, , 113

Chapter 10 Liquids and Solids. Problems: 14, 15, 18, 21-23, 29, 31-35, 37, 39, 41, 43, 46, 81-83, 87, 88, 90-93, 99, , 113 Chapter 10 Liquids and Solids Problems: 14, 15, 18, 21-23, 29, 31-35, 37, 39, 41, 43, 46, 81-83, 87, 88, 90-93, 99, 104-106, 113 Recall: Intermolecular vs. Intramolecular Forces Intramolecular: bonds between

More information

Polar Bonds and Molecules

Polar Bonds and Molecules Chemistry 1 of 33 Snow covers approximately 23 percent of Earth s surface. Each individual snowflake is formed from as many as 100 snow crystals. The polar bonds in water molecules influence the distinctive

More information

Chapter 12. Insert picture from First page of chapter. Intermolecular Forces and the Physical Properties of Liquids and Solids

Chapter 12. Insert picture from First page of chapter. Intermolecular Forces and the Physical Properties of Liquids and Solids Chapter 12 Insert picture from First page of chapter Intermolecular Forces and the Physical Properties of Liquids and Solids Copyright McGraw-Hill 2009 1 12.1 Intermolecular Forces Intermolecular forces

More information

Chemistry: The Central Science

Chemistry: The Central Science Chemistry: The Central Science Fourteenth Edition Chapter 11 Liquids and Intermolecular Forces Intermolecular Forces The attractions between molecules are not nearly as strong as the intramolecular attractions

More information

State the two factors required for successful collisions to occur. Activation energy and correct collision geometry

State the two factors required for successful collisions to occur. Activation energy and correct collision geometry 1 State the two factors required for successful collisions to occur Activation energy and correct collision geometry 2 State the definition of activation energy The minimum kinetic energy for successful

More information

Complicated, short range. þq 1 Q 2 /4p3 0 r (Coulomb energy) Q 2 u 2 /6(4p3 0 ) 2 ktr 4. u 2 1 u2 2 =3ð4p3 0Þ 2 ktr 6 ðkeesom energyþ

Complicated, short range. þq 1 Q 2 /4p3 0 r (Coulomb energy) Q 2 u 2 /6(4p3 0 ) 2 ktr 4. u 2 1 u2 2 =3ð4p3 0Þ 2 ktr 6 ðkeesom energyþ Bonding ¼ Type of interaction Interaction energy w(r) Covalent, metallic Complicated, short range Charge charge þq 1 Q 2 /4p3 0 r (Coulomb energy) Charge dipole Qu cos q/4p3 0 r 2 Q 2 u 2 /6(4p3 0 ) 2

More information

Higher Chemistry. Unit 1 Chemical Changes and Structure Summary Notes

Higher Chemistry. Unit 1 Chemical Changes and Structure Summary Notes Higher Chemistry Unit 1 Chemical Changes and Structure Summary Notes Success Criteria I am confident that I understand this and I can apply this to problems? I have some understanding but I need to revise

More information

Atoms, Molecules and Solids (selected topics)

Atoms, Molecules and Solids (selected topics) Atoms, Molecules and Solids (selected topics) Part I: Electronic configurations and transitions Transitions between atomic states (Hydrogen atom) Transition probabilities are different depending on the

More information

Materials Science and Engineering I

Materials Science and Engineering I Materials Science and Engineering I Chapter Outline Review of Atomic Structure Electrons, Protons, Neutrons, Quantum number of atoms, Electron states, The Periodic Table Atomic Bonding in Solids Bonding

More information

Advanced Chemistry Liquid & Solids Test

Advanced Chemistry Liquid & Solids Test Advanced Chemistry Liquid & Solids Test Name: Multiple Choice 1) Which one of the following statements about liquids and solids is generally false? a) The rate of diffusion is lower in solids b) The density

More information

X-Ray transitions to low lying empty states

X-Ray transitions to low lying empty states X-Ray Spectra: - continuous part of the spectrum is due to decelerated electrons - the maximum frequency (minimum wavelength) of the photons generated is determined by the maximum kinetic energy of the

More information

CHAPTER ELEVEN KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS

CHAPTER ELEVEN KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS CHAPTER ELEVEN AND LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS Differences between condensed states and gases? KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS Phase Homogeneous part

More information

CHAPTER 1 Atoms and bonding. Ionic bonding Covalent bonding Metallic bonding van der Waals bonding

CHAPTER 1 Atoms and bonding. Ionic bonding Covalent bonding Metallic bonding van der Waals bonding CHAPTER 1 Atoms and bonding The periodic table Ionic bonding Covalent bonding Metallic bonding van der Waals bonding Atoms and bonding In order to understand the physics of semiconductor (s/c) devices,

More information

2.26 Intermolecular Forces

2.26 Intermolecular Forces 2.26 Intermolecular Forces Intermolecular forces are the relatively weak forces that exist between molecules. These govern the physical properties such as boiling point, melting point, solubility in solvents

More information

Atomic and molecular interaction forces in biology

Atomic and molecular interaction forces in biology Atomic and molecular interaction forces in biology 1 Outline Types of interactions relevant to biology Van der Waals interactions H-bond interactions Some properties of water Hydrophobic effect 2 Types

More information

Chapter 13: Phenomena

Chapter 13: Phenomena Chapter 13: Phenomena Phenomena: Scientists measured the bond angles of some common molecules. In the pictures below each line represents a bond that contains 2 electrons. If multiple lines are drawn together

More information

C HAPTER1Bonding and Crystal

C HAPTER1Bonding and Crystal C APTER1Bonding and Crystal A. BONDING IN SOLIDS BONDING IN SOLIDS AND CRYSTAL STRUCTURE The attractive electrostatic interaction between the negative charge of the electrons and the positive charge of

More information

Chapter 11 Intermolecular Forces, Liquids, and Solids. Intermolecular Forces

Chapter 11 Intermolecular Forces, Liquids, and Solids. Intermolecular Forces Chapter 11, Liquids, and Solids States of Matter The fundamental difference between states of matter is the distance between particles. States of Matter Because in the solid and liquid states particles

More information

Chapter 11. Liquids and Intermolecular Forces

Chapter 11. Liquids and Intermolecular Forces Chapter 11. Liquids and Intermolecular Forces 11.1 A Molecular Comparison of Gases, Liquids, and Solids Gases are highly compressible and assume the shape and volume of their container. Gas molecules are

More information

2.26 Intermolecular Forces

2.26 Intermolecular Forces 2.26 Intermolecular Forces Intermolecular forces are the relatively weak forces that exist between molecules. These govern the physical properties such as boiling point, melting point, solubility in solvents

More information

Ch 9 Liquids & Solids (IMF) Masterson & Hurley

Ch 9 Liquids & Solids (IMF) Masterson & Hurley Ch 9 Liquids & Solids (IMF) Masterson & Hurley Intra- and Intermolecular AP Questions: 2005 Q. 7, 2005 (Form B) Q. 8, 2006 Q. 6, 2007 Q. 2 (d) and (c), Periodic Trends AP Questions: 2001 Q. 8, 2002 Q.

More information

1. Reactions can be followed by measuring changes in concentration, mass and volume of reactants and products.

1. Reactions can be followed by measuring changes in concentration, mass and volume of reactants and products. Higher Chemistry - Traffic Lights Unit 1 CHEMICAL CHANGES AND STRUCTURE I know: Controlling the rate Collision theory and relative rates 1. Reactions can be followed by measuring changes in concentration,

More information

THE BIG IDEA: BONDING AND INTERACTIONS.

THE BIG IDEA: BONDING AND INTERACTIONS. HONORS CHEMISTRY - CHAPTER 8 COVALENT BONDS OBJECTIVES AND NOTES - PART 2 - V12 NAME: DATE: PAGE: THE BIG IDEA: BONDING AND INTERACTIONS. Essential Questions 1. How is the bonding in molecular compounds

More information

Bonding in solids The interaction of electrons in neighboring atoms of a solid serves the very important function of holding the crystal together.

Bonding in solids The interaction of electrons in neighboring atoms of a solid serves the very important function of holding the crystal together. Bonding in solids The interaction of electrons in neighboring atoms of a solid serves the very important function of holding the crystal together. For example Nacl In the Nacl lattice, each Na atom is

More information

Earth Solid Earth Rocks Minerals Atoms. How to make a mineral from the start of atoms?

Earth Solid Earth Rocks Minerals Atoms. How to make a mineral from the start of atoms? Earth Solid Earth Rocks Minerals Atoms How to make a mineral from the start of atoms? Formation of ions Ions excess or deficit of electrons relative to protons Anions net negative charge Cations net

More information

AP CHEMISTRY NOTES 15-1 INTERMOLECULAR FORCES

AP CHEMISTRY NOTES 15-1 INTERMOLECULAR FORCES AP CHEMISTRY NOTES 15-1 INTERMOLECULAR FORCES INTERMOLECULAR FORCES In addition to the covalent bonds that exist between atoms in a molecule (H2O for instance), there are also weak attractions between

More information

Week 8 Intermolecular Forces

Week 8 Intermolecular Forces NO CALCULATORS MAY BE USED FOR THESE QUESTIONS Questions 1-3 refer to the following list. (A) Cu (B) PH 3 (C) C (D) SO 2 (E) O 2 1. Contains instantaneous dipole moments. 2. Forms covalent network solids.

More information

REVIEW element compound atom Neutrons Protons Electrons atomic nucleus daltons atomic number mass number Atomic mass

REVIEW element compound atom Neutrons Protons Electrons atomic nucleus daltons atomic number mass number Atomic mass Domain 2: Matter REVIEW Matter is made up of elements An element is a substance that cannot be broken down to other substances by chemical reactions A compound is a substance consisting of two or more

More information

Phase Change DIagram

Phase Change DIagram States of Matter Phase Change DIagram Phase Change Temperature remains during a phase change. Water phase changes Phase Diagram What is a phase diagram? (phase diagram for water) Normal melting point:

More information

1. Ionic bonding - chemical bond resulting from the attraction of positive and negative ions

1. Ionic bonding - chemical bond resulting from the attraction of positive and negative ions Bonding Bonding can occur in 2 ways: 1. Electron transfer (ionic) 2. Electron sharing (covalent) 1. Ionic bonding - chemical bond resulting from the attraction of positive and negative ions Cation- positive

More information

Liquids & Solids. Mr. Hollister Holliday Legacy High School Regular & Honors Chemistry

Liquids & Solids. Mr. Hollister Holliday Legacy High School Regular & Honors Chemistry Liquids & Solids Mr. Hollister Holliday Legacy High School Regular & Honors Chemistry 1 Liquids 2 Properties of the States of Matter: Liquids High densities compared to gases. Fluid. The material exhibits

More information

Chapter 10: States of Matter. Concept Base: Chapter 1: Properties of Matter Chapter 2: Density Chapter 6: Covalent and Ionic Bonding

Chapter 10: States of Matter. Concept Base: Chapter 1: Properties of Matter Chapter 2: Density Chapter 6: Covalent and Ionic Bonding Chapter 10: States of Matter Concept Base: Chapter 1: Properties of Matter Chapter 2: Density Chapter 6: Covalent and Ionic Bonding Pressure standard pressure the pressure exerted at sea level in dry air

More information