Dust emission. D.Maino. Radio Astronomy II. Physics Dept., University of Milano. D.Maino Dust emission 1/24

Size: px
Start display at page:

Download "Dust emission. D.Maino. Radio Astronomy II. Physics Dept., University of Milano. D.Maino Dust emission 1/24"

Transcription

1 Dust emission D.Maino Physics Dept., University of Milano Radio Astronomy II D.Maino Dust emission 1/24

2 New insight on Dust Emission Before WMAP and Planck with only COBE-DMR, dust is well described by amorphous silicates: ν 1.7 and T d = 9.5K carbonaceous components: ν 2.7 and T d = 16K In 1997 Leitch et al. with OVRO (Owens Valley Radio Observatory) at 14.5 and 32 GHz found an excess of microwave emission strongly correlated with dust as traced by IRAS@100µm spectral index 2 resambling free-free emission high dust temperature 10 6 K but not visible in X-Ray This emission is dubbed AME - Anomalous Microwave Emission D.Maino Dust emission 2/24

3 New insight on Dust Emission D.Maino Dust emission 3/24

4 New insight on Dust emission Draine & Lazarian (1998) proposed a new mechanism of emission from dust grains Main idea is related to the electrical dipole of dust grains In order to compute such emission one needs: total number of small grains grain electrical dipole moment rotational velocities D.Maino Dust emission 4/24

5 New insight on Dust emission Number of grains derived from IR observations and 25µm Dipole moments: for non-spherical dust grains consider displacement between mass and charge centroids Grains acquire charge from photoelectric emission and collisions Rotational ω: both thermal and from damping/excitation from plasma drag i.e. grain interaction with passing ions DL98 consider different phases of ISM: Cold (Warm) Neutral Medium - C(W)NM, Warm Ionized Medium (WIM), Molecular Cloud (MC) and Dark Cloud (DC) described by n H, T, χ where χ is starlight intensity wrt average D.Maino Dust emission 5/24

6 Physics of Rotation Dust Grains D.Maino Dust emission 6/24

7 Physics of Rotating Dust Grains Angular Momentum I is in general quantized If rotational kinetic energy is 3/2kT rot the quantum number classical rotation J = I ω ( ) 1/2 ħ 20 Trot 1 100K Radiation power from rotating grain: P = 2 ω 4 µ 2 sin 2 θ 3 c 3 where ω angular velocity and µ grain dipole moment D.Maino Dust emission 7/24

8 Physics of Rotating Dust Grains Grain dipole moment µ µ = µ i + ɛzea x where µ i is intrinsic dipole moment of uncharged grain, Ze is total charge and ɛa x is displacement between mass and charge centroids a x is the equivalent excitation radius i.e. for a non-spherical grain the radius of the sphere with the same rate of collisions displaced from center rotational energy Displacement is usually assumed to be 10% of a x thus ( a ) ( ) x ɛ Zea x ɛ = Z debye cm 0.1 D.Maino Dust emission 8/24

9 Physics of Rotating Dust Grains Grain intrinsic dipole moment µ i βn 1/2 As for β: hydrocarbon molecules has µ i 1debye while perfectly symmetric molecules like C 24 H 12 (PAH) has µ i = 0 From consideration on interstellar environment (i.e. stellar radiation) β = 0.4debye Last hypothesis is that µ orientation is un-correlated with ω sin 2 θ = 2/3 P = 4 µ 2 ω 4 9 c 3 D.Maino Dust emission 9/24

10 Physics of Rotation Dust Grains D.Maino Dust emission 10/24

11 Physics of Rotating Dust Grains Gas-grain and plasma-grain interactions as well as infrared and radio emission will damp rotation i.e. lower ω Thermal collision, excitation from field of passing-by ions/electrons instead increase ω Dipole moment in general depends on grain size (through the a x quantity): the model assumes 50% of grains with nominal β while 25% will have half of this and 25% double of this For each a x and β there will be a range on ω assumed to follow Boltzmann distribution Emissivity per H j ν n H = ( ) 8 1/2 1 3 n H c 3 da dn µ 2 ω 6 ) da ω 2 exp ( 3ω2 2/3 2 ω 2 D.Maino Dust emission 11/24

12 Physics of Rotating Dust Grains D.Maino Dust emission 12/24

13 Physics of Rotating Dust Grains D.Maino Dust emission 13/24

14 Observational Evidence of AME OVRO: Leicth et al COBE-DMR: Kogut et al. 1996, Banday et al Tenerife: de Oliveira-Costa 2002,2004 Python V: Mukherjee et al Green Bank: Finkbeiner 2002, Finkbeiner et al Cosmosomas: Watson et al. 2005, Battistelli et al VSA: Scaife et al. 2007, Tibbs et al CBI: Casassus et al. 2004,2006 WMAP: Bennett et al 2003, Dickinson et al Planck: Planck collaboration 2011 D.Maino Dust emission 14/24

15 Observational Evidence of AME: Planck D.Maino Dust emission 15/24

16 Observational Evidence of AME: Planck D.Maino Dust emission 16/24

17 Perseus AME region Take aperture photometry of the region Inner circle: signal + background. Outer anulus: background estimation D.Maino Dust emission 17/24

18 Perseus AME region D.Maino Dust emission 18/24

19 Perseus AME region Model: Free-free (orange), thermal dust (cyan), high ρ molecular gas (magenta) and low ρ atomic gas (green) D.Maino Dust emission 19/24

20 Perseus AME region Model: Free-free (orange), thermal dust (cyan), high ρ molecular gas (magenta) and low ρ atomic gas (green) D.Maino Dust emission 20/24

21 ρ Ophiuchi AME region Model: Free-free (orange), thermal dust (cyan), high ρ molecular gas (magenta), low ρ atomic gas (green) and CMB (black - dotted) D.Maino Dust emission 21/24

22 ρ Ophiuchi AME region Model: Free-free (orange), thermal dust (cyan), high ρ molecular gas (magenta) low ρ atomic gas (green) and CMB (black - dotted) D.Maino Dust emission 22/24

23 Diffuse AME emission Most of the AME evidence in specific astrophysical objects e.g. molecular clouds Large scale correlation between low-frequency and high-frequency D.Maino Dust emission 23/24

24 Diffuse AME emission Most of the AME evidence in specific astrophysical objects e.g. molecular clouds Large scale correlation between low-frequency and high-frequency Other observations are required to better understand spinning dust grain model D.Maino Dust emission 24/24

Spinning Dust and the 3mm Excess

Spinning Dust and the 3mm Excess Spinning Dust and the 3mm Excess 8th October 2010 Spinning dust 1996: COBE DMR-DIRBE (Kogut et al.) observe correlated microwave and 100 µm emission. 1997: Saskatoon 30 & 40 GHz observations; OVRO 14.5

More information

WMAP Excess Interpreted as WIMP Annihilation

WMAP Excess Interpreted as WIMP Annihilation WMAP Excess Interpreted as WIMP Annihilation idm2004, Edinburgh September 9, 2004 Douglas Finkbeiner Princeton University Outline " " " WMAP ISM emission (expected) The Galactic synchrotron Haze (unexpected)

More information

Quantum Suppression of Alignment in Spinning Nanoparticles

Quantum Suppression of Alignment in Spinning Nanoparticles Quantum Suppression of Alignment in Spinning Nanoparticles B. T. Draine Princeton University Brandon S. Hensley Jet Propulsion Laboratory Davis-Greenstein Alignment by Magnetic Dissipation Suppression

More information

arxiv:astro-ph/ v1 22 Feb 1999

arxiv:astro-ph/ v1 22 Feb 1999 Anomalous Microwave Emission arxiv:astro-ph/9902307v1 22 Feb 1999 A. Kogut Laboratory for Astronomy and Solar Physics, Code 685, Goddard Space Flight Center, Greenbelt, MD 20771 Abstract. Improved knowledge

More information

Polarised foregrounds (synchrotron, dust and AME) and their effect on the detection of primordial CMB B-modes

Polarised foregrounds (synchrotron, dust and AME) and their effect on the detection of primordial CMB B-modes Polarised foregrounds (synchrotron, dust and AME) and their effect on the detection of primordial CMB B-modes Ricardo T. Génova Santos Instituto de Astrofísica de Canarias Cosmology School in the Canary

More information

Electric Dipole Radiation from Spinning Dust Grains

Electric Dipole Radiation from Spinning Dust Grains Submitted to The Astrophysical Journal Electric Dipole Radiation from Spinning Dust Grains B.T. Draine & A. Lazarian Princeton University Observatory, Peyton Hall, Princeton, NJ 08544 ABSTRACT We discuss

More information

arxiv: v2 [astro-ph.ga] 1 Sep 2011

arxiv: v2 [astro-ph.ga] 1 Sep 2011 Astronomy & Astrophysics manuscript no. spinning variations c ESO 2013 December 21, 2013 Modelling the spinning dust emission from dense interstellar clouds N. Ysard 1, M. Juvela 1, and L. Verstraete 2

More information

Dust: Grain Populations, Extinction Curves, and Emission Spectra Monday, January 31, 2011

Dust: Grain Populations, Extinction Curves, and Emission Spectra Monday, January 31, 2011 Dust: Grain Populations, Extinction Curves, and Emission Spectra Monday, January 31, 2011 CONTENTS: 1. Introduction 2. The Extinction Curve and Abundance Constraints A. Formalities B. Features 3. Infrared

More information

arxiv: v1 [astro-ph.ga] 23 Sep 2011

arxiv: v1 [astro-ph.ga] 23 Sep 2011 Submitted to the Astrophysical Journal Preprint typeset using L A TEX style emulateapj v. 11/10/09 EVIDENCE FOR ANOMALOUS DUST-CORRELATED EMISSION AT 8 GHZ Michelle Lu 1, Joanna Dunkley 2, and Lyman Page

More information

CMB Foreground and separation methods. Astro 448 Yuxi Zhao 12/5/2018

CMB Foreground and separation methods. Astro 448 Yuxi Zhao 12/5/2018 CMB Foreground and separation methods Astro 448 Yuxi Zhao 12/5/2018 Outline CMB foreground overview Thermal Dust AME (spin dust, spinning nanodiamonds? ) Synchrotron Free-free CO Zodiacal light, CIB Component

More information

Correlation of the South Pole 94 data with 100 µm and 408 MHz maps

Correlation of the South Pole 94 data with 100 µm and 408 MHz maps A&A 368, 760 765 (2001) DOI: 10.1051/0004-6361:20010061 c ESO 2001 Astronomy & Astrophysics Correlation of the South Pole 94 data with 100 µm and 408 MHz maps J.-Ch. Hamilton 1 and K. M. Ganga 1,2 1 Physique

More information

Galactic dust in the Herschel and Planck era. François Boulanger Institut d Astrophysique Spatiale

Galactic dust in the Herschel and Planck era. François Boulanger Institut d Astrophysique Spatiale Galactic dust in the Herschel and Planck era François Boulanger Institut d Astrophysique Spatiale Motivation Dust emission Dust models Dust life cycle Planck early results Dust polarisation Outline Dust

More information

Dust Polarization. J.Ph. Bernard Institut de Recherche en Astrophysique et Planetologie (IRAP) Toulouse

Dust Polarization. J.Ph. Bernard Institut de Recherche en Astrophysique et Planetologie (IRAP) Toulouse Dust Polarization J.Ph. Bernard Institut de Recherche en Astrophysique et Planetologie (IRAP) Toulouse 1 Layout - Dust polarization (Extinction) - Dust polarization (Emission) - Dust polarization observational

More information

Photodissociation Regions Radiative Transfer. Dr. Thomas G. Bisbas

Photodissociation Regions Radiative Transfer. Dr. Thomas G. Bisbas Photodissociation Regions Radiative Transfer Dr. Thomas G. Bisbas tbisbas@ufl.edu Interstellar Radiation Field In the solar neighbourhood, the ISRF is dominated by six components Schematic sketch of the

More information

New radio observations of anomalous microwave emission in the HII region RCW175

New radio observations of anomalous microwave emission in the HII region RCW175 New radio observations of anomalous microwave emission in the HII region RCW175 E.S. Battistelli 1, E. Carretti 2, A. Cruciani 1, P. de Bernardis 1, R. Genova-Santos 3, S. Masi 1, arxiv:1501.02196v1 [astro-ph.sr]

More information

A characterization of the diffuse Galactic emissions at large angular scales using the Tenerife data

A characterization of the diffuse Galactic emissions at large angular scales using the Tenerife data A characterization of the diffuse Galactic emissions at large angular scales using the Tenerife data J. F. Macías-Pérez 1,2, R.D. Davies 2, R. Watson 2, C.M. Gutierrez 3, R. Rebolo 3 1 arxiv:1301.2800v1

More information

Interstellar Medium and Star Birth

Interstellar Medium and Star Birth Interstellar Medium and Star Birth Interstellar dust Lagoon nebula: dust + gas Interstellar Dust Extinction and scattering responsible for localized patches of darkness (dark clouds), as well as widespread

More information

8: Composition and Physical state of Interstellar Dust

8: Composition and Physical state of Interstellar Dust 8: Composition and Physical state of Interstellar Dust James Graham UC, Berkeley 1 Reading Tielens, Interstellar Medium, Ch. 5 Mathis, J. S. 1990, AARA, 28, 37 Draine, B. T., 2003, AARA, 41, 241 2 Nature

More information

ASTR2050 Spring Please turn in your homework now! In this class we will discuss the Interstellar Medium:

ASTR2050 Spring Please turn in your homework now! In this class we will discuss the Interstellar Medium: ASTR2050 Spring 2005 Lecture 10am 29 March 2005 Please turn in your homework now! In this class we will discuss the Interstellar Medium: Introduction: Dust and Gas Extinction and Reddening Physics of Dust

More information

Diffuse AME emission in Perseus

Diffuse AME emission in Perseus Diffuse AME emission in Perseus A strange beast Bob Watson, JBCA Summary Tenerife experiment first hint COSMOSOMAS Leading to Perseus SED Less filtered data (1 harmonic removal) Component separation VSA

More information

RADIO SPECTRAL LINES. Nissim Kanekar National Centre for Radio Astrophysics, Pune

RADIO SPECTRAL LINES. Nissim Kanekar National Centre for Radio Astrophysics, Pune RADIO SPECTRAL LINES Nissim Kanekar National Centre for Radio Astrophysics, Pune OUTLINE The importance of radio spectral lines. Equilibrium issues: kinetic, excitation, brightness temperatures. The equation

More information

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines!

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines! Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines Idealized 21cm spectra Example observed 21cm spectra HI densities

More information

Beyond the Visible -- Exploring the Infrared Universe

Beyond the Visible -- Exploring the Infrared Universe Beyond the Visible -- Exploring the Infrared Universe Prof. T. Jarrett (UCT) Infrared Window Telescopes ISM -- Galaxies Infrared Window Near-infrared: 1 to 5 µm Mid-infrared: 5 to 50 µm

More information

arxiv: v1 [astro-ph.ga] 25 Sep 2009

arxiv: v1 [astro-ph.ga] 25 Sep 2009 Mon. Not. R. Astron. Soc. 0, 1 14 () Printed 25 October 18 (MN LATEX style file v2.2) VSA Observations of the Anomalous Microwave Emission in the Perseus Region arxiv:0909.4682v1 [astro-ph.ga] 25 Sep 29

More information

6. Interstellar Medium. Emission nebulae are diffuse patches of emission surrounding hot O and

6. Interstellar Medium. Emission nebulae are diffuse patches of emission surrounding hot O and 6-1 6. Interstellar Medium 6.1 Nebulae Emission nebulae are diffuse patches of emission surrounding hot O and early B-type stars. Gas is ionized and heated by radiation from the parent stars. In size,

More information

Interstellar Dust and Extinction

Interstellar Dust and Extinction University of Oxford, Astrophysics November 12, 2007 Outline Extinction Spectral Features Emission Scattering Polarization Grain Models & Evolution Conclusions What and Why? Dust covers a range of compound

More information

Physical Processes in Astrophysics

Physical Processes in Astrophysics Physical Processes in Astrophysics Huirong Yan Uni Potsdam & Desy Email: hyan@mail.desy.de 1 Reference Books: Plasma Physics for Astrophysics, Russell M. Kulsrud (2005) The Physics of Astrophysics, Frank

More information

7. Dust Grains & Interstellar Extinction. James R. Graham University of California, Berkeley

7. Dust Grains & Interstellar Extinction. James R. Graham University of California, Berkeley 7. Dust Grains & Interstellar Extinction James R. Graham University of California, Berkeley Visual Extinction Presence of interstellar gas or nebulae has a long history Existence of absorbing interstellar

More information

Astr 2310 Thurs. March 23, 2017 Today s Topics

Astr 2310 Thurs. March 23, 2017 Today s Topics Astr 2310 Thurs. March 23, 2017 Today s Topics Chapter 16: The Interstellar Medium and Star Formation Interstellar Dust and Dark Nebulae Interstellar Dust Dark Nebulae Interstellar Reddening Interstellar

More information

The cosmic background radiation II: The WMAP results. Alexander Schmah

The cosmic background radiation II: The WMAP results. Alexander Schmah The cosmic background radiation II: The WMAP results Alexander Schmah 27.01.05 General Aspects - WMAP measures temperatue fluctuations of the CMB around 2.726 K - Reason for the temperature fluctuations

More information

Physics 224 The Interstellar Medium

Physics 224 The Interstellar Medium Physics 224 The Interstellar Medium Lecture #11: Dust Composition, Photoelectric Heating, Neutral Gas Outline Part I: Dust Heating & Cooling continued Part III: Dust Emission & Photoelectric Heating Part

More information

Dust in the Diffuse Universe

Dust in the Diffuse Universe Dust in the Diffuse Universe Obscuring Effects Chemical Effects Thermal Effects Dynamical Effects Diagnostic Power Evidence for Grains: Chemical Effects Catalyzes molecular hydrogen formation. Depletion

More information

Astronomy 106, Fall September 2015

Astronomy 106, Fall September 2015 Today in Astronomy 106: molecules to molecular clouds to stars Aromatic (benzene-ring) molecules in space Formation of molecules, on dust-grain surfaces and in the gas phase Interstellar molecular clouds

More information

Lecture 18 Long Wavelength Spectroscopy

Lecture 18 Long Wavelength Spectroscopy Lecture 18 Long Wavelength Spectroscopy 1. Introduction. The Carriers of the Spectra 3. Molecular Structure 4. Emission and Absorption References Herzberg, Molecular Spectra & Molecular Structure (c. 1950,

More information

Lecture 2: Molecular Clouds: Galactic Context and Observational Tracers. Corona Australis molecular cloud: Andrew Oreshko

Lecture 2: Molecular Clouds: Galactic Context and Observational Tracers. Corona Australis molecular cloud: Andrew Oreshko Lecture 2: Molecular Clouds: Galactic Context and Observational Tracers Corona Australis molecular cloud: Andrew Oreshko Classification of Young Stellar Objects (YSOs) Spectral Index Hartmann: Accretion

More information

First scientific results from QUIJOTE. constraints on radio foregrounds

First scientific results from QUIJOTE. constraints on radio foregrounds First scientific results from QUIJOTE constraints on radio foregrounds Flavien Vansyngel, Instituto de Astrofísica de Canarias @ CMB Foregrounds, UCSD, 2017/11/29 The QUIJOTE experiment Tenerife experiment

More information

A Far-ultraviolet Fluorescent Molecular Hydrogen Emission Map of the Milky Way Galaxy

A Far-ultraviolet Fluorescent Molecular Hydrogen Emission Map of the Milky Way Galaxy A Far-ultraviolet Fluorescent Molecular Hydrogen Emission Map of the Milky Way Galaxy (The Astrophysical Journal Supplement Series, 231:21 (16pp), 2017 August) November 14, 2017 Young-Soo Jo Young-Soo

More information

The Dusty Universe. Joe Weingartner George Mason University Dept of Physics and Astronomy

The Dusty Universe. Joe Weingartner George Mason University Dept of Physics and Astronomy The Dusty Universe Joe Weingartner George Mason University Dept of Physics and Astronomy To astronomers, dust means: sub micron solid grains (1 micron = 1 m = 10 6 m = one millionth of a meter) Typical

More information

Physics and Chemistry of the Interstellar Medium

Physics and Chemistry of the Interstellar Medium Physics and Chemistry of the Interstellar Medium Sun Kwok The University of Hong Kong UNIVERSITY SCIENCE BOOKS Sausalito, California * Preface xi The Interstellar Medium.1.1 States of Matter in the ISM

More information

Our Galaxy. We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky.

Our Galaxy. We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky. Our Galaxy Our Galaxy We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky. Early attempts to locate our solar system produced erroneous results.

More information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter

More information

Scientific results from QUIJOTE. constraints on CMB radio foregrounds

Scientific results from QUIJOTE. constraints on CMB radio foregrounds Scientific results from QUIJOTE constraints on CMB radio foregrounds Flavien Vansyngel, Instituto de Astrofísica de Canarias, on the behalf of the QUIJOTE collaboration @ 53rd rencontres de Moriond The

More information

Cosmic Microwave Background

Cosmic Microwave Background Cosmic Microwave Background Carlo Baccigalupi,, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/main/winterschoollecture5 These lectures are available in pdf format

More information

Radiation processes and mechanisms in astrophysics I. R Subrahmanyan Notes on ATA lectures at UWA, Perth 18 May 2009

Radiation processes and mechanisms in astrophysics I. R Subrahmanyan Notes on ATA lectures at UWA, Perth 18 May 2009 Radiation processes and mechanisms in astrophysics I R Subrahmanyan Notes on ATA lectures at UWA, Perth 18 May 009 Light of the night sky We learn of the universe around us from EM radiation, neutrinos,

More information

Ch. 5 Notes - ELECTRONS IN ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 5 Notes - ELECTRONS IN ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 5 Notes - ELECTRONS IN ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 5.1 Notes I. Light and Quantized Energy A. The Wave Nature of Light 1) the wave

More information

THREE MAIN LIGHT MATTER INTERRACTION

THREE MAIN LIGHT MATTER INTERRACTION Chapters: 3and 4 THREE MAIN LIGHT MATTER INTERRACTION Absorption: converts radiative energy into internal energy Emission: converts internal energy into radiative energy Scattering; Radiative energy is

More information

Astrochemistry (2) Interstellar extinction. Measurement of the reddening

Astrochemistry (2) Interstellar extinction. Measurement of the reddening Measurement of the reddening The reddening of stellar colours casts light on the properties of interstellar dust Astrochemistry (2) Planets and Astrobiology (2016-2017) G. Vladilo The reddening is measured

More information

THE INTERSTELLAR MEDIUM: XI The Warm Ionized Medium. Nissim Kanekar National Centre for Radio Astrophysics, Pune

THE INTERSTELLAR MEDIUM: XI The Warm Ionized Medium. Nissim Kanekar National Centre for Radio Astrophysics, Pune THE INTERSTELLAR MEDIUM: XI The Warm Ionized Medium Nissim Kanekar National Centre for Radio Astrophysics, Pune OUTLINE Background. The warm ionized medium: Probes of conditions. Pulsar dispersion measures.

More information

ASTR-1010: Astronomy I Course Notes Section IV

ASTR-1010: Astronomy I Course Notes Section IV ASTR-1010: Astronomy I Course Notes Section IV Dr. Donald G. Luttermoser Department of Physics and Astronomy East Tennessee State University Edition 2.0 Abstract These class notes are designed for use

More information

X-ray Radiation, Absorption, and Scattering

X-ray Radiation, Absorption, and Scattering X-ray Radiation, Absorption, and Scattering What we can learn from data depend on our understanding of various X-ray emission, scattering, and absorption processes. We will discuss some basic processes:

More information

Galactic radio loops. Philipp Mertsch with Subir Sarkar. The Radio Synchrotron Background Workshop, University of Richmond 21 July 2017

Galactic radio loops. Philipp Mertsch with Subir Sarkar. The Radio Synchrotron Background Workshop, University of Richmond 21 July 2017 Galactic radio loops Philipp Mertsch with Subir Sarkar The Radio Synchrotron Background Workshop, University of Richmond 21 July 2017 Foregrounds in B-modes Adam et al., arxiv:1502.01588 1409.5738 (Planck

More information

Gas 1: Molecular clouds

Gas 1: Molecular clouds Gas 1: Molecular clouds > 4000 known with masses ~ 10 3 to 10 5 M T ~ 10 to 25 K (cold!); number density n > 10 9 gas particles m 3 Emission bands in IR, mm, radio regions from molecules comprising H,

More information

Spin Stability of Aysmmetrically Charged Plasma Dust. I.H. Hutchinson. February 2004

Spin Stability of Aysmmetrically Charged Plasma Dust. I.H. Hutchinson. February 2004 PSFC/JA-04-3 Spin Stability of Aysmmetrically Charged Plasma Dust I.H. Hutchinson February 2004 Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge, MA 02139 USA This work

More information

Ch. 4 Notes - ELECTRONS IN ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 4 Notes - ELECTRONS IN ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 4 Notes - ELECTRONS IN ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. I. Light and Quantized Energy A. The Wave Nature of Light 1) the wave nature of

More information

Stellar Astrophysics: The Interaction of Light and Matter

Stellar Astrophysics: The Interaction of Light and Matter Stellar Astrophysics: The Interaction of Light and Matter The Photoelectric Effect Methods of electron emission Thermionic emission: Application of heat allows electrons to gain enough energy to escape

More information

arxiv:astro-ph/ v1 21 Nov 2006

arxiv:astro-ph/ v1 21 Nov 2006 Evidence for Inverted Spectrum 20 GHz Emission in the Galactic Plane arxiv:astro-ph/0611655 v1 21 Nov 2006 S. P. Boughn and J. C. Pober Department of Astronomy, Haverford College, Haverford, PA 19041;

More information

Atomic Structure & Radiative Transitions

Atomic Structure & Radiative Transitions Atomic Structure & Radiative Transitions electron kinetic energy nucleus-electron interaction electron-electron interaction Remember the meaning of spherical harmonics Y l, m (θ, ϕ) n specifies the

More information

Class 3. The PAH Spectrum, what does it tell us??

Class 3. The PAH Spectrum, what does it tell us?? Class 3 The PAH Spectrum, what does it tell us?? PAH Vibrations! CH str! CC str! CC str /CH ip! CH oop! 3! 4! 5! 6! 7! 8! 9! 10! 15! Wavelength (µm)! NASA Ames! Astrochemisty Lab! Vibration - S. Langhoff!

More information

Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015)

Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015) Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015) Interaction of x-ray with matter: - Photoelectric absorption - Elastic (coherent) scattering (Thomson Scattering) - Inelastic (incoherent) scattering

More information

Lecture 5. Interstellar Dust: Optical Properties

Lecture 5. Interstellar Dust: Optical Properties Lecture 5. Interstellar Dust: Optical Properties 1. Introduction 2. Extinction 3. Mie Scattering 4. Dust to Gas Ratio 5. Appendices References Spitzer Ch. 7, Osterbrock Ch. 7 DC Whittet, Dust in the Galactic

More information

Modern Physics for Scientists and Engineers International Edition, 4th Edition

Modern Physics for Scientists and Engineers International Edition, 4th Edition Modern Physics for Scientists and Engineers International Edition, 4th Edition http://optics.hanyang.ac.kr/~shsong Review: 1. THE BIRTH OF MODERN PHYSICS 2. SPECIAL THEORY OF RELATIVITY 3. THE EXPERIMENTAL

More information

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc) THE MILKY WAY GALAXY Type: Spiral galaxy composed of a highly flattened disk and a central elliptical bulge. The disk is about 100,000 light years (30kpc) in diameter. The term spiral arises from the external

More information

Long range interaction --- between ions/electrons and ions/electrons; Coulomb 1/r Intermediate range interaction --- between

Long range interaction --- between ions/electrons and ions/electrons; Coulomb 1/r Intermediate range interaction --- between Collisional Processes Long range interaction --- between ions/electrons and ions/electrons; Coulomb 1/r Intermediate range interaction --- between ions/electrons and neutral atoms/molecules; Induced dipole

More information

Lecture 5. Interstellar Dust: Chemical & Thermal Properties

Lecture 5. Interstellar Dust: Chemical & Thermal Properties Lecture 5. Interstellar Dust: Chemical & Thermal Properties!. Spectral Features 2. Grain populations and Models 3. Thermal Properties 4. Small Grains and Large Molecules -------------------------------------------------

More information

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter CHEM6416 Theory of Molecular Spectroscopy 2013Jan22 1 1. Spectroscopy frequency dependence of the interaction of light with matter 1.1. Absorption (excitation), emission, diffraction, scattering, refraction

More information

aka Light Properties of Light are simultaneously

aka Light Properties of Light are simultaneously Today Interaction of Light with Matter Thermal Radiation Kirchhoff s Laws aka Light Properties of Light are simultaneously wave-like AND particle-like Sometimes it behaves like ripples on a pond (waves).

More information

364 DE OLIVEIRA-COSTA ET AL. Vol. 567

364 DE OLIVEIRA-COSTA ET AL. Vol. 567 THE ASTROPHYSICAL JOURNAL, 567:363È369, 2002 March 1 ( 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A. A NEW SPIN ON GALACTIC DUST ANGE LICA DE OLIVEIRA-COSTA,1 MAX TEGMARK,1

More information

Dark gas contribution to diffuse gamma-ray emission

Dark gas contribution to diffuse gamma-ray emission Dark gas contribution to diffuse gamma-ray emission Masaki Mori ICRR CANGAROO group internal seminar, November 7, 2005 Adrian Cho S. Hunter, GLAST meeting, Oct.2004 The Galactic Diffuse Gamma-ray Emission...

More information

Astrochemistry and Molecular Astrophysics Paola Caselli

Astrochemistry and Molecular Astrophysics Paola Caselli School of Physics and Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES Astrochemistry and Molecular Astrophysics Paola Caselli Outline 1. The formation of H 2 2. The formation of H 3 + 3. The chemistry

More information

Dust. The four letter word in astrophysics. Interstellar Emission

Dust. The four letter word in astrophysics. Interstellar Emission Dust The four letter word in astrophysics Interstellar Emission Why Dust Dust attenuates and scatters UV/optical/NIR Amount of attenuation and spectral shape depends on dust properties (grain size/type)

More information

M01M.1 Massive Spring

M01M.1 Massive Spring Part I Mechanics M01M.1 Massive Spring M01M.1 Massive Spring A spring has spring constant K, unstretched length L, and mass per unit length ρ. The spring is suspended vertically from one end in a constant

More information

Observing Habitable Environments Light & Radiation

Observing Habitable Environments Light & Radiation Homework 1 Due Thurs 1/14 Observing Habitable Environments Light & Radiation Given what we know about the origin of life on Earth, how would you recognize life on another world? Would this require a physical

More information

Today in Astronomy 142: observations of stars

Today in Astronomy 142: observations of stars Today in Astronomy 142: observations of stars What do we know about individual stars?! Determination of stellar luminosity from measured flux and distance Magnitudes! Determination of stellar surface temperature

More information

ASTRONOMY AND ASTROPHYSICS. A conspicuous increase of Galactic contamination over CMBR anisotropies at large angular scales

ASTRONOMY AND ASTROPHYSICS. A conspicuous increase of Galactic contamination over CMBR anisotropies at large angular scales Astron. Astrophys. 346, 369 382 1999) A conspicuous increase of Galactic contamination over CMBR anisotropies at large angular scales ASTRONOMY AND ASTROPHYSICS Martín López-Corredoira Instituto de Astrofísica

More information

CHAPTER 22. Astrophysical Gases

CHAPTER 22. Astrophysical Gases CHAPTER 22 Astrophysical Gases Most of the baryonic matter in the Universe is in a gaseous state, made up of 75% Hydrogen (H), 25% Helium (He) and only small amounts of other elements (called metals ).

More information

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney An Introduction to Diffraction and Scattering Brendan J. Kennedy School of Chemistry The University of Sydney 1) Strong forces 2) Weak forces Types of Forces 3) Electromagnetic forces 4) Gravity Types

More information

First studies for cold stars under the hyphotesis of TE : Russell (1934) Fujita (1939, 1940, 1941)

First studies for cold stars under the hyphotesis of TE : Russell (1934) Fujita (1939, 1940, 1941) First studies for cold stars under the hyphotesis of TE : Russell (1934) Fujita (1939, 1940, 1941) These models were able to predict the abundances of the most conspicous diatomic molecules detected in

More information

arxiv:astro-ph/ v1 10 Feb 2003

arxiv:astro-ph/ v1 10 Feb 2003 Mon. Not. R. Astron. Soc. 000, 1 16 () Printed 5 February 2008 (MN LATEX style file v2.2) Reappraising foreground contamination in the COBE-DMR data arxiv:astro-ph/0302181v1 10 Feb 2003 A. J. Banday, 1

More information

Astrochemistry. Lecture 10, Primordial chemistry. Jorma Harju. Department of Physics. Friday, April 5, 2013, 12:15-13:45, Lecture room D117

Astrochemistry. Lecture 10, Primordial chemistry. Jorma Harju. Department of Physics. Friday, April 5, 2013, 12:15-13:45, Lecture room D117 Astrochemistry Lecture 10, Primordial chemistry Jorma Harju Department of Physics Friday, April 5, 2013, 12:15-13:45, Lecture room D117 The first atoms (1) SBBN (Standard Big Bang Nucleosynthesis): elements

More information

1. The most important aspects of the quantum theory.

1. The most important aspects of the quantum theory. Lecture 5. Radiation and energy. Objectives: 1. The most important aspects of the quantum theory: atom, subatomic particles, atomic number, mass number, atomic mass, isotopes, simplified atomic diagrams,

More information

Ch 7 Quantum Theory of the Atom (light and atomic structure)

Ch 7 Quantum Theory of the Atom (light and atomic structure) Ch 7 Quantum Theory of the Atom (light and atomic structure) Electromagnetic Radiation - Electromagnetic radiation consists of oscillations in electric and magnetic fields. The oscillations can be described

More information

arxiv:astro-ph/ v2 7 Apr 2006

arxiv:astro-ph/ v2 7 Apr 2006 Mon. Not. R. Astron. Soc. 000, 1 16 () Printed 5 February 2018 (MN LaT E X style file v2.2) A determination of the Spectra of Galactic components observed by WMAP arxiv:astro-ph/0511384v2 7 Apr 2006 R.D.

More information

Plasma Astrophysics Chapter 1: Basic Concepts of Plasma. Yosuke Mizuno Institute of Astronomy National Tsing-Hua University

Plasma Astrophysics Chapter 1: Basic Concepts of Plasma. Yosuke Mizuno Institute of Astronomy National Tsing-Hua University Plasma Astrophysics Chapter 1: Basic Concepts of Plasma Yosuke Mizuno Institute of Astronomy National Tsing-Hua University What is a Plasma? A plasma is a quasi-neutral gas consisting of positive and negative

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Discussion In this Supplementary Discussion, we give more detailed derivations of several of the results in our letter. First, we describe in detail our method of calculating the temperature

More information

PHYS 633: Introduction to Stellar Astrophysics

PHYS 633: Introduction to Stellar Astrophysics PHYS 633: Introduction to Stellar Astrophysics Spring Semester 2006 Rich Townsend (rhdt@bartol.udel.edu) Ionization During our derivation of the equation of state for stellar material, we saw that the

More information

CHEM Atomic and Molecular Spectroscopy

CHEM Atomic and Molecular Spectroscopy CHEM 21112 Atomic and Molecular Spectroscopy References: 1. Fundamentals of Molecular Spectroscopy by C.N. Banwell 2. Physical Chemistry by P.W. Atkins Dr. Sujeewa De Silva Sub topics Light and matter

More information

Model of Hydrogen Deficient Nebulae in H II Regions at High Temperature

Model of Hydrogen Deficient Nebulae in H II Regions at High Temperature Journal of Materials Science and Chemical Engineering, 2015, 3, 21-29 Published Online August 2015 in SciRes. http://www.scirp.org/journal/msce http://dx.doi.org/10.4236/msce.2015.38004 Model of Hydrogen

More information

Astro 242. The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu

Astro 242. The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu Astro 242 The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu Syllabus Text: An Introduction to Modern Astrophysics 2nd Ed., Carroll and Ostlie First class Wed Jan 3. Reading period Mar 8-9

More information

Galactic Dust Properties. Déborah Paradis CNES Post-doc IRAP, Toulouse

Galactic Dust Properties. Déborah Paradis CNES Post-doc IRAP, Toulouse Galactic Dust Properties Déborah Paradis CNES Post-doc IRAP, Toulouse BG emissivity λ I ν (λ) = Q abs (λ 0 ) λ 0 β emissivity = τ/n H β : spectral index B ν ( T eq,λ)n H Conventionally admitted : β = 2

More information

The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV

The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV Mount Rainier by Will Christiansen Silvia Vernetto & Paolo Lipari 35th ICRC 12-20 July 2017 - Busan - South Korea Gamma ray astronomy

More information

Formation and Evolution of Planetary Systems

Formation and Evolution of Planetary Systems Formation and Evolution of Planetary Systems Meyer, Hillenbrand et al., Formation and Evolution of Planetary Systems (FEPS): First Results from a Spitzer Legacy Science Program ApJ S 154: 422 427 (2004).

More information

Interaction of Molecules with Radiation

Interaction of Molecules with Radiation 3 Interaction of Molecules with Radiation Atoms and molecules can exist in many states that are different with respect to the electron configuration, angular momentum, parity, and energy. Transitions between

More information

Stars, Galaxies & the Universe Lecture Outline

Stars, Galaxies & the Universe Lecture Outline Stars, Galaxies & the Universe Lecture Outline A galaxy is a collection of 100 billion stars! Our Milky Way Galaxy (1)Components - HII regions, Dust Nebulae, Atomic Gas (2) Shape & Size (3) Rotation of

More information

Dust polarization observations towards interstellar filaments as seen by Planck: Signature of the magnetic field geometry

Dust polarization observations towards interstellar filaments as seen by Planck: Signature of the magnetic field geometry Dust (total) emission of the ISM as seen by Planck Dust polarization observations towards interstellar filaments as seen by Planck: Signature of the magnetic field geometry Doris Arzoumanian (IAS, Orsay)

More information

Chapter 10 The Interstellar Medium

Chapter 10 The Interstellar Medium Chapter 10 The Interstellar Medium Guidepost You have begun your study of the sun and other stars, but now it is time to study the thin gas and dust that drifts through space between the stars. This chapter

More information

The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation

The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation Goals: The Birth Of Stars How do stars form from the interstellar medium Where does star formation take place How do we induce star formation Interstellar Medium Gas and dust between stars is the interstellar

More information

Cosmic Microwave Background

Cosmic Microwave Background Cosmic Microwave Background Following recombination, photons that were coupled to the matter have had very little subsequent interaction with matter. Now observed as the cosmic microwave background. Arguably

More information

Planck and Virtual Observatories: Far Infra-red / Sub-mm Specificities

Planck and Virtual Observatories: Far Infra-red / Sub-mm Specificities JF Sygnet (Planck HFI DPCM) Planck and Virtual Observatories: Far Infra-red / Sub-mm Specificities Planck Mission, Planck Data and its Specificities (4) Data Treatment and its Specificities (4) Planck

More information

point, corresponding to the area it cuts out: θ = (arc length s) / (radius of the circle r) in radians Babylonians:

point, corresponding to the area it cuts out: θ = (arc length s) / (radius of the circle r) in radians Babylonians: Astronomische Waarneemtechnieken (Astronomical Observing Techniques) 1 st Lecture: 1 September 11 This lecture: Radiometry Radiative transfer Black body radiation Astronomical magnitudes Preface: The Solid

More information

Stellar evolution Part I of III Star formation

Stellar evolution Part I of III Star formation Stellar evolution Part I of III Star formation The interstellar medium (ISM) The space between the stars is not completely empty, but filled with very dilute gas and dust, producing some of the most beautiful

More information