1/40. Cellular mechanics I nd term

Size: px
Start display at page:

Download "1/40. Cellular mechanics I nd term"

Transcription

1 1/40 Cellular mechanics I nd term

2 Various Science 2/40 Biology Physics Chemistry Biology is the science of life.... Biologists study the structure, function, growth, origin, evolution and distribution of living organisms. Biology is the natural science that studies life and living organisms, including their physical structure, chemical processes, molecular interactions, physiological mechanisms, development and evolution The dictionary definition of physics is the study of matter, energy, and the interaction between them, but what that really means is that physics is about asking fundamental questions and trying to answer them by observing and experimenting. Physics is the natural science that studies matter and its motion and behavior through space and time and that studies the related entities of energy and force. Chemistry is the scientific discipline involved with compounds composed of atoms, i.e. elements, and molecules, i.e. combinations of atoms: their composition, structure, properties, behavior and the changes they undergo during a reaction with other compounds. Chemistry is the study of matter, its properties, how and why substances combine or separate to form other substances, and how substances interact with energy.

3 Physics is about great laws Newton s 3 Laws (Mechanics) (Stat. Mechanics of Entropy) S= k log W 3/40 (Electricity & Magnetism) Maxwell s 4 Equations (Quantum Mechanics) Schrodinger s Equation Ludwig Boltzmann Isaac Newton James Clerk Maxwell (Thermodynamics) Gibb s Free Energy Erwin Schrödinger J. Willard Gibbs

4 Does biology have any great theories or law? 4/40 Evolution -- Life evolved from simpler forms --One of the best tested scientific theories around Evolution is a series of tricks/random events Charles Darwin, Age 51, 1860, On the Origin of Species Build complex beings from simpler parts Often many ways of doing this Our life form is just one. Gregor Johann Mendel ( )

5 Biophysics 5/40 Biophysics is an interdisciplinary science that applies the approaches and methods of physics to study biological systems. Biophysics applies the principle of physics and chemistry and the methods of methodical analysis and computer modeling to biological system, with the ultimate goal of understanding at a fundamental level the structure, dynamics, interactions, and ultimately the function of biological system. Biophysics covers all scales of biological organization, from molecular to organismic and population.

6 Biophysics_New fields 6/40 A new filed of sciences 1892 Karl Pearson termed biophysics Modern, interdisciplinary field of science for understanding biological phenomenon. Explanations based on physical and mathematical concepts Investigations and experiments with physical instruments Bragg at the Cavendish Lab Cambridge Mechanics Kinetics Electricity Magnetism Bio Acoustics Thermodynamics Hydrodynamics Mathematics Optics

7 Bio-physics-engineering 7/40

8 What is the goal of biophysics? 8/40 Create simplified models of biological systems - If all life follows the same basic rule, what is it? Make quantitative predictions and experimental test Develop new technology Advance understanding about bio-system

9 What are biophysicist working on? 9/40 Research in biochemistry and biophysics is focused on numerous process central to understanding life. Biophysicists study life at every level, from atoms and molecules to cells, organisms, and environments Several groups use biochemical and structural approaches to address the basic principle governing protein folding, function and biological recognition. Using in vitro approaches, the central steps in biological information transfer are being analyzed, from maintenance of the genome to protein synthesis, sorting and processing. - How do protein machines work? - How do systems of never cells communicate? - How do proteins pack DNA into viruses? - How do viruses invade cells? - How do cells move? - What are the mechanical properties of cells? How does this relate to disease?

10 Some aspects of biophysics 10/40 1. Biophysics at the molecular level: Determination and prediction of protein structures Single-molecule spectroscopy Molecular motors The protein folding problem DNA-protein interactions.. 2. Biophysics at the cellular level: Transport within and across cell membranes Structure and properties of cell membranes Propagation of neural signals Cytoskeleton and cell movements Cytokinesis. 3. Biophysics at multicellular and higher levels: Tissue and biomedical engineering Physical and mathematical physiology Biomechanics and bio-rheology Population dynamics and theory of evolution Mathematical epidemiology.

11 Luigi Galvani 11/40 Electro-Physiology Discovered Bio-electricity 1787, Frog muscle experiment Physicist, biologist, and philosopher Luigi Galvani touched the nerves of a frog's spinal cord with metal electro des which caused contractions of the leg muscles. Electricity is the language of the nervous system.

12 DNA structure 12/ X-rays discovered by Roentgen 1914 First diffraction pattern of a crystal made by Knipping and von Laue 1915 Theory to determine crystal structure from diffraction pattern developed by Bragg 1953 DNA structure solved by Watson and Crick Max Theodor Felix von Laue German physicist who won the Nobel Prize in Physics in 1914 for his discovery of the diffraction of X-rays by crystals Sir William Lawrence Bragg, 31 March July 1971 Australian-born British physicist and X- ray crystallographer, discoverer (1912) of Bragg's law of X-ray diffraction, which is basic for the determination of crystal structure

13 Double slit interference 13/40 Coherence of light waves mean they have the same phase and frequency Diffraction: Spreading of light passing through a small aperture or around a sharp edge

14 14/40 Constructive interference ΔL = nλ n = 0, 1, 2, Destructive interference ΔL = (2n+1)λ/2 n = 0, 1, 2,

15 X-ray interacts with matter 15/40

16 Coherent scattering by an atom 16/40 Incoming X-rays are electromagnetic waves that exert a force on atomic electrons. The electrons will begin to oscillate at the same frequency and emit radiation in all directions. Coherent scattering by an atom is the sum of this scattering by all of the electrons. Electrons are at different positions in space, so coherent scattering from each generally has different phase relationships. At higher scattering angles, the sum of the coherent scattering is less. e - 2q

17 Diffraction patterns 17/40 Two successive CCD detector images with a crystal rotation of one degree per image:

18 Diffraction of X-rays by crystals 18/40 The science of X-ray crystallography originated in 1912 with the discovery by Max von Laue that crystals diffract X-rays. Von Laue was a German physicist who won the Nobel Prize in Physics in 1914 for his discovery of the diffraction of X-rays by crystals. X-ray diffraction pattern from a single-crystal sample Max Theodor Felix von Laue ( )

19 Diffraction of X-rays by crystals 19/40 After Von Laue's pioneering research, the field developed rapidly, most notably by physicists William Lawrence Bragg and his father William Henry Bragg. William Henry Bragg In , the younger Bragg developed Bragg's law, which connects the observed scattering with reflections from evenly-spaced planes within the crystal. William Lawrence Bragg

20 Diffractogram 51 20/40 The best X-ray scattering on DNA (Franklin and Gosling, 1952). Only diffractograms with enough order can be analyzed quantitatively by applying the theory if X-ray scattering on helical molecules. Rosalind Elsie Franklin ( ) Her X-ray diffraction produced the most beautiful pattern that could be analyzed quantitatively.

21 DNA is a double helix! Saturday February 28, /40 A model is built in the Cavendish laboratory in Cambridge consistent with all the discernible features of the diffractogram 51...

22 22/40 The distinctive X in this X-ray photo is the telltale pattern of a helix Because the X-ray pattern is so regular, the dimension of the helix must be constant. For example, the diameter of the helix stays the same.

23 23/40 The helix s pitch, or its degree of rise, can be calculated from the angle the X makes with the horizontal axis. If we distort the helix, you can get an idea how the helical pitch is related to the X-ray pattern.

24 In an X-ray diffraction pattern, the closer the spots, the larger the actual distance. So the horizontal bars actually correspond to helical turns. The vertical distance between the bars is a measure of the height of the one helical turn. 24/40

25 Since, we know the height of one helical repeat (34 Å ) and we know the distance between the stacked base pairs (3.4 Å ), there must be 10 nucleotides per helical repeat. 25/40

26 Central dogma of molecular biology 26/40 DNA molecules serve as templates for either complementary DNA strands during the process of replication or complementary RNA during the process of transcription. RNA molecules serve as a template for ordering amino acids by ribosomes during protein synthesis. DNA mrna protein DNA TRANSCRIBES to mrna Process is called transcription mrna TRANSLATES to proteins Process is called translation Actually makes amino acids, which come together to make proteins

27 Molecular biophysics 27/40 For biological systems to function, interactions occur between many different types of molecules: DNA, RNA, Protein, Lipids, etc. To ensure that biological systems function appropriately, such interactions must be carefully regulated Wide range of biophysical chemistry approaches are useful for studying these interactions Interactions between molecules are central to how cells detect and respond to signals and affect: Gene expression (transcription & translation) DNA replication, repair and recombination Signalling And many other processes... Interactions are mainly mediated by many weak chemical bonds (van der Waals forces, hydrogen bonds, hydrophobic interactions) Accumulation of many bonds influences affinity and specificity of interactions

28 Examples of molecular biophysics 28/40 Structure and Conformation of Biological Molecules Structure Function Relationships Conformational Transitions Ligand Binding and Intermolecular Binding Diffusion and Molecular Transport Membrane Biophysics DNA and Nucleic Acid Biophysics Protein Biophysics Energy Flow and Bioenergetics Thermodynamics Statistical Mechanics Kinetics Molecular Machines Allosterics

29 Protein structure 29/40 Primary structure Assembly Secondary structure Folding Tertiary structure Packing Quaternary structure Interaction

30 Protein folding 30/40 Transcription Translation Folding DNA RNA Polypeptide Functional protein Linear nucleic acid Linear nucleic acid Linear amino acid sequence Three dimensional structure Proteins fold spontaneously under physiological conditions - In the equilibrium between the denatured state (unfolded or partially unfolded) and the native state (folded, biologically functional), under physiological conditions the vast majority of molecules are in the native state Renaturation Denaturation Primary structure Unfolded structure Inactive collection of many random structures Tertiary structure Folded structure Active 3-dimensional structure of protein

31 Protein structure analysis 31/40 Experimental determination and analysis Repositories Protein Data Bank Molecular Modeling DataBase Resolution X-Ray Crystallography NMR Spectroscopy Mass Spectroscopy (next week) Fluorescence Resonance Energy Transfer Computational determination and analysis Databases CATH (Class, Architecture, Topology, Homologous superfamily) SCOP (Structural Classification Of Proteins) FSSP (Fold classification based on Structure- Structure alignment of Proteins) Prediction Ab-initio, theoretical modeling, and conformation space search Homology modeling and threading Energy minimization, simulation and Monte Carlo

32 Protein Data Bank 32/40 The Protein Data Bank was established at Brookhaven National Labs in 1971 as an archive of biological macromolecular crystal structures. Since October 1998, the PDB database has been managed by the Research Collaboratory for Structural Bioinformatics (RCSB), which is a consortium consisting of Rutgers, the State University of New Jersey; The San Diego Supercomputer Centre at the University of California, San Diego; and the National Institute of Standards and Technology.

33 33/40 The PDB archive contains macromolecular structure data on proteins, nucleic acids, protein-nucleic acid complexes, and viruses. Files in its holdings are deposited by the international user community and maintained by the RCSB PDB staff. Approximately new structures are deposited each week. They are annotated by RCSB and released upon the depositor's specifications. PDB data is freely available worldwide. As of 14 March 2017, structures have been deposited in the PDB

34 X-Ray crystallography 34/40 Crystallize and immobilize single, perfect protein Bombard with X-rays, record scattering diffraction patterns Determine electron density map from scattering and phase via Fourier transform: Use electron density and biochemical knowledge of the protein to refine and determine a model

35 NMR Spectroscopy 35/40 Nuclear Magnetic Resonance Protein in aqueous solution, motile and tumbles/vibrates with thermal motion NMR detects chemical shifts of atomic nuclei with non-zero spin, shifts due to electronic environment nearby Determine distances between specific pairs of atoms based on shifts, constraints Use constraints and biochemical knowledge of the protein to determine an ensemble of models determining constraints

36 Fluorescence resonance energy transfer 36/40 FRET described as a molecular ruler segments of a protein are tagged with fluorophores energy transfer occurs when donor and acceptor interact, falls off as 1/d 6 where d is separation between donor and acceptor donor and acceptor must be within 50 Å, acceptor emission sensitive to distance change can determine pairs of side chains that are separated when unfolded and close when folded

37 Optical trap 37/40 Conservation of linear momentum

38 Nucleic-acid polymerases 38/40 Optical tweezers configurations used to study RNA polymerase. (a) A single trap configuration is shown. One end of the DNA is attached to a glass coverslip via a digoxigenin antidigoxigenin linkage, while RNA polymerase is attached to an optically trapped bead via an avidin biotin bond. The bead position is maintained by stage motion to provide constant tension (typically from right to left). (b) A schematic of a dual-trap configuration is shown. An RNA polymerase DNA complex is trapped by two optical traps simultaneously. The left DNA end is manipulated via a digoxigenin antidigoxigenin linkage, while RNA polymerase is attached via an avidin biotin interaction. In this figure, the upstream end of DNA is linked to the left bead so that RNAP transcribes from right to left. The tension of the DNA RNAP complex was kept constant during transcription by moving left stronger trap. Single molecule studies of DNA binding proteins using optical tweezers, Analyst, 2006

39 39/40 Single monomers of HIV-1-PR were manipulated as depicted in Fig. Themolecules were stretched and relaxed by moving the pipette relative to the optical trap, while the applied force and molecular extension were measured. As the protein unfolds and refolds under tension its extension suddenly changes, generating discontinuities (rips) in the stretching and relaxation traces that can be analyzed to gain insight into the kinetic and mechanical properties of the molecule.

40 Magnetic tweezer 40/40 The energy of a superparamagnetic particle in a magnetic field B is given by: U = m B The force experienced by the particle is given by the negative gradient of the energy. F = U= m B For small external fields, the magnetic moment is linear in the external field. In this case, the force is proportional to the gradient of the square of the magnetic field F = χv μ 0 B 2 F For large fields, the magnetic moment of the beads reaches the saturation value m sat and the force is proportional to the gradient of the magnetic field F = m sat B

Principles of Physical Biochemistry

Principles of Physical Biochemistry Principles of Physical Biochemistry Kensal E. van Hold e W. Curtis Johnso n P. Shing Ho Preface x i PART 1 MACROMOLECULAR STRUCTURE AND DYNAMICS 1 1 Biological Macromolecules 2 1.1 General Principles

More information

Contents. xiii. Preface v

Contents. xiii. Preface v Contents Preface Chapter 1 Biological Macromolecules 1.1 General PrincipIes 1.1.1 Macrornolecules 1.2 1.1.2 Configuration and Conformation Molecular lnteractions in Macromolecular Structures 1.2.1 Weak

More information

Basics of protein structure

Basics of protein structure Today: 1. Projects a. Requirements: i. Critical review of one paper ii. At least one computational result b. Noon, Dec. 3 rd written report and oral presentation are due; submit via email to bphys101@fas.harvard.edu

More information

Introduction to" Protein Structure

Introduction to Protein Structure Introduction to" Protein Structure Function, evolution & experimental methods Thomas Blicher, Center for Biological Sequence Analysis Learning Objectives Outline the basic levels of protein structure.

More information

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics. ECS 254; Phone: x3748

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics. ECS 254; Phone: x3748 CAP 5510: Introduction to Bioinformatics Giri Narasimhan ECS 254; Phone: x3748 giri@cis.fiu.edu www.cis.fiu.edu/~giri/teach/bioinfs07.html 2/15/07 CAP5510 1 EM Algorithm Goal: Find θ, Z that maximize Pr

More information

COMP 598 Advanced Computational Biology Methods & Research. Introduction. Jérôme Waldispühl School of Computer Science McGill University

COMP 598 Advanced Computational Biology Methods & Research. Introduction. Jérôme Waldispühl School of Computer Science McGill University COMP 598 Advanced Computational Biology Methods & Research Introduction Jérôme Waldispühl School of Computer Science McGill University General informations (1) Office hours: by appointment Office: TR3018

More information

Bioinformatics. Macromolecular structure

Bioinformatics. Macromolecular structure Bioinformatics Macromolecular structure Contents Determination of protein structure Structure databases Secondary structure elements (SSE) Tertiary structure Structure analysis Structure alignment Domain

More information

Determining Protein Structure BIBC 100

Determining Protein Structure BIBC 100 Determining Protein Structure BIBC 100 Determining Protein Structure X-Ray Diffraction Interactions of x-rays with electrons in molecules in a crystal NMR- Nuclear Magnetic Resonance Interactions of magnetic

More information

Proteins are not rigid structures: Protein dynamics, conformational variability, and thermodynamic stability

Proteins are not rigid structures: Protein dynamics, conformational variability, and thermodynamic stability Proteins are not rigid structures: Protein dynamics, conformational variability, and thermodynamic stability Dr. Andrew Lee UNC School of Pharmacy (Div. Chemical Biology and Medicinal Chemistry) UNC Med

More information

Translation Part 2 of Protein Synthesis

Translation Part 2 of Protein Synthesis Translation Part 2 of Protein Synthesis IN: How is transcription like making a jello mold? (be specific) What process does this diagram represent? A. Mutation B. Replication C.Transcription D.Translation

More information

F. Piazza Center for Molecular Biophysics and University of Orléans, France. Selected topic in Physical Biology. Lecture 1

F. Piazza Center for Molecular Biophysics and University of Orléans, France. Selected topic in Physical Biology. Lecture 1 Zhou Pei-Yuan Centre for Applied Mathematics, Tsinghua University November 2013 F. Piazza Center for Molecular Biophysics and University of Orléans, France Selected topic in Physical Biology Lecture 1

More information

Cells and the Stuff They re Made of. Indiana University P575 1

Cells and the Stuff They re Made of. Indiana University P575 1 Cells and the Stuff They re Made of Indiana University P575 1 Goal: Establish hierarchy of spatial and temporal scales, and governing processes at each scale of cellular function: o Where does emergent

More information

Sugars, such as glucose or fructose are the basic building blocks of more complex carbohydrates. Which of the following

Sugars, such as glucose or fructose are the basic building blocks of more complex carbohydrates. Which of the following Name: Score: / Quiz 2 on Lectures 3 &4 Part 1 Sugars, such as glucose or fructose are the basic building blocks of more complex carbohydrates. Which of the following foods is not a significant source of

More information

Lesson Overview The Structure of DNA

Lesson Overview The Structure of DNA 12.2 THINK ABOUT IT The DNA molecule must somehow specify how to assemble proteins, which are needed to regulate the various functions of each cell. What kind of structure could serve this purpose without

More information

Protein Structure Analysis and Verification. Course S Basics for Biosystems of the Cell exercise work. Maija Nevala, BIO, 67485U 16.1.

Protein Structure Analysis and Verification. Course S Basics for Biosystems of the Cell exercise work. Maija Nevala, BIO, 67485U 16.1. Protein Structure Analysis and Verification Course S-114.2500 Basics for Biosystems of the Cell exercise work Maija Nevala, BIO, 67485U 16.1.2008 1. Preface When faced with an unknown protein, scientists

More information

Biophysics 101: Genomics & Computational Biology. Section 8: Protein Structure S T R U C T U R E P R O C E S S. Outline.

Biophysics 101: Genomics & Computational Biology. Section 8: Protein Structure S T R U C T U R E P R O C E S S. Outline. Biophysics 101: Genomics & Computational Biology Section 8: Protein Structure Faisal Reza Nov. 11 th, 2003 B101.pdb from PS5 shown at left with: animated ball and stick model, colored CPK H-bonds on, colored

More information

BME 5742 Biosystems Modeling and Control

BME 5742 Biosystems Modeling and Control BME 5742 Biosystems Modeling and Control Lecture 24 Unregulated Gene Expression Model Dr. Zvi Roth (FAU) 1 The genetic material inside a cell, encoded in its DNA, governs the response of a cell to various

More information

CORE MOLIT ACTIVITIES at a glance

CORE MOLIT ACTIVITIES at a glance CORE MOLIT ACTIVITIES at a glance 1. Amplification of Biochemical Signals: The ELISA Test http://molit.concord.org/database/activities/248.html The shape of molecules affects the way they function. A test

More information

Biology I Fall Semester Exam Review 2014

Biology I Fall Semester Exam Review 2014 Biology I Fall Semester Exam Review 2014 Biomolecules and Enzymes (Chapter 2) 8 questions Macromolecules, Biomolecules, Organic Compunds Elements *From the Periodic Table of Elements Subunits Monomers,

More information

BIBC 100. Structural Biochemistry

BIBC 100. Structural Biochemistry BIBC 100 Structural Biochemistry http://classes.biology.ucsd.edu/bibc100.wi14 Papers- Dialogue with Scientists Questions: Why? How? What? So What? Dialogue Structure to explain function Knowledge Food

More information

Number of questions TEK (Learning Target) Biomolecules & Enzymes

Number of questions TEK (Learning Target) Biomolecules & Enzymes Unit Biomolecules & Enzymes Number of questions TEK (Learning Target) on Exam 8 questions 9A I can compare and contrast the structure and function of biomolecules. 9C I know the role of enzymes and how

More information

Lecture 1. Introduction to X-ray Crystallography. Tuesday, February 1, 2011

Lecture 1. Introduction to X-ray Crystallography. Tuesday, February 1, 2011 Lecture 1 Introduction to X-ray Crystallography Tuesday, February 1, 2011 Protein Crystallography Crystal Structure Determination in Principle: From Crystal to Structure Dr. Susan Yates Contact Information

More information

ALL LECTURES IN SB Introduction

ALL LECTURES IN SB Introduction 1. Introduction 2. Molecular Architecture I 3. Molecular Architecture II 4. Molecular Simulation I 5. Molecular Simulation II 6. Bioinformatics I 7. Bioinformatics II 8. Prediction I 9. Prediction II ALL

More information

2015 FALL FINAL REVIEW

2015 FALL FINAL REVIEW 2015 FALL FINAL REVIEW Biomolecules & Enzymes Illustrate table and fill in parts missing 9A I can compare and contrast the structure and function of biomolecules. 9C I know the role of enzymes and how

More information

Biophysics II. Key points to be covered. Molecule and chemical bonding. Life: based on materials. Molecule and chemical bonding

Biophysics II. Key points to be covered. Molecule and chemical bonding. Life: based on materials. Molecule and chemical bonding Biophysics II Life: based on materials By A/Prof. Xiang Yang Liu Biophysics & Micro/nanostructures Lab Department of Physics, NUS Organelle, formed by a variety of molecules: protein, DNA, RNA, polysaccharides

More information

Chapter 27. Quantum Physics

Chapter 27. Quantum Physics Chapter 27 Quantum Physics Need for Quantum Physics Problems remained from classical mechanics that relativity didn t explain Blackbody Radiation The electromagnetic radiation emitted by a heated object

More information

Analysis and Prediction of Protein Structure (I)

Analysis and Prediction of Protein Structure (I) Analysis and Prediction of Protein Structure (I) Jianlin Cheng, PhD School of Electrical Engineering and Computer Science University of Central Florida 2006 Free for academic use. Copyright @ Jianlin Cheng

More information

Biomolecules. Energetics in biology. Biomolecules inside the cell

Biomolecules. Energetics in biology. Biomolecules inside the cell Biomolecules Energetics in biology Biomolecules inside the cell Energetics in biology The production of energy, its storage, and its use are central to the economy of the cell. Energy may be defined as

More information

Nanobiotechnology. Place: IOP 1 st Meeting Room Time: 9:30-12:00. Reference: Review Papers. Grade: 40% midterm, 60% final report (oral + written)

Nanobiotechnology. Place: IOP 1 st Meeting Room Time: 9:30-12:00. Reference: Review Papers. Grade: 40% midterm, 60% final report (oral + written) Nanobiotechnology Place: IOP 1 st Meeting Room Time: 9:30-12:00 Reference: Review Papers Grade: 40% midterm, 60% final report (oral + written) Midterm: 5/18 Oral Presentation 1. 20 minutes each person

More information

Syllabus of BIOINF 528 (2017 Fall, Bioinformatics Program)

Syllabus of BIOINF 528 (2017 Fall, Bioinformatics Program) Syllabus of BIOINF 528 (2017 Fall, Bioinformatics Program) Course Name: Structural Bioinformatics Course Description: Instructor: This course introduces fundamental concepts and methods for structural

More information

Protein Structures. 11/19/2002 Lecture 24 1

Protein Structures. 11/19/2002 Lecture 24 1 Protein Structures 11/19/2002 Lecture 24 1 All 3 figures are cartoons of an amino acid residue. 11/19/2002 Lecture 24 2 Peptide bonds in chains of residues 11/19/2002 Lecture 24 3 Angles φ and ψ in the

More information

CAP 5510 Lecture 3 Protein Structures

CAP 5510 Lecture 3 Protein Structures CAP 5510 Lecture 3 Protein Structures Su-Shing Chen Bioinformatics CISE 8/19/2005 Su-Shing Chen, CISE 1 Protein Conformation 8/19/2005 Su-Shing Chen, CISE 2 Protein Conformational Structures Hydrophobicity

More information

BBS501 Section 1 9:00 am 10:00 am Monday thru Friday LRC 105 A & B

BBS501 Section 1 9:00 am 10:00 am Monday thru Friday LRC 105 A & B BBS501 Section 1 9:00 am 10:00 am Monday thru Friday LRC 105 A & B Lecturers: Dr. Yie-Hwa Chang Room M130 Phone: #79263 E-mail:changy@slu.edu Dr. Tomasz Heyduk Room M99 Phone: #79238 E-mail: heydukt@slu.edu

More information

Chapter 1. DNA is made from the building blocks adenine, guanine, cytosine, and. Answer: d

Chapter 1. DNA is made from the building blocks adenine, guanine, cytosine, and. Answer: d Chapter 1 1. Matching Questions DNA is made from the building blocks adenine, guanine, cytosine, and. Answer: d 2. Matching Questions : Unbranched polymer that, when folded into its three-dimensional shape,

More information

Introduction to Computational Structural Biology

Introduction to Computational Structural Biology Introduction to Computational Structural Biology Part I 1. Introduction The disciplinary character of Computational Structural Biology The mathematical background required and the topics covered Bibliography

More information

Biophysical Techniques (BPHS 4090/PHYS 5800)

Biophysical Techniques (BPHS 4090/PHYS 5800) Biophysical Techniques (BPHS 4090/PHYS 5800) Instructors: Prof. Christopher Bergevin (cberge@yorku.ca) Schedule: MWF 1:30-2:30 (CB 122) Website: http://www.yorku.ca/cberge/4090w2017.html York University

More information

X-Ray structure analysis

X-Ray structure analysis X-Ray structure analysis Kay Diederichs kay.diederichs@uni-konstanz.de Analysis of what? Proteins ( /ˈproʊˌtiːnz/ or /ˈproʊti.ɨnz/) are biochemical compounds consisting of one or more polypeptides typically

More information

Protein Structure Prediction II Lecturer: Serafim Batzoglou Scribe: Samy Hamdouche

Protein Structure Prediction II Lecturer: Serafim Batzoglou Scribe: Samy Hamdouche Protein Structure Prediction II Lecturer: Serafim Batzoglou Scribe: Samy Hamdouche The molecular structure of a protein can be broken down hierarchically. The primary structure of a protein is simply its

More information

- Introduction of x-ray crystallography: what it s used for, how it works, applications in science - Different methods used to generate data - Case

- Introduction of x-ray crystallography: what it s used for, how it works, applications in science - Different methods used to generate data - Case - Introduction of x-ray crystallography: what it s used for, how it works, applications in science - Different methods used to generate data - Case studies emphasizing the importance of the technique -

More information

GACE Biology Assessment Test I (026) Curriculum Crosswalk

GACE Biology Assessment Test I (026) Curriculum Crosswalk Subarea I. Cell Biology: Cell Structure and Function (50%) Objective 1: Understands the basic biochemistry and metabolism of living organisms A. Understands the chemical structures and properties of biologically

More information

GCD3033:Cell Biology. Transcription

GCD3033:Cell Biology. Transcription Transcription Transcription: DNA to RNA A) production of complementary strand of DNA B) RNA types C) transcription start/stop signals D) Initiation of eukaryotic gene expression E) transcription factors

More information

1. Protein Data Bank (PDB) 1. Protein Data Bank (PDB)

1. Protein Data Bank (PDB) 1. Protein Data Bank (PDB) Protein structure databases; visualization; and classifications 1. Introduction to Protein Data Bank (PDB) 2. Free graphic software for 3D structure visualization 3. Hierarchical classification of protein

More information

SCOP. all-β class. all-α class, 3 different folds. T4 endonuclease V. 4-helical cytokines. Globin-like

SCOP. all-β class. all-α class, 3 different folds. T4 endonuclease V. 4-helical cytokines. Globin-like SCOP all-β class 4-helical cytokines T4 endonuclease V all-α class, 3 different folds Globin-like TIM-barrel fold α/β class Profilin-like fold α+β class http://scop.mrc-lmb.cam.ac.uk/scop CATH Class, Architecture,

More information

RNA & PROTEIN SYNTHESIS. Making Proteins Using Directions From DNA

RNA & PROTEIN SYNTHESIS. Making Proteins Using Directions From DNA RNA & PROTEIN SYNTHESIS Making Proteins Using Directions From DNA RNA & Protein Synthesis v Nitrogenous bases in DNA contain information that directs protein synthesis v DNA remains in nucleus v in order

More information

I. Molecules & Cells. A. Unit One: The Nature of Science. B. Unit Two: The Chemistry of Life. C. Unit Three: The Biology of the Cell.

I. Molecules & Cells. A. Unit One: The Nature of Science. B. Unit Two: The Chemistry of Life. C. Unit Three: The Biology of the Cell. I. Molecules & Cells A. Unit One: The Nature of Science a. How is the scientific method used to solve problems? b. What is the importance of controls? c. How does Darwin s theory of evolution illustrate

More information

I. Molecules and Cells: Cells are the structural and functional units of life; cellular processes are based on physical and chemical changes.

I. Molecules and Cells: Cells are the structural and functional units of life; cellular processes are based on physical and chemical changes. I. Molecules and Cells: Cells are the structural and functional units of life; cellular processes are based on physical and chemical changes. A. Chemistry of Life B. Cells 1. Water How do the unique chemical

More information

BME Engineering Molecular Cell Biology. Structure and Dynamics of Cellular Molecules. Basics of Cell Biology Literature Reading

BME Engineering Molecular Cell Biology. Structure and Dynamics of Cellular Molecules. Basics of Cell Biology Literature Reading BME 42-620 Engineering Molecular Cell Biology Lecture 05: Structure and Dynamics of Cellular Molecules Basics of Cell Biology Literature Reading BME42-620 Lecture 05, September 13, 2011 1 Outline Review:

More information

Medical Biophysics II. Final exam theoretical questions 2013.

Medical Biophysics II. Final exam theoretical questions 2013. Medical Biophysics II. Final exam theoretical questions 2013. 1. Early atomic models. Rutherford-experiment. Franck-Hertz experiment. Bohr model of atom. 2. Quantum mechanical atomic model. Quantum numbers.

More information

4) Chapter 1 includes heredity (i.e. DNA and genes) as well as evolution. Discuss the connection between heredity and evolution?

4) Chapter 1 includes heredity (i.e. DNA and genes) as well as evolution. Discuss the connection between heredity and evolution? Name- Chapters 1-5 Questions 1) Life is easy to recognize but difficult to define. The dictionary defines life as the state or quality that distinguishes living beings or organisms from dead ones and from

More information

Computational Biology 1

Computational Biology 1 Computational Biology 1 Protein Function & nzyme inetics Guna Rajagopal, Bioinformatics Institute, guna@bii.a-star.edu.sg References : Molecular Biology of the Cell, 4 th d. Alberts et. al. Pg. 129 190

More information

Multiple Choice Review- Eukaryotic Gene Expression

Multiple Choice Review- Eukaryotic Gene Expression Multiple Choice Review- Eukaryotic Gene Expression 1. Which of the following is the Central Dogma of cell biology? a. DNA Nucleic Acid Protein Amino Acid b. Prokaryote Bacteria - Eukaryote c. Atom Molecule

More information

What is the central dogma of biology?

What is the central dogma of biology? Bellringer What is the central dogma of biology? A. RNA DNA Protein B. DNA Protein Gene C. DNA Gene RNA D. DNA RNA Protein Review of DNA processes Replication (7.1) Transcription(7.2) Translation(7.3)

More information

Chapter 2: Chemistry. What does chemistry have to do with biology? Vocabulary BIO 105

Chapter 2: Chemistry. What does chemistry have to do with biology? Vocabulary BIO 105 Chapter 2: Chemistry What does chemistry have to do with biology? BIO 105 Vocabulary 1. Matter anything that takes up space and has mass Atoms are the smallest units of matter that can participate in chemical

More information

(Lys), resulting in translation of a polypeptide without the Lys amino acid. resulting in translation of a polypeptide without the Lys amino acid.

(Lys), resulting in translation of a polypeptide without the Lys amino acid. resulting in translation of a polypeptide without the Lys amino acid. 1. A change that makes a polypeptide defective has been discovered in its amino acid sequence. The normal and defective amino acid sequences are shown below. Researchers are attempting to reproduce the

More information

BIOCHEMISTRY GUIDED NOTES - AP BIOLOGY-

BIOCHEMISTRY GUIDED NOTES - AP BIOLOGY- BIOCHEMISTRY GUIDED NOTES - AP BIOLOGY- ELEMENTS AND COMPOUNDS - anything that has mass and takes up space. - cannot be broken down to other substances. - substance containing two or more different elements

More information

PREREQUISITE CHECKLIST

PREREQUISITE CHECKLIST PREREQUISITE CHECKLIST UNIVERSITY OF CALIFORNIA, BERKELEY SCHOOL OF OPTOMETRY ADMISSIONS AND STUDENT AFFAIRS OFFICE Name: Date: Email: Status (complete, in progress, or planned) Prerequisite Course Requirements

More information

CS612 - Algorithms in Bioinformatics

CS612 - Algorithms in Bioinformatics Fall 2017 Databases and Protein Structure Representation October 2, 2017 Molecular Biology as Information Science > 12, 000 genomes sequenced, mostly bacterial (2013) > 5x10 6 unique sequences available

More information

CELL BIOLOGY. by the numbers. Ron Milo. Rob Phillips. illustrated by. Nigel Orme

CELL BIOLOGY. by the numbers. Ron Milo. Rob Phillips. illustrated by. Nigel Orme CELL BIOLOGY by the numbers Ron Milo Rob Phillips illustrated by Nigel Orme viii Detailed Table of Contents List of Estimates xii Preface xv Acknowledgments xiii The Path to Biological Numeracy Why We

More information

Cellular Neuroanatomy I The Prototypical Neuron: Soma. Reading: BCP Chapter 2

Cellular Neuroanatomy I The Prototypical Neuron: Soma. Reading: BCP Chapter 2 Cellular Neuroanatomy I The Prototypical Neuron: Soma Reading: BCP Chapter 2 Functional Unit of the Nervous System The functional unit of the nervous system is the neuron. Neurons are cells specialized

More information

Visualization of Macromolecular Structures

Visualization of Macromolecular Structures Visualization of Macromolecular Structures Present by: Qihang Li orig. author: O Donoghue, et al. Structural biology is rapidly accumulating a wealth of detailed information. Over 60,000 high-resolution

More information

Reproduction Chemical Reactions. 8J Light 8G Metals & Their Uses 8C Breathing & Respiration 8D Unicellular Organisms

Reproduction Chemical Reactions. 8J Light 8G Metals & Their Uses 8C Breathing & Respiration 8D Unicellular Organisms Science: Key Stage 3 Based on the Exploring Science Scheme of Learning Term 1 & 2 Term 3 & 4 Term 5 & 6 Year 7 Cells, Tissues & Organs Particles Forces & Motion Reproduction Chemical Reactions Chemical

More information

CAP 5510: Introduction to Bioinformatics CGS 5166: Bioinformatics Tools. Giri Narasimhan

CAP 5510: Introduction to Bioinformatics CGS 5166: Bioinformatics Tools. Giri Narasimhan CAP 5510: Introduction to Bioinformatics CGS 5166: Bioinformatics Tools Giri Narasimhan ECS 254; Phone: x3748 giri@cis.fiu.edu www.cis.fiu.edu/~giri/teach/bioinff18.html Proteins and Protein Structure

More information

Details of Protein Structure

Details of Protein Structure Details of Protein Structure Function, evolution & experimental methods Thomas Blicher, Center for Biological Sequence Analysis Anne Mølgaard, Kemisk Institut, Københavns Universitet Learning Objectives

More information

UNIT 5. Protein Synthesis 11/22/16

UNIT 5. Protein Synthesis 11/22/16 UNIT 5 Protein Synthesis IV. Transcription (8.4) A. RNA carries DNA s instruction 1. Francis Crick defined the central dogma of molecular biology a. Replication copies DNA b. Transcription converts DNA

More information

Protein structure alignments

Protein structure alignments Protein structure alignments Proteins that fold in the same way, i.e. have the same fold are often homologs. Structure evolves slower than sequence Sequence is less conserved than structure If BLAST gives

More information

Computational Molecular Modeling

Computational Molecular Modeling Computational Molecular Modeling Lecture 1: Structure Models, Properties Chandrajit Bajaj Today s Outline Intro to atoms, bonds, structure, biomolecules, Geometry of Proteins, Nucleic Acids, Ribosomes,

More information

9/2/17. Molecular and Cellular Biology. 3. The Cell From Genes to Proteins. key processes

9/2/17. Molecular and Cellular Biology. 3. The Cell From Genes to Proteins. key processes Molecular and Cellular Biology Animal Cell ((eukaryotic cell) -----> compare with prokaryotic cell) ENDOPLASMIC RETICULUM (ER) Rough ER Smooth ER Flagellum Nuclear envelope Nucleolus NUCLEUS Chromatin

More information

From Gene to Protein

From Gene to Protein From Gene to Protein Gene Expression Process by which DNA directs the synthesis of a protein 2 stages transcription translation All organisms One gene one protein 1. Transcription of DNA Gene Composed

More information

Topic 1 - The building blocks of. cells! Name:!

Topic 1 - The building blocks of. cells! Name:! B2 - Revision Topic 1 - The building blocks of Lesson cells Name: Topic B2.1 Plant and Animal Cells B2.2 Inside Bacteria B2.3 DNA B2.4 Extracting DNA: PCA B2.5 DNA Discovery B2.6 Genetic Engineering B2.7

More information

LIFE SCIENCE CHAPTER 5 & 6 FLASHCARDS

LIFE SCIENCE CHAPTER 5 & 6 FLASHCARDS LIFE SCIENCE CHAPTER 5 & 6 FLASHCARDS Why were ratios important in Mendel s work? A. They showed that heredity does not follow a set pattern. B. They showed that some traits are never passed on. C. They

More information

Ranjit P. Bahadur Assistant Professor Department of Biotechnology Indian Institute of Technology Kharagpur, India. 1 st November, 2013

Ranjit P. Bahadur Assistant Professor Department of Biotechnology Indian Institute of Technology Kharagpur, India. 1 st November, 2013 Hydration of protein-rna recognition sites Ranjit P. Bahadur Assistant Professor Department of Biotechnology Indian Institute of Technology Kharagpur, India 1 st November, 2013 Central Dogma of life DNA

More information

Table of contents. Saturday 24 June Sunday 25 June Monday 26 June

Table of contents. Saturday 24 June Sunday 25 June Monday 26 June Table of contents Saturday 24 June 2017... 1 Sunday 25 June 2017... 3 Monday 26 June 2017... 5 i Saturday 24 June 2017 Quantitative Biology 2017: Computational and Single-Molecule Biophysics Saturday 24

More information

Reading Assignments. A. Genes and the Synthesis of Polypeptides. Lecture Series 7 From DNA to Protein: Genotype to Phenotype

Reading Assignments. A. Genes and the Synthesis of Polypeptides. Lecture Series 7 From DNA to Protein: Genotype to Phenotype Lecture Series 7 From DNA to Protein: Genotype to Phenotype Reading Assignments Read Chapter 7 From DNA to Protein A. Genes and the Synthesis of Polypeptides Genes are made up of DNA and are expressed

More information

Computational Biology: Basics & Interesting Problems

Computational Biology: Basics & Interesting Problems Computational Biology: Basics & Interesting Problems Summary Sources of information Biological concepts: structure & terminology Sequencing Gene finding Protein structure prediction Sources of information

More information

Bioinformatics. Dept. of Computational Biology & Bioinformatics

Bioinformatics. Dept. of Computational Biology & Bioinformatics Bioinformatics Dept. of Computational Biology & Bioinformatics 3 Bioinformatics - play with sequences & structures Dept. of Computational Biology & Bioinformatics 4 ORGANIZATION OF LIFE ROLE OF BIOINFORMATICS

More information

Study Guide: Fall Final Exam H O N O R S B I O L O G Y : U N I T S 1-5

Study Guide: Fall Final Exam H O N O R S B I O L O G Y : U N I T S 1-5 Study Guide: Fall Final Exam H O N O R S B I O L O G Y : U N I T S 1-5 Directions: The list below identifies topics, terms, and concepts that will be addressed on your Fall Final Exam. This list should

More information

Chapter 1. Topic: Overview of basic principles

Chapter 1. Topic: Overview of basic principles Chapter 1 Topic: Overview of basic principles Four major themes of biochemistry I. What are living organism made from? II. How do organism acquire and use energy? III. How does an organism maintain its

More information

Grade Seven Science Focus on Life Sciences. Main Ideas in the Study of Cells

Grade Seven Science Focus on Life Sciences. Main Ideas in the Study of Cells Grade Seven Science Focus on Life Sciences Main Ideas in the Study of Cells Research is an effective way to develop a deeper understanding of challenging content. The following fill-in-the-blanks activity

More information

Copyright Mark Brandt, Ph.D A third method, cryogenic electron microscopy has seen increasing use over the past few years.

Copyright Mark Brandt, Ph.D A third method, cryogenic electron microscopy has seen increasing use over the past few years. Structure Determination and Sequence Analysis The vast majority of the experimentally determined three-dimensional protein structures have been solved by one of two methods: X-ray diffraction and Nuclear

More information

Review. Membrane proteins. Membrane transport

Review. Membrane proteins. Membrane transport Quiz 1 For problem set 11 Q1, you need the equation for the average lateral distance transversed (s) of a molecule in the membrane with respect to the diffusion constant (D) and time (t). s = (4 D t) 1/2

More information

NMR Spectroscopy of Polymers

NMR Spectroscopy of Polymers UNESCO/IUPAC Course 2005/2006 Jiri Brus NMR Spectroscopy of Polymers Brus J 1. part At the very beginning the phenomenon of nuclear spin resonance was studied predominantly by physicists and the application

More information

DNA Structure. Voet & Voet: Chapter 29 Pages Slide 1

DNA Structure. Voet & Voet: Chapter 29 Pages Slide 1 DNA Structure Voet & Voet: Chapter 29 Pages 1107-1122 Slide 1 Review The four DNA bases and their atom names The four common -D-ribose conformations All B-DNA ribose adopt the C2' endo conformation All

More information

9/11/18. Molecular and Cellular Biology. 3. The Cell From Genes to Proteins. key processes

9/11/18. Molecular and Cellular Biology. 3. The Cell From Genes to Proteins. key processes Molecular and Cellular Biology Animal Cell ((eukaryotic cell) -----> compare with prokaryotic cell) ENDOPLASMIC RETICULUM (ER) Rough ER Smooth ER Flagellum Nuclear envelope Nucleolus NUCLEUS Chromatin

More information

Chapter Six: X-Rays. 6.1 Discovery of X-rays

Chapter Six: X-Rays. 6.1 Discovery of X-rays Chapter Six: X-Rays 6.1 Discovery of X-rays In late 1895, a German physicist, W. C. Roentgen was working with a cathode ray tube in his laboratory. He was working with tubes similar to our fluorescent

More information

CHEMISTRY (CHEM) CHEM 5800 Principles Of Materials Chemistry. Tutorial in selected topics in materials chemistry. S/U grading only.

CHEMISTRY (CHEM) CHEM 5800 Principles Of Materials Chemistry. Tutorial in selected topics in materials chemistry. S/U grading only. Chemistry (CHEM) 1 CHEMISTRY (CHEM) CHEM 5100 Principles of Organic and Inorganic Chemistry Study of coordination compounds with a focus on ligand bonding, electron counting, molecular orbital theory,

More information

Molecular Modeling. Prediction of Protein 3D Structure from Sequence. Vimalkumar Velayudhan. May 21, 2007

Molecular Modeling. Prediction of Protein 3D Structure from Sequence. Vimalkumar Velayudhan. May 21, 2007 Molecular Modeling Prediction of Protein 3D Structure from Sequence Vimalkumar Velayudhan Jain Institute of Vocational and Advanced Studies May 21, 2007 Vimalkumar Velayudhan Molecular Modeling 1/23 Outline

More information

EVPP 110 Lecture Exam #1 Study Questions Fall 2003 Dr. Largen

EVPP 110 Lecture Exam #1 Study Questions Fall 2003 Dr. Largen EVPP 110 Lecture Exam #1 Study Questions Fall 2003 Dr. Largen These study questions are meant to focus your study of the material for the first exam. The absence here of a topic or point covered in lecture

More information

Structural biomathematics: an overview of molecular simulations and protein structure prediction

Structural biomathematics: an overview of molecular simulations and protein structure prediction : an overview of molecular simulations and protein structure prediction Figure: Parc de Recerca Biomèdica de Barcelona (PRBB). Contents 1 A Glance at Structural Biology 2 3 1 A Glance at Structural Biology

More information

Optical Tweezers -working principles and applications

Optical Tweezers -working principles and applications Optical Tweezers -working principles and applications Photo taken from the WWW Star Trek Picture Page Biophysics with optical tweezers Optical tweezers use forces of laser radiation pressure to trap small

More information

Lecture 11: Protein Folding & Stability

Lecture 11: Protein Folding & Stability Structure - Function Protein Folding: What we know Lecture 11: Protein Folding & Stability 1). Amino acid sequence dictates structure. 2). The native structure represents the lowest energy state for a

More information

Protein Folding & Stability. Lecture 11: Margaret A. Daugherty. Fall Protein Folding: What we know. Protein Folding

Protein Folding & Stability. Lecture 11: Margaret A. Daugherty. Fall Protein Folding: What we know. Protein Folding Lecture 11: Protein Folding & Stability Margaret A. Daugherty Fall 2003 Structure - Function Protein Folding: What we know 1). Amino acid sequence dictates structure. 2). The native structure represents

More information

Model Worksheet Teacher Key

Model Worksheet Teacher Key Introduction Despite the complexity of life on Earth, the most important large molecules found in all living things (biomolecules) can be classified into only four main categories: carbohydrates, lipids,

More information

Chapter 6- An Introduction to Metabolism*

Chapter 6- An Introduction to Metabolism* Chapter 6- An Introduction to Metabolism* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. The Energy of Life

More information

Biophysics II. Hydrophobic Bio-molecules. Key points to be covered. Molecular Interactions in Bio-molecular Structures - van der Waals Interaction

Biophysics II. Hydrophobic Bio-molecules. Key points to be covered. Molecular Interactions in Bio-molecular Structures - van der Waals Interaction Biophysics II Key points to be covered By A/Prof. Xiang Yang Liu Biophysics & Micro/nanostructures Lab Department of Physics, NUS 1. van der Waals Interaction 2. Hydrogen bond 3. Hydrophilic vs hydrophobic

More information

Examples of Protein Modeling. Protein Modeling. Primary Structure. Protein Structure Description. Protein Sequence Sources. Importing Sequences to MOE

Examples of Protein Modeling. Protein Modeling. Primary Structure. Protein Structure Description. Protein Sequence Sources. Importing Sequences to MOE Examples of Protein Modeling Protein Modeling Visualization Examination of an experimental structure to gain insight about a research question Dynamics To examine the dynamics of protein structures To

More information

Flow of Genetic Information

Flow of Genetic Information presents Flow of Genetic Information A Montagud E Navarro P Fernández de Córdoba JF Urchueguía Elements Nucleic acid DNA RNA building block structure & organization genome building block types Amino acid

More information

Mile-stones leading to the concept of nature of the gene: 1. The discovery of discrete units of inheritance in 1860s. - Mendel s pea experiments(

Mile-stones leading to the concept of nature of the gene: 1. The discovery of discrete units of inheritance in 1860s. - Mendel s pea experiments( Homework IV. Bioenergetics 1. Calculate the G for ATP hydrolysis in a cell in which the [ATP]/[ADP] ratio had climbed to 100:1 while the P i concentration remained at10 mm. How does this compare to the

More information

An integrated software environment for protein structure refinement

An integrated software environment for protein structure refinement Graduate Theses and Dissertations Graduate College 2008 An integrated software environment for protein structure refinement Rahul Ravindrudu Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/etd

More information

Guided Notes Unit 4: Cellular Reproduction

Guided Notes Unit 4: Cellular Reproduction Name: Date: Block: Chapter 5: Cell Growth and Division I. Background Guided Notes Unit 4: Cellular Reproduction a. "Where a cell exists, there must have been a preexisting cell..." - Rudolf Virchow b.

More information

Molecular Aggregation

Molecular Aggregation Molecular Aggregation Structure Analysis and Molecular Simulation of Crystals and Liquids ANGELO GAVEZZOTTI University of Milano OXFORD UNIVERSITY PRESS Contents PART I FUNDAMENTALS 1 The molecule: structure,

More information