The Anatomical Study of the Stem at Two Gymnosperme Species (Cryptomeria japonica Don, Ginkgo biloba L.)

Size: px
Start display at page:

Download "The Anatomical Study of the Stem at Two Gymnosperme Species (Cryptomeria japonica Don, Ginkgo biloba L.)"

Transcription

1 Bulletin UASVM Horticulture, 66(1)/2009 Print ISSN ; Electronic ISSN The Anatomical Study of the Stem at Two Gymnosperme Species (Cryptomeria japonica Don, Ginkgo biloba L.) Ion STAN Faculty of Agriculture, University of Craiova, 13 A.I. Cuza St., Dolj, Romania; Abstract. In the present paper there is presented the study of 2 species from the Gymnospermae, one belonging to the Cycadopsida Class and the other one from the Coniferopsida Classs For the two species (Ginkgo biloba L., fam. Ginkgoaceae and Cryptomeria japonica, fam.cupressaceae) there has been studied the stem from the anotomically point of view. There has been made cross section through the stem of the two species and there has been observation regarding the peridermis, the liber, the cambium at Cryptomeria japonica and the phelogene, central cylinder, the pheloderme, the cambium and the wood for Ginkgo biloba. Keywords: Cryptomeria japonica Don, Ginkgo biloba L, stem, anatomical, study INTRODUCTION The Gymnospermes are woody plants, with the wood having a simple structure ususally made from vertical tracheides, with simple punctuations, areolated. The Ginkgo biloba it is a tree of high dimensions, with a straight trunk and ample crown, with slow growth, that can reach very high height. At elder age on the trunks with great diameter can develop many vertical stems which sometimes manifest their individuality strating from the base, from the roots, forming suplimentary stems wich increase the initial trunk. The Cryptomeria japonica it is a coniferous species with a rapid growth reaching up to 70 m height, forming a trunk with a diameter over 4 m. MATERIALS AND METHODS The studied material has been collected portion of healthy vegetative organs from the two species, preserved in a mixture of ethilic alcohol, glicerine and distillated water equal parts. In order to study the anatomy of these organs, we have made cross section through certain area and studied with a microscope MC-3. The measuring of some structural elements has been made using the ocular micrometer at the same microscope. For the analyze of some microscopical elements there has been made 100 measurments. In the paper we have used the follwing terms: - VM = maximum individual value - Vm = minimum individual value - X = arithmetical average of the individual values - µm = micrometer 620

2 RESULTS AND DISCUTIONS The anatomy of the stem at the species Cryptomeria japonica D. Don The cross section has been made through a copse with a thickness of 2700 µm with a secondary structure (fig. 1). The stem has a circular contour. At the exterior of the stem there is a suberus with a thickness of 225 µm made from many layers of death tabular cells, orderly disposed in radial rows without spaces between them (fig. 2). The cells from the external area of the suberus have thicker cellular wall, being in a disorganization stage. The phelogene it is made from a single cells layer, the cells being tangential elongated (fig. 2). The pheloderme has a thickness of 202,5 µm, made from spherical or ovoids cells with thin cellular walls, disorderly disposed, with reserve substances deposed on their interior (fig. 3). In the external part of the pheloderm there are secretory channels with large lumen, separated by 1-2 layers of elongated cells with easily thick cellular walls (fig. 3), and on the interior there are groups of sclerids with very lignificated cellular walls (fig. 3). Nearby the central cylinder there are other groups of sclreids made from smaller cells (fig. 3) with a diameter of: VM = 81µm, Vm = 31µm, X = 57,6µm. The central cylinder it is well developed with a thickness of 832,5µm (fig. 4). The liber has a thickness of 112,5µm being made from cells with thin cellular walls, disposed more or less orderly (fig. 4). The cambium it is made from 1-3 layers of tangential elongated cells (fig. 4). The secondary wood has a thickness of 360 µm being made only from woody vessel with lignificated walls (fig. 4). The diameter of the woody vessel it is of: VM = 22,5µm, Vm = 11,25µm, X = 17,55µm. The elements of the primary wood can not be distinguished from the ones of the secondary wood with wich form a compact mass arround the medular parenchima. The central area of the stem it is occupied by a medular parenchima witha diameter of 720µm. The cells of the medular parenchima are ovoids or sphaerical, with thin walls, with spaces between them containing on the inetrior reserve substances. The diameter of these cells it is of: VM = 33,75µm, Vm = 20,25µm, X = 25,43µm. 621

3 Fig. 1. Cross section through the Ginkgo biloba shot (oc. 10x. ob. 10. Fig. 3. Cross section through the Ginkgo biloba shot suberus, phelogene and pheloderme (oc. 10x. ob. 20. Fig. 2. Cross section through the Ginkgo biloba shot suberus and phelogene (oc. 10x. ob. 20. Fig. 4.. Cross section through the Ginkgo biloba stem liber, cambium and wood (oc. 10x. ob. 20. The anatomy of the stem at the species Cryptomeria japonica D. Don At the levell where has been made cross section, the stem present secondary structure only in the central cylinder, the bark keep the primary structure (fig. 5) having a thicness of 1755µm. The stem due to the alternating disposal of the leaves present very short internodes being difficult to make cross section without a portion of the leaf. 622

4 At the exterior of the stem there is the epidermis made from a single layer of cells with external bulging cellular walls, without spaces between them and without cloroplasts on the interior (fig. 6). The epidermis has a thickness of 18 µm with an external cuticula thick of 9 µm. Under the epidermis there is a bark with a thckness of 202,5 µm. First 3-4 cells layer of the bark, beneath the epidermis, are ovoids, smaller with colenchimatic cellular walls. Through the central area of the bark the cells are larger, with thin cellular walls, and between them can be encountered secretory chanells narrowed by 1-2 layers of cells with sclerenchimatic cellular walls (fig. 6). Among the barks cellular near the central cylinder there are isolated cells or gropus of cells with cellular walls heavily sclerenchimated (fig. 6). The central cylinder it is well developed and present secondary structure (fig. 7). The liber has a thickness of 90 µm, being made from many layers of rectangular cells, with thin walls, orderly disposed in radial rows (fig. 7). The cambium it is made from 1-3 layers of tangential elongated cells (fig. 7) and with a rich cytoplasmtic contain. The secondary wood has a thickness of 270µm and it is 3 times more developed than the secondary liber. It is made from woody vessel orderly disposed in radial rows witha diameter that grow from cambium to the pith (fig. 7). The diameter of the woody vessel being of: VM = 15,75µm, Vm = 9µm, X = 12,15µm. Into the internal area of the secondary wood, can be observed packets of primary wood. In the central area of the stem there is the medular parenchima wich present to the primary wood smaller cells and to the central area larger cells (fig. 8). At the smaller cells it can be obseved an uniform lignification process of the cellular walls, and at the larger ones, a disorganization process of the cellular walls (fig. 8). Fig. 5. Cross section through the Cryptomeria japonica stem (oc. 10x. ob.10. Fig. 6. Cross section through the Cryptomeria japonica stem cuticula, epidermis and bark (oc. 10x. ob

5 Fig. 7. Cross section through the Cryptomeria japonica stem central cylinder (oc. 10x. ob.20. Fig. 8. Cross section through the Cryptomeria japonica stem medular area (oc. 10x. ob.20. CONCLUSIONS From the anatomically point of view the Cryptomeria japonica species present at the exterior of the stem a epidermis made from a single layer of cells with bulging external cellular walls, without spaces between them and without cloroplasts on the interior, and at the Ginkgo biloba species at the exterior of the stem there is a suberus thick of 225 µm and made from many death, tabular cells, orderly disposed in radial rows, without spaces between them; Both specis have a well developed central cylinder, with a secondary structure at the Cryptomeria japonica species;also both species present a liber made from cells with thin cellular walls, at Cryptomeria japonica these cells are disposed orderly in radial rows, and at Ginkgo biloba disposed more or less orderly;both species present a medular parenchima in the central area, at Cryptomeria japonica with small cells to the primary wood and larger cells to the central area, and at Ginkgo biloba with ovoids or spaerical, cells, with thin cellular walls, with spaces between them, containing reserve substances on the interior. REFERENCES 1. Drieu, J. (2001). Le Ginkgo biloba Monografie Inst. Beaufort. 2. Earle, J. (2002). Gymnosperm Database. 3. Ehrmann, H. (2006). Le Ginkgo biloba, Monografie, Inst. Beaufort. 4. Mano, J. (1987). Le plus celebre Ginkgo Temple de Minoto-Ku Tokio, Club Ginkgo Kwant, C. ( ). The Ginkgo Pages. 5. Miliţiu, I. (1968). Horticultură, vol. 2. Edit. Didactică şi Pedagogică, Bucureşti. 6. Morris, R. (2004). Cryptomeria japonica Plants For a Future data base report. 7. Saugnessy, D. (1999). Japanese Cryptomeria Clemson University USA. 624

CAMBIUM, meristem, heartwood, and lenticel are

CAMBIUM, meristem, heartwood, and lenticel are Examining the Structures of a Tree CAMBIUM, meristem, heartwood, and lenticel are some terms that may be new to you. These terms are used to describe various tree structures. Not surprisingly, many terms

More information

Plant Anatomy and Tissue Structures

Plant Anatomy and Tissue Structures Plant Anatomy and Tissue Structures The Two Major Plant Systems Reproductive shoot (flower) Terminal bud Node Internode Angiosperm plants have threse major organs: Roots Stems Leaves & Flowers Terminal

More information

Question 1: State the location and function of different types of meristem. Meristems are specialised regions of plant growth. The meristems mark the regions where active cell division and rapid division

More information

The three principal organs of seed plants are roots, stems, and leaves.

The three principal organs of seed plants are roots, stems, and leaves. 23 1 Specialized Tissues in Plants Seed Plant Structure The three principal organs of seed plants are roots, stems, and leaves. 1 of 34 23 1 Specialized Tissues in Plants Seed Plant Structure Roots: absorb

More information

Plant Tissues and Organs. Topic 13 Plant Science Subtopics , ,

Plant Tissues and Organs. Topic 13 Plant Science Subtopics , , Plant Tissues and Organs Topic 13 Plant Science Subtopics 13.1.2, 13.1.3, 13.1.4 Objectives: List and describe the major plant organs their structure and function List and describe the major types of plant

More information

Class XI Chapter 6 Anatomy of Flowering Plants Biology

Class XI Chapter 6 Anatomy of Flowering Plants Biology Class XI Chapter 6 Anatomy of Flowering Plants Biology Question 1: State the location and function of different types of meristem. Meristems are specialised regions of plant growth. The meristems mark

More information

Wood Anatomy Lab What is wood? The lateral meristems Cell types Vessels Tracheids

Wood Anatomy Lab What is wood? The lateral meristems Cell types Vessels Tracheids Wood Anatomy Lab Objectives of the Lab: 1) Learn to recognize major cell types and features of wood including: tracheids vessels rays axial parenchyma pits tyloses resin canals 2) Look at wood in three

More information

WHAT DO you think of when you

WHAT DO you think of when you Stem Anatomy WHAT DO you think of when you think of a stem? Do you think of a flower stalk, the trees in your area, or a soybean stalk? Most people probably visualize something like the flower or the bean

More information

Botany Physiology. Due Date Code Period Earned Points

Botany Physiology. Due Date Code Period Earned Points Botany Physiology Name C/By Due Date Code Period Earned Points Bot Phys 5N5 Stem Forms Bot Phys 5-05 Identify the major forms of stems in plants I. Identify the major forms of stems in plants A. internal

More information

STEMS Anytime you use something made of wood, you re using something made from the stem of a plant. Stems are linear structures with attached leaves

STEMS Anytime you use something made of wood, you re using something made from the stem of a plant. Stems are linear structures with attached leaves STEMS OUTLINE External Form of a Woody Twig Stem Origin and Development Stem Tissue Patterns Herbaceous Dicotyledonous Stems Woody Dicotyledonous Stems Monocotyledonous Stems Specialized Stems Wood and

More information

Effects of Sun-Blotch on the Anatomy of the Avocado Stem

Effects of Sun-Blotch on the Anatomy of the Avocado Stem California Avocado Association 1935 Yearbook 20: 125-129 Effects of Sun-Blotch on the Anatomy of the Avocado Stem Charles A. Schroeder Because of the comparatively recent discovery of the avocado disease

More information

Plant Anatomy: roots, stems and leaves

Plant Anatomy: roots, stems and leaves Plant Anatomy: roots, stems and leaves The plant body has a hierarchy of organs, tissues and cells Plants, like animals, have organs composed of different tissues, which are composed of cells. Tissue is

More information

Chapter #35~ Plant Structure and Growth

Chapter #35~ Plant Structure and Growth Chapter #35~ Plant Structure and Growth What part of a plant is represented by each of these: Carrot Celery Red Pepper Tomato Lettuce Garbanzo Bean Angiosperm structure Three basic organs: Roots (root

More information

Topic 2: Plant Structure & Growth Ch. 35 Angiosperms are the most complex plants. They are composed of cells, tissues, organs and organ systems.

Topic 2: Plant Structure & Growth Ch. 35 Angiosperms are the most complex plants. They are composed of cells, tissues, organs and organ systems. Topic 2: Plant Structure & Growth Ch. 35 Angiosperms are the most complex plants. They are composed of cells, tissues, organs and organ systems. Fig. 35.8 Plant Cells pp.798-802 Types of plant cells Include:

More information

Plants. Tissues, Organs, and Systems

Plants. Tissues, Organs, and Systems Plants Tissues, Organs, and Systems Meristematic cells Specialized cells that are responsible for producing specialized cells, they produce three types of tissue in the body of a plant. Meristematic Cells

More information

Chapter 29: Plant Tissues

Chapter 29: Plant Tissues Chapter 29: Plant Tissues Shoots and Roots Shoots (Leaves and Stem) Produce food by photosynthesis Carry out reproductive functions Roots Anchor the plant Penetrate the soil and absorb water and dissolved

More information

Name: Plant stems and leaves (p. 1 of )

Name: Plant stems and leaves (p. 1 of ) Name: Plant stems and leaves (p. 1 of ) Introduction: Plants have a variety of configurations but the same basic structures. The three main parts of a plant are the roots, stems, and leaves. The tracheids

More information

SESSION 6: SUPPORT AND TRANSPORT SYSTEMS IN PLANTS PART 1

SESSION 6: SUPPORT AND TRANSPORT SYSTEMS IN PLANTS PART 1 SESSION 6: SUPPORT AND TRANSPORT SYSTEMS IN PLANTS PART 1 KEY CONCEPTS In this session we will focus on summarising what you need to know about: - Anatomy of dicotyledonous plants Root and stem: distribution

More information

ANATOMY OF PLANTS Introduction: The study of gross internal structure of plant organs by the technique of section cutting is called plant anatomy.

ANATOMY OF PLANTS Introduction: The study of gross internal structure of plant organs by the technique of section cutting is called plant anatomy. ANATOMY OF PLANTS Introduction: The study of gross internal structure of plant organs by the technique of section cutting is called plant anatomy. (Pandey, 2002). Various plant organ viz. root, stem, leaves,

More information

Plant Structure. Objectives At the end of this sub section students should be able to:

Plant Structure. Objectives At the end of this sub section students should be able to: Name: 3.2 Organisation and the Vascular Structures 3.2.1 Flowering plant structure and root structure Objectives At the end of this sub section students should be able to: 1. Label a diagram of the external

More information

Honors Biology I Ch 29 Plant Structure & Function

Honors Biology I Ch 29 Plant Structure & Function 3 Basic types of plant cells Honors Biology I Ch 29 Plant Structure & Function 1) Parenchyma cells- loosely packed or cells with a and thin, Involved in metabolic functions 2) Collenchyma cells- thicker

More information

Forms strands that conduct water, minerals, and organic compounds. Much of the inside of nonwoody parts of plants. Includes roots, stems, and leaves

Forms strands that conduct water, minerals, and organic compounds. Much of the inside of nonwoody parts of plants. Includes roots, stems, and leaves Biology II Vascular plants have 3 tissue systems: Dermal Protective outer layer of plant Vascular Forms strands that conduct water, minerals, and organic compounds Ground Much of the inside of nonwoody

More information

2/25/2013. o Plants take up water and minerals from below ground o Plants take up CO2 and light from above ground THREE BASIC PLANT ORGANS ROOTS

2/25/2013. o Plants take up water and minerals from below ground o Plants take up CO2 and light from above ground THREE BASIC PLANT ORGANS ROOTS o Plants take up water and minerals from below ground o Plants take up CO2 and light from above ground THREE BASIC PLANT ORGANS o Roots o Stems o Leaves ROOTS o Anchor plant o Absorb water and minerals

More information

The Shoot System: Primary Stem Structure - 1

The Shoot System: Primary Stem Structure - 1 The Shoot System: Primary Stem Structure - 1 Shoot System The shoot system comprises the leaves and stems of plants. Leaves are located at nodes on the stem; the distance along the stem between nodes is

More information

Chapter 29. Table of Contents. Section 1 Plant Cells and Tissues. Section 2 Roots. Section 3 Stems. Section 4 Leaves. Plant Structure and Function

Chapter 29. Table of Contents. Section 1 Plant Cells and Tissues. Section 2 Roots. Section 3 Stems. Section 4 Leaves. Plant Structure and Function Plant Structure and Function Table of Contents Section 1 Plant Cells and Tissues Section 2 Roots Section 3 Stems Section 4 Leaves Section 1 Plant Cells and Tissues Objectives Describe the three basic types

More information

Plant Organs. Roots & Stems

Plant Organs. Roots & Stems Plant Organs Roots & Stems I. Roots A. F(x)s = grow underground 1. Absorb water & nutrients from soil 2. Anchor plant in the soil 3. Make hormones important for growth & development I. Roots B. Structure

More information

WSU and UI Master Gardeners March 1, 2016 Philip Shinn

WSU and UI Master Gardeners March 1, 2016 Philip Shinn WSU and UI Master Gardeners March 1, 2016 Philip Shinn What is a Woody Plant? Tree Biology CODIT Planting & Pruning Tree Triage C 9 H 10 O 2 Strengthens cell walls in Xylem Sequesters carbon 30% of

More information

Lecture 19. A Sieve Plate with large Sieve Pores. Secondary Phloem. Secondary phloem (cont d)

Lecture 19. A Sieve Plate with large Sieve Pores. Secondary Phloem. Secondary phloem (cont d) Lecture 19 Secondary phloem (cont d) Secondary Phloem in Tilia americana (American Basswood) Secondary Phloem of Tilia Stained with Toluidine Blue & viewed with Crossed Polarizers. Secondary Phloem A Sieve

More information

Anatomy of Flowering Plants. K C Meena PGT Biology

Anatomy of Flowering Plants. K C Meena PGT Biology Anatomy of Flowering Plants K C Meena PGT Biology Tissues A group of similar cells performing same function. Types of plant tissues - Meristematic tissues and permanent tissues. Meristematic tissues Have

More information

UNIT 6 - STRUCTURES OF FLOWERING PLANTS & THEIR FUNCTIONS

UNIT 6 - STRUCTURES OF FLOWERING PLANTS & THEIR FUNCTIONS 6.1 Plant Tissues A tissue is a group of cells with common function, structures or both. In plants we can find 2 types of tissues: Meristem Permanent tissues Meristem is found in regions with continuous

More information

Secondary growth in stems

Secondary growth in stems Secondary growth in stems Secondary growth Some of the meristematic cells in plants with secondary growth keep their meristematic state and become cells of the cambium. The addition of secondary vascular

More information

The Plant body has a hierarch of organs, tissues, and cells. [2]

The Plant body has a hierarch of organs, tissues, and cells. [2] GUIDED READING - Ch. 35 PLANT STRUCTURE NAME: Please print out these pages and HANDWRITE the answers directly on the printouts. Typed work or answers on separate sheets of paper will not be accepted. Importantly,

More information

Plant Structure And Growth

Plant Structure And Growth Plant Structure And Growth The Plant Body is Composed of Cells and Tissues Tissue systems (Like Organs) made up of tissues Made up of cells Plant Tissue Systems Ground Tissue System Ø photosynthesis Ø

More information

Plant Structure. Lab Exercise 24. Objectives. Introduction

Plant Structure. Lab Exercise 24. Objectives. Introduction Lab Exercise Plant Structure Objectives - Be able to identify plant organs and give their functions. - Learn distinguishing characteristics between monocot and dicot plants. - Understand the anatomy of

More information

Chapter 35~ Plant Structure and Growth

Chapter 35~ Plant Structure and Growth Chapter 35~ Plant Structure and Growth Plant Organization Plant morphology is based on plant s evolutionary history Need to draw in nutrients from the ground and the air Plant Organs Root system = roots

More information

Angiosperms: Dicotyledons

Angiosperms: Dicotyledons Angiosperms: Dicotyledons This section contains anatomical descriptions of stem and twig xylem, as well as the bark and pith regions of 244 dicotyledonous species belonging to 61 families. Angiosperms:

More information

Plant Structure and Function

Plant Structure and Function Plant Structure and Function A Meridian Biology AP Study Guide by John Ho and Tim Qi Plant Terms Growth: Growth Types Type Location Description Primary Primary Vertical growth (up-down), dominant direction

More information

Roots and leaves together are sufficient to take up all essential resources, so why make stems?

Roots and leaves together are sufficient to take up all essential resources, so why make stems? STEMS Roots and leaves together are sufficient to take up all essential resources, so why make stems? Stem functions 1. Support leaves 2. Conductance (connect root and leaf vasculature) 3. Storage (some

More information

NOTES: CH 35 - Plant Structure & Growth

NOTES: CH 35 - Plant Structure & Growth NOTES: CH 35 - Plant Structure & Growth In their evolutionary journey, plants adapted to the problems of a terrestrial existence as they moved from water to land ANGIOSPERMS (flowering plants) -most diverse

More information

Plant Anatomy: roots, stems and leaves

Plant Anatomy: roots, stems and leaves Plant Anatomy: roots, stems and leaves The plant body has a hierarchy of organs, tissues and cells Plants, like animals, have organs composed of different tissues, which are composed of cells. Tissue is

More information

NOTES ON GINKGO BILOBA'

NOTES ON GINKGO BILOBA' NOTES ON GINKGO BILOBA' WALTER WV. TUPPER (WITH PLATE xx) Among the gymnosperms, one of the groups most interesting from a morphological standpoint is the Ginkgoales, the only living representative of

More information

Introduction to Botany. Lecture 11

Introduction to Botany. Lecture 11 Introduction to Botany. Lecture 11 Alexey Shipunov Minot State University September 21st, 2011 Outline Questions and answers 1 Questions and answers 2 Outline Questions and answers 1 Questions and answers

More information

Plant Structure, Growth, and Development

Plant Structure, Growth, and Development Chapter 35 Plant Structure, Growth, and Development PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

The secondary meristem result in growth in a lateral direction, such as the increase in girth of a tree.

The secondary meristem result in growth in a lateral direction, such as the increase in girth of a tree. Chapter 9b-Stems and Material Transport Woody plants produce wood tissue and bark through the activity of secondary meristems: The secondary meristem result in growth in a lateral direction, such as the

More information

Visit For All NCERT solutions, CBSE sample papers, Question papers, Notes for Class 6 to 12. Chapter-6 ANATOMY OF FLOWERING PLANTS

Visit  For All NCERT solutions, CBSE sample papers, Question papers, Notes for Class 6 to 12. Chapter-6 ANATOMY OF FLOWERING PLANTS Chapter-6 ANATOMY OF FLOWERING PLANTS POINTS TO REMEMBER Anatomy : Anatomy is the study of internal structure of organisms. Plant anatomy includes organisation and structure of tissues. Tissue : A group

More information

A group of cells with common origin is called a tissue. The cells of a tissue usually perform a common function.

A group of cells with common origin is called a tissue. The cells of a tissue usually perform a common function. Anatomy of Flowering Plants Tissues A group of cells with common origin is called a tissue. The cells of a tissue usually perform a common function. Types of Tissue: There are two main types of plant tissues,

More information

Chapter 28 Active Reading Guide Plant Structure and Growth

Chapter 28 Active Reading Guide Plant Structure and Growth Name: AP Biology Mr. Croft Chapter 28 Active Reading Guide Plant Structure and Growth In this unit on plants, the challenge for students will be to learn the new vocabulary. As we work through this unit,

More information

Stems BI 103: Plant & Animal A & P. Learning Objectives

Stems BI 103: Plant & Animal A & P. Learning Objectives Stems BI 103: Plant & Animal A & P Outline: 1. Stems: monocots vs dicots--handout 2. Woody plant growth 3. Discussion problems 4. Monocots & soutside Learning Objectives What are the differences between

More information

Irina Berciu *, Constantin Toma Department of Biology, Al. I. Cuza University, Iasi

Irina Berciu *, Constantin Toma Department of Biology, Al. I. Cuza University, Iasi HISTO-ANATOMICAL ASPECTS OF VEGETATIVE ORGANS OF THYMUS DACICUS BORB. AND THYMUS GLABBRESCENS WILLD. Irina Berciu *, Constantin Toma Department of Biology, Al. I. Cuza University, Iasi * Correspondence:

More information

today finish up cell division Continue intro to plant anatomy main plant organs basic anatomy: monocots versus dicots How to tell the organs apart

today finish up cell division Continue intro to plant anatomy main plant organs basic anatomy: monocots versus dicots How to tell the organs apart Download as an RTF file Download as a PDF file Biology 20 Fall 2001 Lecture #4 Jan 18, 2001 What did we get from last lecture? Plant anatomy introduction Tissue Types in plants Four basic tissue: meristem,

More information

THE OHIO JOURNAL OF SCIENCE

THE OHIO JOURNAL OF SCIENCE THE OHIO JOURNAL OF SCIENCE VOL. XXIV JULY, 1924 No.. 4 THE VASCULAR ANATOMY OF CALAMOVILFA LONGIFOLIA.* ERNEST LINCOLN STOVER Eastern Illinois State Teachers' College The present study of the anatomy

More information

Tree Biology. Keith Wood Colorado State Forest Service. (Modified for CMVFS 9/13/16 Donna Davis)

Tree Biology. Keith Wood Colorado State Forest Service. (Modified for CMVFS 9/13/16 Donna Davis) Tree Biology This session will cover tree anatomy (structure) and tree physiology (function) including how a tree is put together, how it grows in its environment and Compartmentalization of Decay in Trees

More information

Plants. Plant Form and Function. Tissue Systems 6/4/2012. Chapter 17. Herbaceous (nonwoody) Woody. Flowering plants can be divided into two groups:

Plants. Plant Form and Function. Tissue Systems 6/4/2012. Chapter 17. Herbaceous (nonwoody) Woody. Flowering plants can be divided into two groups: Monocots Dicots 6/4/2012 Plants Plant Form and Function Chapter 17 Herbaceous (nonwoody) In temperate climates, aerial parts die back Woody In temperate climates, aerial parts persist The Plant Body Functions

More information

! Xylem - Chief conducting tissue for water and minerals absorbed by the roots.

! Xylem - Chief conducting tissue for water and minerals absorbed by the roots. + Complex Tissues! Complex tissues are made up of two or more cell types.! Xylem - Chief conducting tissue for water and minerals absorbed by the roots.! Vessels - Made of vessel elements.! Long tubes

More information

Lecture 4 Root Put line under your answer! There is only one correct answer in the multiple choice questions

Lecture 4 Root Put line under your answer! There is only one correct answer in the multiple choice questions Lecture 4 Root Put line under your answer! There is only one correct answer in the multiple choice questions 1. The perception of gravity by a root is thought to take place in a) root hairs b) the region

More information

Chapter 23 Notes Roots Stems Leaves

Chapter 23 Notes Roots Stems Leaves Chapter 23 Notes Roots Stems Leaves I. Specialized tissue in plants - effective way to ensure the plant s survival A. Seed plant structure 1. Roots - a. Absorbs water and dissolves nutrients b. anchors

More information

VARIATION IN THE SIZE OF RAY PITS OF CONIFERS.*

VARIATION IN THE SIZE OF RAY PITS OF CONIFERS.* VARIATION IN THE SIZE OF RAY PITS OF CONIFERS.* FOREST B. H. BROWN. Since Haeckel proposed the word Ecology in 88, there has been an ever growing interest in the influence which environmental factors may

More information

The mode of development in animals and plants is different

The mode of development in animals and plants is different The mode of development in animals and plants is different Outcome of animal embryogenesis is a mini edition of the adult Outcome of plant embryogenesis is a simple structure with -root apical meristem

More information

Influence of Bio-Fertilizer Foliar Application on Growth and Anatomical Changes of Tagetes patula

Influence of Bio-Fertilizer Foliar Application on Growth and Anatomical Changes of Tagetes patula Influence of Bio-Fertilizer ORIGINAL SCIENTIFIC Foliar Application PAPER on Growth and Anatomical Changes of Tagetes patula Influence of Bio-Fertilizer Foliar Application on Growth and Anatomical Changes

More information

A COMPARATIVE STUDY REGARDING THE MORPHOLOGY AND ANATOMY OF THE VEGETATIVE APPARATUS IN TWO OCIMUM BASILICUM L. BREEDS.

A COMPARATIVE STUDY REGARDING THE MORPHOLOGY AND ANATOMY OF THE VEGETATIVE APPARATUS IN TWO OCIMUM BASILICUM L. BREEDS. Analele ştiinţifice ale Universităţii Al. I. Cuza Iaşi Tomul LIV, fasc. 2, s.ii a. Biologie vegetală, 2008 A COMPARATIVE STUDY REGARDING THE MORPHOLOGY AND ANATOMY OF THE VEGETATIVE APPARATUS IN TWO OCIMUM

More information

Chapter 35: Plant Structure, Growth and Development - No two Plants Are Alike Plant structure

Chapter 35: Plant Structure, Growth and Development - No two Plants Are Alike Plant structure Chapter 35: Plant Structure, Growth and Development - No two Plants Are Alike Plant structure Systems Root and Shoot system Organs Roots, Stems, Leaves Tissues Dermal, Vascular, Ground Cells parencyma,

More information

Plant Anatomy. By Umanga Chapagain

Plant Anatomy. By Umanga Chapagain Plant Anatomy By Umanga Chapagain PLANT ANATOMY The science of the structure of the organized plant body learned by dissection is called Plant Anatomy. In general, Plant Anatomy refers to study of internal

More information

1.1 Identifying and stating the functions of the primary parts of a compound microscope.

1.1 Identifying and stating the functions of the primary parts of a compound microscope. Common Course Number: BOT-1010-L Course Title: Botany Laboratory Catalog Course Description: Laboratory for BOT-1010. Credit Hours Breakdown: 1 lecture hour Prerequisite: none Corequisite: BOT-1010, with

More information

Anatomy of dicotyledonous plants

Anatomy of dicotyledonous plants Anatomy of dicotyledonous plants Differences between Monocotyledons and Dicotyledons All plants are classified as producing seeds or not producing seeds. Those that produce seeds are divided into flowering

More information

Botany. Study of Plant Life. Bonnie Pavlak, CPH

Botany. Study of Plant Life. Bonnie Pavlak, CPH Botany Study of Plant Life Bonnie Pavlak, CPH http://www.biologyjunction.com/images/plantbody.jpg The Plant Cell The Plant Cell What 2 features of a plant cell are not found in an animal cell? Cell Wall

More information

Stems and Transport in Vascular Plants. Herbaceous Stems. Herbaceous Dicot Stem 3/12/2012. Chapter 34. Basic Tissues in Herbaceous Stems.

Stems and Transport in Vascular Plants. Herbaceous Stems. Herbaceous Dicot Stem 3/12/2012. Chapter 34. Basic Tissues in Herbaceous Stems. Bud scale Terminal bud Stems and Transport in Plants One year's growth Terminal bud scale scars Axillary bud Leaf scar Node Internode Node Chapter 34 Lenticels Terminal bud scale scars Bundle scars A Woody

More information

Exercise 12. Procedure. Aim: To study anatomy of stem and root of monocots and dicots.

Exercise 12. Procedure. Aim: To study anatomy of stem and root of monocots and dicots. Aim: To study anatomy of stem and root of monocots and dicots. Principle: The study of internal morphology, i.e., cells of various tissues in an organ of a living body is called Anatomy. Tissue, which

More information

Trees are: woody complex, large, long-lived self-feeding shedding generating systems compartmented, self optimizing

Trees are: woody complex, large, long-lived self-feeding shedding generating systems compartmented, self optimizing BASIC TREE BIOLOGY Trees are: woody complex, large, long-lived self-feeding shedding generating systems compartmented, self optimizing Roots: absorb water and minerals store energy support and anchor

More information

PHARMACOBOTANY LECTURE 5. PLANT TISSUES III.

PHARMACOBOTANY LECTURE 5. PLANT TISSUES III. PHARMACOBOTANY LECTURE 5. PLANT TISSUES III. VASCULAR TISSUES VASCULAR TISSUES Xylem transporting water and mineral substances from the root upwards to other plant organs Phloem carries photosynthetic

More information

TREES. Functions, structure, physiology

TREES. Functions, structure, physiology TREES Functions, structure, physiology Trees in Agroecosystems - 1 Microclimate effects lower soil temperature alter soil moisture reduce temperature fluctuations Maintain or increase soil fertility biological

More information

1 Mosses and other bryophytes are like ferns in that both bryophytes and ferns exhibit each of the following traits EXCEPT

1 Mosses and other bryophytes are like ferns in that both bryophytes and ferns exhibit each of the following traits EXCEPT Page 1 1 Mosses and other bryophytes are like ferns in that both bryophytes and ferns exhibit each of the following traits EXCEPT A haploid spores. B specialized cells and tissues. C vascular tissue for

More information

From smallest to largest plants

From smallest to largest plants Plant anatomy From smallest to largest plants What is plant anatomy? ANATOMY: study of the structure of organisms looking at cells, tissues How can water move from the ground all the way to the top of

More information

(Photo Atlas: Figures , )

(Photo Atlas: Figures , ) BIOL 221 Concepts of Botany Spring 2009 Topic 05: Secondary Plant Body (Photo Atlas: Figures 9.35-9.55, 9.57-9.59) A. Introduction In many plants, development of the primary plant body and tissues is just

More information

tree of life phylogeny morphology gram stain chapter 28-29, other groups of organisms Bacteria

tree of life phylogeny morphology gram stain chapter 28-29, other groups of organisms Bacteria tree of life chapter 28-29, other groups of organisms phylogeny key lineages of prokaryotes Domain Archaea (sister to eukarya) 3 clades defined by genetic characters Domain Bacteria Firmicutes Spirochaetes

More information

tree of life phylogeny gram stain morphology chapter 28-29, other groups of organisms Bacteria

tree of life phylogeny gram stain morphology chapter 28-29, other groups of organisms Bacteria tree of life chapter 28-29, other groups of organisms phylogeny key lineages of prokaryotes Domain Archaea (sister to eukarya) 3 clades defined by genetic characters Domain Bacteria Firmicutes Spirochaetes

More information

CHAPTER 6 ANATOMY OF FLOWERING PLANTS MULTIPLE CHOICE QUESTIONS

CHAPTER 6 ANATOMY OF FLOWERING PLANTS MULTIPLE CHOICE QUESTIONS ANATOMY OF FLOWERING PLANTS 27 27 CHAPTER 6 ANATOMY OF FLOWERING PLANTS MULTIPLE CHOICE QUESTIONS 1. A transverse section of stem is stained first with safranin and then with fast green following the usual

More information

II. SIMPLE TISSUES Bot 404--Fall A. Introduction to Tissues (DIAGRAM allow a full page)

II. SIMPLE TISSUES Bot 404--Fall A. Introduction to Tissues (DIAGRAM allow a full page) II. SIMPLE TISSUES Bot 404--Fall 2004 A. Introduction to Tissues (DIAGRAM allow a full page) B. Definitions Adaxial = facing the axil; upper surface of leaf Abaxial = facing away from the axil; lower surface

More information

Lab Exercise 4: Primary Growth and Tissues in Stems

Lab Exercise 4: Primary Growth and Tissues in Stems Lab Exercise 4: Primary Growth and Tissues in Stems Tissues of the plant body can be classified in a variety of ways: functionally (based on the tissue function, e.g. vascular tissue ), morphologically

More information

Pre-lab homework Lab 4: Movement and Support

Pre-lab homework Lab 4: Movement and Support Lab Section: Pre-lab homework Lab 4: Movement and Support Name: 1. In lab this week we will examine the location of the three main plant tissues. What are these three tissues and what role do they play

More information

ROOTS. Syllabus Theme A Plant Structure and Function. Root systems. Primary Growth of Roots. Taproot system. Fibrous root system.

ROOTS. Syllabus Theme A Plant Structure and Function. Root systems. Primary Growth of Roots. Taproot system. Fibrous root system. Syllabus Theme A lant Structure and Function A2: Structure and function of the basic plant organs ampbell & Reece hap. 35 Selected page numbers ROOTS Functions Anchors the vascular plant Absorbs minerals

More information

Non Permanent Tissues - Meristematic Tissue

Non Permanent Tissues - Meristematic Tissue PLANT TISSUES Non Permanent Tissues - Meristematic Tissue Undifferentiated plant cells that are continually dividing by mitosis Large thin walled cells No vacuole Dense cytoplasm Large nucleus Found at

More information

Plant Structure and Function. Roots, Stems, and Leaves

Plant Structure and Function. Roots, Stems, and Leaves Plant Structure and Function Roots, Stems, and Leaves What is a Plant? Plants are living things that have: roots, stems, and leaves (some have flowers) Plants are made of cells that have cell walls, a

More information

Recap. Waxy layer which protects the plant & conserves water. Contains chloroplasts: Specialized for light absorption.

Recap. Waxy layer which protects the plant & conserves water. Contains chloroplasts: Specialized for light absorption. Recap Contains chloroplasts: Specialized for light absorption Waxy layer which protects the plant & conserves water mesophyll Layer contains air spaces: Specialized for gas exchange Vascular Tissue Exchange

More information

TARGET STUDY MATERIAL

TARGET STUDY MATERIAL TARGET STUDY MATERIAL Plus-1 Botany VOL I TARGET EDUCATIONAL INSTITUTION Target Educational institution is the one and only Entrance coaching and CBSE 10 th coaching centre at Mukkam with advanced technologies

More information

Today: Plant Structure Exam II is on F March 31

Today: Plant Structure Exam II is on F March 31 Next few lectures are on plant form and function Today: Plant Structure Exam II is on F March 31 Outline Plant structure I. Plant Cells structure & different types II. Types of meristems Apical meristems:

More information

Ch. 35 Plant Structure, Growth, and Development

Ch. 35 Plant Structure, Growth, and Development Ch. 35 Plant Structure, Growth, and Development Feb 3 12:31 PM 1 Essential Question: How is the structure of the plant related to its function? Feb 3 12:32 PM 2 Tissue = a group of cells with a common

More information

MAGNOLIA botany. evergreen ; spicy odor of blooms; chambered pith; hairy leaves(lower epidermis) & petioles

MAGNOLIA botany. evergreen ; spicy odor of blooms; chambered pith; hairy leaves(lower epidermis) & petioles MAGNOLIA botany Angiosperm: primitive, ancestral (Not Eudicot, Not Monocot): order Ranales: family Magnoliaceae: Magnolia grandiflora (southern magnolia) evergreen ; spicy odor of blooms; chambered pith;

More information

Lecture 2 Announcements

Lecture 2 Announcements Lecture 2 Announcements HW#1 Due Tuesday January 20, 2009 via email to jcarol@okstate.edu Class website: http://biosystems.okstate.edu/home/jcarol/in dex.html and click on class link Study Abroad Information

More information

BIOL 305L Laboratory One

BIOL 305L Laboratory One Please print Full name clearly: BIOL 305L Laboratory One General plant anatomy a great place to start! Introduction Botany is the science of plant life. Traditionally, the science included the study of

More information

Plant Growth and Development Part I. Levels of Organization

Plant Growth and Development Part I. Levels of Organization Plant Growth and Development Part I Levels of Organization Whole Plant Organs Tissues Cells Organelles Macromolecules Levels of Organization Whole Plant Organs Tissues Cells Organelles Macromolecules 1

More information

Ginkgo leaf. Ginkgo is dioecious, separate sexes: male and female plants are separate. Monoecious plants have both male and female parts.

Ginkgo leaf. Ginkgo is dioecious, separate sexes: male and female plants are separate. Monoecious plants have both male and female parts. Ginkgo leaf Figure 22-30 Ginkgo tree. Ginkgo is dioecious, separate sexes: male and female plants are separate. Monoecious plants have both male and female parts. The vein pattern is dichotomous: Divided

More information

Downloaded from

Downloaded from POINTS TO REMEMBER : 6. Anatomy of Flowering Plants Study of internal structure of plant is called anatomy. In plants cells are the basic unit. Cells organized into tissues and tissues organized into organs.

More information

MORPHOLOGICAL EXAMINATION OF PRAIRIE TURNIP (PSORALEA ESCULENTA PURSH) ROOT

MORPHOLOGICAL EXAMINATION OF PRAIRIE TURNIP (PSORALEA ESCULENTA PURSH) ROOT Proceedings of the South Dakota Academy of Science, Vol. 82 (2003) 113 MORPHOLOGICAL EXAMINATION OF PRAIRIE TURNIP (PSORALEA ESCULENTA PURSH) ROOT April L. Stahnke and R. Neil Reese Biology & Microbiology

More information

Chapter 6. Biology of Flowering Plants. Anatomy Seedlings, Meristems, Stems, and Roots

Chapter 6. Biology of Flowering Plants. Anatomy Seedlings, Meristems, Stems, and Roots BOT 3015L (Outlaw/Sherdan/Aghoram); Page 1 of 6 Chapter 6 Biology of Flowering Plants Anatomy Seedlings, Meristems, Stems, and Roots Objectives Seedling germination and anatomy. Understand meristem structure

More information

CHAPTER 6 ANATOMY OF FLOWERING PLANTS

CHAPTER 6 ANATOMY OF FLOWERING PLANTS 84 BIOLOGY CHAPTER 6 ANATOMY OF FLOWERING PLANTS 6.1 The Tissues 6.2 The Tissue System 6.3 Anatomy of Dicotyledonous and Monocotyledonous Plants 6.4 Secondary Growth You can very easily see the structural

More information

Levels of Organization

Levels of Organization Plant Growth and Development Part I Levels of Organization Whole Plant Organs Tissues Cells Organelles Macromolecules Levels of Organization Whole Plant Organs Tissues Cells Organelles Macromolecules Plant

More information

ARBORICULTURE JOURNAL OF WATER TRANSPORT AT STEM-BRANCH JUNCTURES IN WOODY ANGIOSPERMS. November 1991 Vol. 17, No. 11.

ARBORICULTURE JOURNAL OF WATER TRANSPORT AT STEM-BRANCH JUNCTURES IN WOODY ANGIOSPERMS. November 1991 Vol. 17, No. 11. 28 JOURNAL OF ARBORICULTURE November 11 Vol. 17, No. WATER TRANSPORT AT STEM-BRANCH JUNCTURES IN WOODY ANGIOSPERMS by Dan Neely Abstract. A water soluble dye, methyl violet, was injected into the stems

More information

CHAPTER 6 ANATOMY OF FLOWERING PLANTS

CHAPTER 6 ANATOMY OF FLOWERING PLANTS 84 BIOLOGY CHAPTER 6 ANATOMY OF FLOWERING PLANTS 6.1 The Tissues 6.2 The Tissue System 6.3 Anatomy of Dicotyledonous and Monocotyledonous Plants 6.4 Secondary Growth You can very easily see the structural

More information

THE TISSUES A tissue is a group of cells having a common origin and usually performing a common function. Tissues. Parenchyma

THE TISSUES A tissue is a group of cells having a common origin and usually performing a common function. Tissues. Parenchyma 1 CHAPTER 6 ANATOMY OF FLOWERING PLANTS Study of internal structure of plants is called anatomy. Plants have cells as the basic unit, cells are organised into tissues and in turn the tissues are organised

More information

Fun with Botany 2009

Fun with Botany 2009 Fun with Botany 2009 Fun with Botany April, 2002 Plant Uses and Types Gymnosperms Angiosperms Monocots Dicots Gymnosperms Keep leaves which are either needles or flat scales Seeds are not enclosed Give

More information