Effects of Non-native Riparian Tree Species on Soil Microbial Community Activity

Size: px
Start display at page:

Download "Effects of Non-native Riparian Tree Species on Soil Microbial Community Activity"

Transcription

1 Effects of Non-native Riparian Tree Species on Soil Microbial Community Activity Russian olive (Elaeagnus angustifolia) on the right and Plains cottonwoods (Populus deltoids) on the left co-existing at Riverfront Park, Billings, MT. Ksenia Lynch Dan Albrecht Rocky Mountain College Rocky Mountain College Yellowstone Research Center Professor of Biology 1511 Poly Drive 1511 Poly Drive Billings, MT Billings, MT Please cite this report as: Lynch, Ksenia and D. Albrecht Effects of non-native riparian tree species on soil microbial community activity. Report YRRC Submitted to RMC SEED Fund and the Yellowstone River Research Center, Rocky Mountain College, Billings, MT. Pp P a g e

2 Introduction Non-native species are of great concern because of the variety of ways they impact the ecosystems they invade. Non-natives can decrease agricultural yields, pose significant public health risks, and influence ecosystems by physically altering habitats, hybridizing with native species, and displacing native species (Livingston and Osteen 2008). When native species are displaced, additional indirect effects can then spread throughout the system, influencing nutrient cycling and altering ecosystem stability. This variety of effects results in billions of dollars spent annually to control the spread of non-natives (Moline and Poff 2008). In Montana, Russian olive (Elaeagnus angustifolia) is a non-native species of special concern. Introduced into the region only about 140 years ago, it is now the third most common riparian tree species and is widely credited both with causing the decline in native cottonwoods (Populus spp.) and altering plant and animal communities in riparian forests (Friedman et al. 2005). Studies of invasive species revolve around two main questions. First, how do invasive species affect the systems they invade? Second, how do invasives become established so successfully and so quickly? This study combines these two issues in an investigation of a possible trait that could have broader effects on the native systems, allowing for successful invasion. As mentioned above, Russian olive affects the systems it invades through directly competing with and displacing the native cottonwood species. Additionally, Russian olive has indirect effects that spread throughout the system. For example, Kinkade (pers. comm) observed the Russian olive leaf packs attract a greater abundance of macroinvertebrates and decay more quickly than cottonwood leaves. Additionally, Obritschkewitsch (pers. comm) observed increased CO 2 emission from soils beneath Russian olive trees. Finally, Albrecht (pers comm) had noted that Russian olive leaves suffer less damage from herbivores than cottonwood leaves. These observations are all consistent with the idea that Russian olive has both direct and indirect effects on the systems it occupies. The second important question with invasive species is how they become established so successfully and so quickly. Russian olive possesses a number of traits that contribute to its success: thorns, shade tolerance, nitrogen fixing, high lignin, and high cellulose (Katz and Shafroth 2003). There is also the possibility that Russian olive is successful because it produces allelochemicals. Allelochemicals are substances secreted by a plant as a defense mechanism against herbivores or competing plants. In two previous projects, it was observed that simple extracts from Russian olive leaves can inhibit germination of other plant species that could compete with Russian olive as well deterring invertebrate herbivores that may damage Russian olive (Albrecht pers comm). This project investigates the possibility that allelochemicals produced by Russian olive may alter the activity of the soil microbial community and in turn the nutrient cycling in the invaded ecosystem. Soil microbes (producers, consumers, and decomposers) are an important part of ecosystem function. A new species of plant in the community of producers might influence ecosystem function (Donald and William 2003) if its allelechemicals alter the activity of the community of soil microbes. Two hypotheses were examined to explain how Russian olive might influence the activity of microbial community in the soils it occupies. As mentioned above, Russian olive is a nitrogen fixer, and its leaves contain 2-3X more nitrogen than cottonwood leaves (Moline and Poff 2008). H1: The higher nitrogen content of Russian olive leaves might stimulate higher rates of soil microbial activity. Alternatively, H2: Russian olive produces allelochemicals and these chemicals might inhibit soil microbial activity. Page 2

3 Methods Area Sampled Soil samples were collected at Riverfront Park, Billings, MT ( , ) and Kindsfater Wetlands, Laurel MT ( , ) where Russian olives and plains cottonwoods (Populus deltoids) occur (Figure 1). Samples were collected from the base of neighboring trees that did not have overlapping crowns, but with the rim of canopies never further than five meters away. At each site, measurements for soil temperature, soil ph, and tree DBH were recorded. Using a soil core an estimated 10 grams of soil was acquired in the morning and transported back to the lab within the hour. To determine the soil moisture content for each sample, four grams of sample soil were removed and dried at 60 C, After 24 hours the soil was reweighed to determine the gravimetric water content. Figure 1. Map of two study areas. Another 4 grams of soil from each sample was mixed with 32ml of sterile 0.85% NaCl. After, the solution was placed on a shaker for three hours in order to dispense as many microbes into solution as possible. The solution was then centrifuged at 4400 rpm for three minutes. The supernatant was used to inoculate the Biolog Ecoplates with 135μl per well. The plates were incubated at 20 C and read with a 96-well Microplate Manager 6 Reader at 595nm every 12 hours for three days. Biolog Ecoplates A single plate is comprised of 96 wells, with each well containing a specific carbon source (31 carbon sources, repeated 3 times, including 23 chemical sensitivity assays and 3 deionized water controls) and tetrazolium dye (Figure 2). The dye turns purple in the presence of NADH, which is a product of metabolism. This color change indicates the extent to which the carbon source is metabolized directly relating to the level of microbial activity in that well. Page 3

4 Microplate Manager 6 produced a spreadsheet of the productivity numbers. To determine standard productivity of any given Biolog plate, all the wells were averaged on that Biolog plate, and then the three control wells were subtracted (Figure 2). Figure 2. A basic layout of the Biolog Plate pictured in the top right corner. Bottom half illustrates an example of the Excel spreadsheet, showing deionized water controls indicated by the red arrows and the Ecoplate productivity number circled in red. Results The average productivity number for the Russian olive sites at 12 hours was 0.02±0.007 and a slightly higher average productivity number of 0.03±0.011 for cottonwood sites. For the next 60 hours the average productivity numbers typically increased 0.125/12hrs for Russian olive sites and 0.119/12hrs for cottonwood sites (Figures 3). These results show no statistical difference in microbial activity between Russian olive (Elaeagnus angustifolia) and native cottonwoods (Populus spp.) soils. Page 4

5 Productivity # Figure 3. An average microbe productivity number of soils exposed to Russian olive and cottonwoods trees separated by 12 hours periods Time (hrs) RO CW Although there was no variance between the two species, the two zones sampled were notably different from each other (Figure 4). Within the Russian olive sites, the average productivity numbers from Riverfront park sites had higher values (by on average) versus those from Kindsfater wetland (Figure 5) p= Figure 4. Average microbe productivity number for soils exposed to Russian olive and cottonwoods trees separated by 12-hour periods and location. There was a similar trend with the cottonwood sites: Riverfront productivity numbers were on average higher than the ones from the Kindsfater wetland location with a p= A complete list of p-values can be found in Table 1. Page 5

6 Productivity # Figure 5. Average productivity number comparison of soils exposed to Russian olive and cottonwood at Riverfront Park and Kindsfater wetland in Billings, MT RO CW Riverfront Park Sample #'s Kindsfater Wetland Table 1. P-values for comparing the Riverfront Park and Kindsfater wetland locations, separated by time periods and tree species. Highlighted in yellow difference significant at 5%, and in green at 10%. Time RO CW 12hrs hrs hrs E-06 48hrs E-05 60hrs hrs Discussion The preliminary results from this study show no statistically significant difference in soil microbial activity between soils of Russian olive and native cottonwood species thus H1 and H2 were not supported. H1: Russian olive might stimulate higher rates of soil microbial activity due to the higher nitrogen content in its leaves. H2: Russian olive might inhibit soil microbial activity through the production of allelochemicals. It is important to note that this study only examined two areas, 11 miles apart and both approximately 26 acres. River Front Park in Billings, MT has an established riparian community for both Russian olive and cottonwood trees. It also contains a few substantial water sources: the Yellowstone River, Lake Josephine and a number of small creeks. Kindsfater wetland in Laurel, MT, the second area sampled, lacks large bodies of water. It served as a gravel mining operation until 1987, and in 2002 identified as a potential wetland restoration site with work to develop the site as a wetland bank under progress. The tree communities at Kindsfater are thus only recently established and the soil composition may differ greatly since topsoil was removed to access the gravel. Page 6

7 An attempt was made to evaluate some of these variables by examining average microbial activity numbers in relation to soil moisture, temperature, ph, and DBH, but no positive correlation was found. However, the significant difference between the two sites should not be ignored. One way of interpreting these results is to speculate that the greater nitrogen content did not stimulate and the allelochemicals did not inhibit the soil microbial activity. If one mechanism stimulates and the other inhibits, the two factors may result in negligible changes in overall microbial activity. Kruse et al (2000) found evidence that K. angustifolia exhibits mechanisms of germination inhibition of native riparian species by suppressing of nitrogenfixing bacteria. The interaction between plant chemicals and soil nitrogen-fixing microorganisms could potentially be an interdependent mechanism keeping the soil environment at equilibrium. In this context, although the overall microbial activity would remain unaffected, the composition of soil microorganisms could vary drastically, as the nitrogen-fixing bacteria could be displacing the native microbes for those soils. Finally, there is the issue of soil microbial community composition. Russian olive s potential allelopathic mechanism works through releasing chemicals into the surrounding soil environment by leaching, root exudation, volatilization, residue decomposition, and other processes (Ehrenfeld et al. 2003). In recent years, work has been done on another allelopathic shrub, Polygonella myriophylla. The chemicals this plant secretes are hydroquinone and gallic acid. Microorganisms in scrub soils have been shown to convert these compounds to forms they are able to utilize (Weidenhamer and Romeo 2004). It is possible that the soil samples examined in this study were only similar in the total microbial activity levels because a certain species of microorganism was thriving, while potentially many other species were absent. To assess this new hypothesis future studies should attempt to initially examine the already existing Biolog data, focusing on the metabolic patterns and eventually conducting new experiments evaluating the microbial community composition in greater detail. Acknowledgements These experiments were carried out with support from the Montana Space Grant Consortium, Yellowstone River Research Center, and Rocky Mountain College SEED Grant. The results were presented at the Murdock College Science Research Program Conference, Annual Yellowstone River Research Center Student Forum and the Montana Space Grant Consortium Student Research Symposium. Page 7

8 Literature Cited Ehrenfeld, J. G Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6 (6): doi: /s Friedman, J., G. Auble, P. Shafroth,, M. Scott, M. Merigliano, M. Freehling and N. Griffin Biological invasions 7.4: Katz, L. and P. Shafroth Biology, ecology and management of (Elaeagnus angustifolia L). Russian olive in western North America. Wetlands 23(4):763. Kaur, H., R. Kaur, S. Kaur, I. Baldwin and T. Inderjit Taking ecological function seriously: soil microbial communities can obviate allelopathic effects of released metabolites. PLoS ONE 4:e4700. Kruse, M., M. Standberg and B. Strandberg Ecological effects of allelopathic plants a review. National Environmental Research Institute. NERI Technical Report No. 315, Silkeborg, P66. Moline, A.B. and N.L. Poff Growth of an invertebrate shredder on native (Populus) and non-native (Tamarix, Elaeagnus) leaf litter. Freshwater Biology 53: Weidenhamer, J.D. and J.T. Romeo Allelochemicals of (Polygonella myriophylla) chemistry and soil degradation. J. Chem. Ecol. 30: Zak, D., W. Holmes, D. White, A. Peacock and D. Tilman Plant Diversity, Soil Microbial Communities, and Ecosystem Functions: Are There Any Links? Ecology 84: Page 8

Weeds, Exotics or Invasives?

Weeds, Exotics or Invasives? Invasive Species Geography 444 Adopted from Dr. Deborah Kennard Weeds, Exotics or Invasives? What is a weed? Invasive species? 1 Weeds, Exotics or Invasives? Exotic or non-native: Non-native invasive pest

More information

Allelopathy In Trees

Allelopathy In Trees Allelopathy In Trees by Dr. Kim D Coder, Daniel B. Warnell School of Forest Resources, University of Georgia 4/99 Trees have developed in ecological systems filled with many other organisms. The environment,

More information

Adaptive Radiation (Lexile 990L)

Adaptive Radiation (Lexile 990L) daptation daptive Radiation (Lexile 990L) 1 The Hawaiian Islands are the picture of a tropical paradise. There are beaches, mountains, rainforests, grasslands, and deserts to explore, often on a single

More information

Ch20_Ecology, community & ecosystems

Ch20_Ecology, community & ecosystems Community Ecology Populations of different species living in the same place NICHE The sum of all the different use of abiotic resources in the habitat by s given species what the organism does what is

More information

SUCCESSION Community & Ecosystem Change over time

SUCCESSION Community & Ecosystem Change over time Schueller NRE 509: Lecture 23 SUCCESSION Community & Ecosystem Change over time 1. Forest study revisited 2. Patterns in community change over time: 3 cases 3. What is changing? 4. What determines the

More information

It is relatively simple to comprehend the characteristics and effects of an individual id fire. However, it is much more difficult to do the same for

It is relatively simple to comprehend the characteristics and effects of an individual id fire. However, it is much more difficult to do the same for Interactive Effects of Plant Invasions and Fire in the Hot Deserts of North America Matt Brooks U.S. Geological Survey Western Ecological Research Center Yosemite Field Station, El Portal CA Presentation

More information

Evolutionary Ecology. Evolutionary Ecology. Perspective on evolution. Individuals and their environment 8/31/15

Evolutionary Ecology. Evolutionary Ecology. Perspective on evolution. Individuals and their environment 8/31/15 Evolutionary Ecology In what ways do plants adapt to their environment? Evolutionary Ecology Natural selection is a constant Individuals are continuously challenged by their environment Populations are

More information

Biomes Section 2. Chapter 6: Biomes Section 2: Forest Biomes DAY ONE

Biomes Section 2. Chapter 6: Biomes Section 2: Forest Biomes DAY ONE Chapter 6: Biomes Section 2: Forest Biomes DAY ONE Of all the biomes in the world, forest biomes are the most widespread and the most diverse. The large trees of forests need a lot of water, so forests

More information

What to take home. Resource Compe,,on Removing things Compe,,on: One plant depletes a resource; that deple,on has a deleterious effect on another.

What to take home. Resource Compe,,on Removing things Compe,,on: One plant depletes a resource; that deple,on has a deleterious effect on another. Plant- Plant Interac,ons What to take home Plants interact passively Plants remove things from the environment (generally resource compe,,on) Plants add things to the environment (organic chemicals [allelochemics],

More information

Interactions among Land, Water, and Vegetation in Shoreline Arthropod Communities

Interactions among Land, Water, and Vegetation in Shoreline Arthropod Communities AMERICAN JOURNAL OF UNDERGRADUATE RESEARCH VOL., NO.. () Interactions among Land, Water, and Vegetation in Shoreline Arthropod Communities Randall D. Willoughby and Wendy B. Anderson Department of Biology

More information

Associations between an invasive plant (Taeniatherum caputmedusae, Medusahead) and soil microbial communities

Associations between an invasive plant (Taeniatherum caputmedusae, Medusahead) and soil microbial communities Associations between an invasive plant (Taeniatherum caputmedusae, Medusahead) and soil microbial communities Elise S. Gornish¹, Noah Fierer², Albert Barberán¹ ¹University of California, Davis; ²University

More information

By the end of this lesson, you should be able to

By the end of this lesson, you should be able to Allelopathy 1 Allelopathy By the end of this lesson, you should be able to define allelopathy explain the difference between allelopathy and competition identify the key interactions in allelopathy provide

More information

Lecture 24 Plant Ecology

Lecture 24 Plant Ecology Lecture 24 Plant Ecology Understanding the spatial pattern of plant diversity Ecology: interaction of organisms with their physical environment and with one another 1 Such interactions occur on multiple

More information

Competition Among Organisms

Competition Among Organisms A Vote for Ecology Activity 5 Competition Among Organisms GOALS In this activity you will: Observe the effects of competition among plants for space and nutrients. Describe the possible effects of introducing

More information

Ecology Review. 1. Fly larvae consume the body of a dead rabbit. In this activity, they function as

Ecology Review. 1. Fly larvae consume the body of a dead rabbit. In this activity, they function as Name: ate: 1. Fly larvae consume the body of a dead rabbit. In this activity, they function as. producers. scavengers. herbivore. parasites 4. n earthworm lives and reproduces in the soil. It aerates the

More information

Plant responses to climate change in the Negev

Plant responses to climate change in the Negev Ben-Gurion University of the Negev Plant responses to climate change in the Negev 300 200 150? Dr. Bertrand Boeken Dry Rangeland Ecology and Management Lab The Wyler Dept. of Dryland Agriculture Jacob

More information

Chapter 4 Ecosystems and Living Organisms

Chapter 4 Ecosystems and Living Organisms Chapter 4 Ecosystems and Living Organisms I. Evolution A. The cumulative genetic changes that occur in a population of organisms over time 1. Current theories proposed by Charles Darwin, a 19 th century

More information

Why do Invasive Species Successfully Establish & Invade?

Why do Invasive Species Successfully Establish & Invade? Why do Invasive Species Successfully Establish & Invade? Many are introduced, few become invasive Hypotheses about why invaders succeed: 1. Invasive species have traits that favor establishment and spread

More information

3 Communities, Biomes, and Ecosystems BIGIDEA Write the Big Idea for this chapter.

3 Communities, Biomes, and Ecosystems BIGIDEA Write the Big Idea for this chapter. 3 Communities, Biomes, and Ecosystems BIGIDEA Write the Big Idea for this chapter. Use the What I Know column to list the things you know about the Big Idea. Then list the questions you have about the

More information

Hickory Hills Park: Invasive Species Management Plan Prepared by Colton Johnson, Animal Ecology, Iowa State University.

Hickory Hills Park: Invasive Species Management Plan Prepared by Colton Johnson, Animal Ecology, Iowa State University. Hickory Hills Park: Invasive Species Management Plan Prepared by Colton Johnson, Animal Ecology, Iowa State University Summer 2011 Above: Hickory Hills Park Left: Garlic Mustard Right: Autumn Olive 1 Record

More information

Pee Dee Explorer. Science Standards

Pee Dee Explorer. Science Standards Science Standards About Pee Dee Explorer What does it mean when someone says they are from the "Pee Dee" of South Carolina? A place is bigger than its physical geography. A "sense of place" weaves together

More information

Dave Williams Liz Schultheis Jen Lau

Dave Williams Liz Schultheis Jen Lau Dave Williams Liz Schultheis Jen Lau Goals for today: Discuss invasive species of Michigan, and one of the major hypotheses on their success ERH Provide resources for the classroom that can be used to

More information

C1 Weeds in North Queensland

C1 Weeds in North Queensland C1 Weeds in North Queensland Introduction This presentation covered Siam weed (Chromolaena odorata), the Four Tropical Weeds (Miconia spp., Mikania macrantha, Clidemia hirta, Limnocharis flava), and Mimosa

More information

Our Living Planet. Chapter 15

Our Living Planet. Chapter 15 Our Living Planet Chapter 15 Learning Goals I can describe the Earth s climate and how we are affected by the sun. I can describe what causes different climate zones. I can describe what makes up an organisms

More information

Crossword puzzles! Activity: stratification. zonation. climax community. succession. Match the following words to their definition:

Crossword puzzles! Activity: stratification. zonation. climax community. succession. Match the following words to their definition: Activity: Match the following words to their definition: stratification zonation climax community succession changing community structure across a landscape changing community composition over time changes

More information

Using Soil Microbes to Enhance Restoration of Native FL Scrub. Ben Sikes University of Texas at Austin

Using Soil Microbes to Enhance Restoration of Native FL Scrub. Ben Sikes University of Texas at Austin Using Soil Microbes to Enhance Restoration of Native FL Scrub Ben Sikes University of Texas at Austin Talk Outline The role of soil biota in ecosystem processes and plant Current uses of soil microbes

More information

Introduction. Ecology is the scientific study of the interactions between organisms and their environment.

Introduction. Ecology is the scientific study of the interactions between organisms and their environment. Introduction Ecology is the scientific study of the interactions between organisms and their environment. 1. The interactions between organisms and their environments determine the distribution and abundance

More information

Ecology. Ecology terminology Biomes Succession Energy flow in ecosystems Loss of energy in a food chain

Ecology. Ecology terminology Biomes Succession Energy flow in ecosystems Loss of energy in a food chain Ecology Ecology terminology Biomes Succession Energy flow in ecosystems Loss of energy in a food chain Terminology Ecology- the study of the interactions of living organisms with one another and with their

More information

Advanced Placement Biology Union City High School Summer Assignment 2011 Ecology Short Answer Questions

Advanced Placement Biology Union City High School Summer Assignment 2011 Ecology Short Answer Questions Summer Assignment 2011 Ecology Short Answer Questions 1. Each of the terrestrial biomes have very different characteristics that determine the niches of the organisms that live within that biome. (a) Select

More information

Vanishing Species 5.1. Before You Read. Read to Learn. Biological Diversity. Section. What do biodiversity studies tell us?

Vanishing Species 5.1. Before You Read. Read to Learn. Biological Diversity. Section. What do biodiversity studies tell us? Vanishing Species Before You Read Dinosaurs are probably the most familiar organisms that are extinct, or no longer exist. Many plants and animals that are alive today are in danger of dying out. Think

More information

Continue 59 Invasive. Yes. Place on invasive plant list, no further investigation needed. STOP. No. Continue on to question 2.

Continue 59 Invasive. Yes. Place on invasive plant list, no further investigation needed. STOP. No. Continue on to question 2. Ohio Plant Assessment Protocol Posted Date: 7/2/ Step II Outcome: Directions: Place an "" in the Score column next to the selected answer to each of the four questions.. Is this plant known to occur in

More information

Which of the following is NOT an abiotic factor? A) Rocks B) Soil C) Mountains D) Decomposers

Which of the following is NOT an abiotic factor? A) Rocks B) Soil C) Mountains D) Decomposers Which of the following is NOT an abiotic factor? A) Rocks B) Soil C) Mountains D) Decomposers Which of the following leads to stability in an ecosystem A) Low amount of biodiversity B) Low amount of biotic

More information

Worksheet for Morgan/Carter Laboratory #13 Bacteriology

Worksheet for Morgan/Carter Laboratory #13 Bacteriology Worksheet for Morgan/Carter Laboratory #13 Bacteriology Ex. 13-1: INVESTIGATING CHARACTERISTICS OF BACTERIA Lab Study A: Colony Morphology Table 13.1 Characteristics of Bacterial Colonies Name of Bacteria

More information

Patterns of impact of three invasive plant species on freshwater ecosystems

Patterns of impact of three invasive plant species on freshwater ecosystems Patterns of impact of three invasive plant species on freshwater ecosystems Iris Stiers & Ludwig Triest Vrije Universiteit Brussel, Plant Biology and Nature Management, BELGIUM freshwater ecosystem WITHOUT

More information

Nature: a harmonious & peaceful place?! What disturbs the peace?

Nature: a harmonious & peaceful place?! What disturbs the peace? Nature: a harmonious & peaceful place?! What disturbs the peace? Disturbance Disturbance: a relatively discrete event in time that causes abrupt change in ecosystem, community, or population structure,

More information

Michigan Curriculum Framework

Michigan Curriculum Framework Elementary Reference Content Standards Wetlands (with teacher Rainforest (with teacher 1. All students will apply an understanding of cells to the functioning of multicellular organisms; and explain how

More information

FOOD WEB. WHY IS THE SUN AT THE BOTTOM? IS THE ALLIGATOR THE LAST LIVING BEING IN THE WEB?

FOOD WEB.   WHY IS THE SUN AT THE BOTTOM? IS THE ALLIGATOR THE LAST LIVING BEING IN THE WEB? FOOD WEB http://trinityeverglades.weebly.com WHY IS THE SUN AT THE BOTTOM? IS THE ALLIGATOR THE LAST LIVING BEING IN THE WEB? www.emaze.com FOOD CHAINS (SIMPLER AND LINEAR) AIR (N 2, O 2, CO 2 ) FUNGI

More information

Weathering, Erosion & Soils Quiz

Weathering, Erosion & Soils Quiz Weathering, Erosion & Soils Quiz Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The diagram below shows a cross-section of a rock layer. Erosion is the

More information

Section A: Multiple choice (30 Marks)

Section A: Multiple choice (30 Marks) Grade 7 Science Unit 1 SAMPLE TEST Section A: Multiple choice (30 Marks) 1. Which term defines a group of interacting living and non-living things? A. community B. ecosystem C. habitat D. niche 2. Which

More information

Overview of Chapter 5

Overview of Chapter 5 Chapter 5 Ecosystems and Living Organisms Overview of Chapter 5 Evolution Natural Selection Biological Communities Symbiosis Predation & Competition Community Development Succession Evolution The cumulative

More information

Ch. 14 Interactions in Ecosystems

Ch. 14 Interactions in Ecosystems Ch. 14 Interactions in Ecosystems 1 14.1 Habitat vs. Niche Habitat all biotic and abiotic factors where an organism lives WHERE a species lives 2 Ecological Niche All physical, chemical, and biological

More information

Secondary Succession and its Effects on Soil Nutrients and Fungal Communities. Amanda Cayo

Secondary Succession and its Effects on Soil Nutrients and Fungal Communities. Amanda Cayo Cayo 1 Secondary Succession and its Effects on Soil Nutrients and Fungal Communities Amanda Cayo Abstract Fungi serve many purposes in ecosystems from fixing nitrogen for plants to decomposing detritus.

More information

Environmental Management 123 West Indiana Ave., Room 202 DeLand, FL (386) Environmental Management Outdoor Education

Environmental Management 123 West Indiana Ave., Room 202 DeLand, FL (386) Environmental Management Outdoor Education Environmental Management 123 West Indiana Ave., Room 202 DeLand, FL 32720 (386) 736-5927 Environmental Management Outdoor Education 2015-2016 Environmental Management Education Offerings Botany Botany,

More information

CHAPTER. Evolution and Community Ecology

CHAPTER. Evolution and Community Ecology CHAPTER 5 Evolution and Community Ecology Lesson 5.2 Species Interactions The zebra mussel has completely displaced 20 native mussel species in Lake St. Clair. Lesson 5.2 Species Interactions The Niche

More information

HAND IN BOTH THIS EXAM AND YOUR ANSWER SHEET. Multiple guess. (3 pts each, 30 pts total)

HAND IN BOTH THIS EXAM AND YOUR ANSWER SHEET. Multiple guess. (3 pts each, 30 pts total) Ecology 203, Exam I. September 23, 2002. Print name: (5 pts) Rules: Read carefully, work accurately and efficiently. There are no questions that were submitted by students. [FG:page #] is a question based

More information

HOMEWORK PACKET UNIT 2A. Part I: Introduction to Ecology

HOMEWORK PACKET UNIT 2A. Part I: Introduction to Ecology CP Biology Name Date Period HOMEWORK PACKET UNIT 2A Part I: Introduction to Ecology Name Class Date 3.1 What Is Ecology? Studying Our Living Planet 1. What is ecology? 2. What does the biosphere contain?

More information

PLANT RESPONSE TO DISTURBANCE

PLANT RESPONSE TO DISTURBANCE PLANT RESPONSE TO DISTURBANCE This discussion is based on: Briske, D. D. 1991. Developmental morphology and physiology of grasses. p. 85-108. In: Grazing Management: An Ecological Perspective. R. K. Heitschmidt

More information

The Sixth Extinction? Community effects on ecosystem processes CMM Chap The context: altered biodiversity. 2a. Loss of Global Biodiveristy:

The Sixth Extinction? Community effects on ecosystem processes CMM Chap The context: altered biodiversity. 2a. Loss of Global Biodiveristy: Community effects on ecosystem processes CMM Chap. 12 A.1. State factors and interactive controls: Species effects on interactive controls determine ecosystem consequences I. Introduction A. The context

More information

Lesson 9: California Ecosystem and Geography

Lesson 9: California Ecosystem and Geography California Education Standards: Kindergarten, Earth Sciences 3. Earth is composed of land air, and water. As a basis for understanding this concept: b. Students know changes in weather occur from day to

More information

10/6/ th Grade Ecology and the Environment. Chapter 2: Ecosystems and Biomes

10/6/ th Grade Ecology and the Environment. Chapter 2: Ecosystems and Biomes 7 th Grade Ecology and the Environment Chapter 2: Ecosystems and Biomes Lesson 1 (Energy Flow in Ecosystems) Each organism in an ecosystem fills an energy role. Producer an organism that can make its own

More information

Why do invasive species do so well?

Why do invasive species do so well? Why do invasive species do so well? Authors: Jennifer Bowen, Patrick Kearns, Jarrett Byrnes, Sara Wigginton, Warwick Allen, Michael Greenwood, Khang Tran, Jennifer Yu, James Cronin and Laura Meyerson Associate

More information

> True/False Indicate whether the statement is true or false.

> True/False Indicate whether the statement is true or false. Class: Date: Biology Chapter 3 Test: Communities, Bionics, and Ecosystems > True/False Indicate whether the statement is true or false. 1. The main abiotic distinction between temperate grassland and tropical

More information

Earth s Major Terrerstrial Biomes. *Wetlands (found all over Earth)

Earth s Major Terrerstrial Biomes. *Wetlands (found all over Earth) Biomes Biome: the major types of terrestrial ecosystems determined primarily by climate 2 main factors: Depends on ; proximity to ocean; and air and ocean circulation patterns Similar traits of plants

More information

Chapter 4 AND 5 Practice

Chapter 4 AND 5 Practice Name: Chapter 4 AND 5 Practice 1. Events that occur in four different ecosystems are shown in the chart below. Which ecosystem would most likely require the most time for ecological succession to restore

More information

ENVE203 Environmental Engineering Ecology (Nov 19, 2012)

ENVE203 Environmental Engineering Ecology (Nov 19, 2012) ENVE203 Environmental Engineering Ecology (Nov 19, 2012) Elif Soyer Biological Communities COMPETITION Occurs when 2 or more individuals attempt to use an essential common resource such as food, water,

More information

Australia/New Zealand Weed Risk Assessment adapted for Florida.

Australia/New Zealand Weed Risk Assessment adapted for Florida. Australia/New Zealand Weed Risk Assessment adapted for Florida. Data used for analysis published in: Gordon, D.R., D.A. Onderdonk, A.M. Fox, R.K. Stocker, and C. Gantz. 2008. Predicting Invasive Plants

More information

Invasive Species Test. 30 Stations 90 seconds each -or- 15 stations (2/seat) 3 minutes each

Invasive Species Test. 30 Stations 90 seconds each -or- 15 stations (2/seat) 3 minutes each Invasive Species Test 30 Stations 90 seconds each -or- 15 stations (2/seat) 3 minutes each Station 1 A. The insect transmits Huanglongbing killing the plant upon which it feeds. How was this species introduced

More information

AP Environmental Science I. Unit 1-2: Biodiversity & Evolution

AP Environmental Science I. Unit 1-2: Biodiversity & Evolution NOTE/STUDY GUIDE: Unit 1-2, Biodiversity & Evolution AP Environmental Science I, Mr. Doc Miller, M.Ed. North Central High School Name: ID#: NORTH CENTRAL HIGH SCHOOL NOTE & STUDY GUIDE AP Environmental

More information

Ecology - the study of how living things interact with each other and their environment

Ecology - the study of how living things interact with each other and their environment Ecology Ecology - the study of how living things interact with each other and their environment Biotic Factors - the living parts of a habitat Abiotic Factors - the non-living parts of a habitat examples:

More information

I. PLANT INTERACTION IN AGROECOSYSTEMS ALLELOPATHY

I. PLANT INTERACTION IN AGROECOSYSTEMS ALLELOPATHY Plant Interactions in Agroecosystems Allelopathy. Page 1 of 5 I. PLANT INTERACTION IN AGROECOSYSTEMS ALLELOPATHY A. WHAT IS ALLELOPATHY 1. (AS DEFINED IN RICES' BOOK ON ALLELOPATHY): Allelopathy is the

More information

Levels of Organization in Ecosystems. Ecologists organize ecosystems into three major levels. These levels are: population, community, and ecosystem.

Levels of Organization in Ecosystems. Ecologists organize ecosystems into three major levels. These levels are: population, community, and ecosystem. Levels of Organization in Ecosystems Ecologists organize ecosystems into three major levels. These levels are: population, community, and ecosystem. Population A population is a group of individuals of

More information

ALLELOPATHIC EFFECTS OF CELOSIA ARGENTEA L. ON SPERMOSPHERE MICROORGANISMS

ALLELOPATHIC EFFECTS OF CELOSIA ARGENTEA L. ON SPERMOSPHERE MICROORGANISMS Int. J. LifeSc. Bt & Pharm. Res. 2013 P Saritha and A Sreeramulu, 2013 Research Paper ISSN 2250-3137 www.ijlbpr.com Vol. 2, No. 1, January 2013 2013 IJLBPR. All Rights Reserved ALLELOPATHIC EFFECTS OF

More information

Stamp Area. Biology - Note Packet #55. Major Climate Change ( ) What are some causes of major changes (or disruptions) in an ecosystem?

Stamp Area. Biology - Note Packet #55. Major Climate Change ( ) What are some causes of major changes (or disruptions) in an ecosystem? Name: Mr. LaFranca s - Period Date: Aim: How do ecosystems change over time? Do Now: In I Am Legend, Will Smith s character is the last man in an abandoned NYC. Why do you think grass is overtaking (growing

More information

Final Exam Plant Ecology 10 December Name:

Final Exam Plant Ecology 10 December Name: Final Exam Plant Ecology 10 December 2003 Name: Fill in the lank (each blank is worth 2 points; this section totals 22 points) 1. is the production of chemicals by one plant to suppress the growth or reproduction

More information

Unit 6 Populations Dynamics

Unit 6 Populations Dynamics Unit 6 Populations Dynamics Define these 26 terms: Commensalism Habitat Herbivory Mutualism Niche Parasitism Predator Prey Resource Partitioning Symbiosis Age structure Population density Population distribution

More information

Manitoba Curriculum Framework of Outcomes Grades K-3

Manitoba Curriculum Framework of Outcomes Grades K-3 Grades K-3 Reference Specific Learning Outcomes Wetlands Rainforest It is expected that students will: 100-4 observe and identify similarities and differences in the needs of living Organisms, Migration,

More information

Ecosystem change: an example Ecosystem change: an example

Ecosystem change: an example Ecosystem change: an example 5/13/13 Community = An assemblage of populations (species) in a particular area or habitat. Here is part of a community in the grassland of the Serengetti. Trophic downgrading of planet Earth: What escapes

More information

Name Block Date. The Quadrat Study: An Introduction

Name Block Date. The Quadrat Study: An Introduction Name Block Date The Quadrat Study: An Introduction A quadrat study can almost be thought of as a snapshot of the ecosystem during a particular year and at a particular time of that year. The plant and

More information

Ecosystem Review. EOG released questions

Ecosystem Review. EOG released questions Ecosystem Review EOG released questions 1. Which food chain is in the correct order? A grasshopper grass snake frog hawk B grasshopper frog hawk snake grass C grass grasshopper frog snake hawk D grass

More information

1 29 g, 18% Potato chips 32 g, 23% 2 30 g, 18% Sugar cookies 35 g, 30% 3 28 g, 19% Mouse food 27 g, 18%

1 29 g, 18% Potato chips 32 g, 23% 2 30 g, 18% Sugar cookies 35 g, 30% 3 28 g, 19% Mouse food 27 g, 18% 1. When testing the benefits of a new fertilizer on the growth of tomato plants, the control group should include which of the following? A Tomato plants grown in soil with no fertilizer B Tomato plants

More information

Unit 2 Ecology Study Guide. Niche Autotrophs Heterotrophs Decomposers Demography Dispersion

Unit 2 Ecology Study Guide. Niche Autotrophs Heterotrophs Decomposers Demography Dispersion Vocabulary to know: Ecology Ecosystem Abiotic Factors Biotic Factors Communities Population Unit 2 Ecology Study Guide Niche Autotrophs Heterotrophs Decomposers Demography Dispersion Growth Rate Carrying

More information

Hawaii s Coral Reefs. Developed by: Bobby Hsu, Jackie Gaudioso, and Diane Duke

Hawaii s Coral Reefs. Developed by: Bobby Hsu, Jackie Gaudioso, and Diane Duke Grade Level: Kindergarten Hawaii s Coral Reefs Developed by: Bobby Hsu, Jackie Gaudioso, and Diane Duke Purpose: This curriculum is designed to communicate: I. What is coral: overview coral anatomy, distribution,

More information

Materials: 3 sets of cards, a teacher key, vocabulary list or glossary ((Vocabulary list is also available online below the corresponding program))

Materials: 3 sets of cards, a teacher key, vocabulary list or glossary ((Vocabulary list is also available online below the corresponding program)) I Have, Who Has? An Interactive Vocabulary Game Woodland Ecosystem Study Vocabulary Grades 4 th -8th Introduction: Below is a collection of cards that connect to the Woodland Ecosystem Study Vocabulary

More information

LECTURE 8 Dispersal, Colonization, and Invasion

LECTURE 8 Dispersal, Colonization, and Invasion LECTURE 8 Dispersal, Colonization, and Invasion I. Introduction II. Some Definitions III. Dispersal IV. Colonization, seasonal migrations, and irruptions V. Diffusion versus jump dispersal VI. Barriers,

More information

Rainforest Ecosystems

Rainforest Ecosystems Rainforest Ecosystems Ecosystems: A Brief Review Collection of interdependent parts Environment provides inputs Ecosystem produces outputs Hydrosphere Atmosphere Lithosphere Inputs Abiotic Inputs Energy

More information

Purple Loosestrife Project Biocontrol Sites:

Purple Loosestrife Project Biocontrol Sites: Purple Loosestrife Project Biocontrol Sites: Interim results of a cooperative project between Michigan State University and Michigan Sea Grant Extension Photos, Maps and Layout by Jason K. Potter 2002

More information

Invasive Species Management Plans for Florida

Invasive Species Management Plans for Florida Invasive Species Management Plans for Florida Air Potato Dioscorea bulbifera (L.) Dioscoreaceae INTRODUCTION A native to tropical Asia, air potato, Dioscorea bulbifera, was first introduced to the Americas

More information

Weed Management In Shoalwater Bay Training Area An Integrated Approach. By Tennille Danvers & Belinda Shaw

Weed Management In Shoalwater Bay Training Area An Integrated Approach. By Tennille Danvers & Belinda Shaw Weed Management In Shoalwater Bay Training Area An Integrated Approach By Tennille Danvers & Belinda Shaw Introduction to SWBTA SWBTA is located 80km north of Rockhampton, covering an area of approximately

More information

CHAPTER 3 WATER AND THE FITNESS OF THE ENVIRONMENT. Section B: The Dissociation of Water Molecules

CHAPTER 3 WATER AND THE FITNESS OF THE ENVIRONMENT. Section B: The Dissociation of Water Molecules CHAPTER 3 WATER AND THE FITNESS OF THE ENVIRONMENT Section B: The Dissociation of Water Molecules 1. Organisms are sensitive to changes in ph 2. Acid precipitation threatens the fitness of the environment

More information

Willow Pond Introduction

Willow Pond Introduction Name: Willow Pond Introduction Pond Ecosystems An ecosystem is made up of both biotic (living) and abiotic (non-living) components. Biotic elements include plants, animals, fungi, and microorganisms. Some

More information

BIOS 3010: Ecology Lecture 12: Decomposition and Detritivory: 2. Decomposers and detritivores: 3. Resources of decomposers: Lecture summary:

BIOS 3010: Ecology Lecture 12: Decomposition and Detritivory: 2. Decomposers and detritivores: 3. Resources of decomposers: Lecture summary: BIOS 3010: Ecology Lecture 12: Decomposition and Detritivory: Lecture summary: Decomposers & detritivores: Resources. Characteristics. Model of detritivory. Size of detritivores. Diversity & abundance.

More information

Ecosystems. 1. Population Interactions 2. Energy Flow 3. Material Cycle

Ecosystems. 1. Population Interactions 2. Energy Flow 3. Material Cycle Ecosystems 1. Population Interactions 2. Energy Flow 3. Material Cycle The deep sea was once thought to have few forms of life because of the darkness (no photosynthesis) and tremendous pressures. But

More information

Thorns, Prickles, Spines - The characteristics make the plant less likely to be grazed by large herbivores; not effective against insect herbivores.

Thorns, Prickles, Spines - The characteristics make the plant less likely to be grazed by large herbivores; not effective against insect herbivores. PLANT RESPONSE TO DISTURBANCE This discussion is based on: Briske, D. D. 1991. Developmental morphology and physiology of grasses. p. 85-108. In: Grazing Management: An Ecological Perspective. R. K. Heitschmidt

More information

Outline. Ecology. Introduction. Ecology and Human. Ecology and Evolution. Ecology and Environment 5/6/2009. Ecology

Outline. Ecology. Introduction. Ecology and Human. Ecology and Evolution. Ecology and Environment 5/6/2009. Ecology Outline Ecology SCBI 113 Essential Biology Nuttaphon Onparn, PhD. 7 May 2009 Ecology Introduction Ecology and ecosystem Ecosystem Structure Function Interactions Biomes 1 2 Ecology Introduction Greek oikos+

More information

1. competitive exclusion => local elimination of one => competitive exclusion principle (Gause and Paramecia)

1. competitive exclusion => local elimination of one => competitive exclusion principle (Gause and Paramecia) Chapter 54: Community Ecology A community is defined as an assemblage of species living close enough together for potential interaction. Each member of same community has a particular habitat and niche.

More information

TOPICS INCLUDE: Ecosystems Energy Succession UNIT 2: THE LIVING WORLD (PART A)

TOPICS INCLUDE: Ecosystems Energy Succession UNIT 2: THE LIVING WORLD (PART A) TOPICS INCLUDE: Ecosystems Energy Succession UNIT 2: THE LIVING WORLD (PART A) Ecology- study of relationships between organisms and their environment examines how organisms (biotic) interact with their

More information

INTRODUCTION bioactive compounds Pigmentation chromobacteria water soluble water insoluble

INTRODUCTION bioactive compounds Pigmentation chromobacteria water soluble water insoluble INTRODUCTION So far we have witnessed several useful applications of microbes including applications in food and the bioremediation of the environment. Besides consuming the desired substrate (oil) and

More information

Sonoran Desert / Ecology Test

Sonoran Desert / Ecology Test I. Visuals (16 pts) Sonoran Desert / Ecology Test 1a. What type of flight adaptation is this? b. Name the bird pictured. 2. What resource is this species adapted to conserve? 3a. What type of flight adaptation

More information

Environments and Ecosystems

Environments and Ecosystems Environments and Ecosystems A habitat is a place where organisms naturally live and grow. Habitats include biotic, living factors, such as plants and animals and abiotic, non-living factors, such as rocks,

More information

Lab 4 The Scientific Method and Allelopathy

Lab 4 The Scientific Method and Allelopathy Lab 4 The Scientific Method and Allelopathy I. Central questions How does the scientific method work? How do plants affect each other? II. Learning Objectives At the end of this lab you will be able to

More information

Seeded Lower Grasslands

Seeded Lower Grasslands Description Poor condition grasslands have been seeded to crested wheatgrass-alfalfa mixes throughout the southern interior. The crested wheatgrass tends to be persistent unless abused, while the alfalfa

More information

Chapter 8. Biogeographic Processes. Upon completion of this chapter the student will be able to:

Chapter 8. Biogeographic Processes. Upon completion of this chapter the student will be able to: Chapter 8 Biogeographic Processes Chapter Objectives Upon completion of this chapter the student will be able to: 1. Define the terms ecosystem, habitat, ecological niche, and community. 2. Outline how

More information

Grade Level Suggestion: Grades 4 th to 5 th. Time Frame: minutes.

Grade Level Suggestion: Grades 4 th to 5 th. Time Frame: minutes. I Have, Who Has? An Interactive Vocabulary Game Woodland Ecosystem Study Vocabulary Grades 4 th -8th Introduction: Below is a collection of cards that connect to the Woodland Ecosystem Study Vocabulary

More information

TAKE A LOOK 3. Complete Carbon dioxide in the air is used for. The Cycles of Matter continued

TAKE A LOOK 3. Complete Carbon dioxide in the air is used for. The Cycles of Matter continued CHAPTER 2 1 The Cycles of Matter SECTION Cycles in Nature BEFORE YOU READ After you read this section, you should be able to answer these questions: Why does matter need to be recycled? How are water,

More information

Catastrophic Events Impact on Ecosystems

Catastrophic Events Impact on Ecosystems Catastrophic Events Impact on Ecosystems Hurricanes Hurricanes An intense, rotating oceanic weather system with sustained winds of at least 74 mph and a welldefined eye Conditions for formation: Warm water

More information

Fernando A. O. Silveira Universidade Federal de Minas Gerais, Brazil

Fernando A. O. Silveira Universidade Federal de Minas Gerais, Brazil Fernando A. O. Silveira Universidade Federal de Minas Gerais, Brazil www.leept.webnode.com Inselbergs are geologically-ancient, nutrientimpoverished granitic and gneiss monoliths that rise sharply above

More information

Scholarship 2008 Biology

Scholarship 2008 Biology 93101Q S 931012 Scholarship 2008 Biology 9.30 am Saturday 22 November 2008 Time allowed: Three hours Total marks: 24 QUESTION booklet There are THREE questions in this booklet. Answer ALL questions. Write

More information

Quantum Dots: A New Technique to Assess Mycorrhizal Contributions to Plant Nitrogen Across a Fire-Altered Landscape

Quantum Dots: A New Technique to Assess Mycorrhizal Contributions to Plant Nitrogen Across a Fire-Altered Landscape 2006-2011 Mission Kearney Foundation of Soil Science: Understanding and Managing Soil-Ecosystem Functions Across Spatial and Temporal Scales Progress Report: 2006007, 1/1/2007-12/31/2007 Quantum Dots:

More information

About me (why am I giving this talk) Dr. Bruce A. Snyder

About me (why am I giving this talk) Dr. Bruce A. Snyder Ecology About me (why am I giving this talk) Dr. Bruce A. Snyder basnyder@ksu.edu PhD: Ecology (University of Georgia) MS: Environmental Science & Policy BS: Biology; Environmental Science (University

More information

Honors Biology Ecology Concept List

Honors Biology Ecology Concept List 1. For each pair of terms, explain how the meanings of the terms differ. a. mutualism and commensalism b. parasitism and predation c. species richness and species diversity d. primary succession and secondary

More information