MORPHOLOGICAL AND HISTO-ANATOMICAL ASPECTS AT SOME DICOTILEDONATE SEEDLINGS RELATED TO THE VASCULAR TRANSITION

Size: px
Start display at page:

Download "MORPHOLOGICAL AND HISTO-ANATOMICAL ASPECTS AT SOME DICOTILEDONATE SEEDLINGS RELATED TO THE VASCULAR TRANSITION"

Transcription

1 Analele ştiinţifice ale Universităţii Al. I. Cuza Iaşi Tomul LII, s. II a. Biologie vegetală, 2006 MORPHOLOGICAL AND HISTO-ANATOMICAL ASPECTS AT SOME DICOTILEDONATE SEEDLINGS RELATED TO THE VASCULAR TRANSITION RODICA RUGINĂ, C.TOMA, LĂCRĂMIOARA IVĂNESCU Abstract: The authors investigate the morphology and structure of seedlings from 4 different species of herbal dicotyledonate: Mirabilis jalapa L., Pisum sativum L., Ricinus communis L. and Tropaeolum majus L., some with epigeal and some with hipogeal germination. Studying the structure of the vascular system during 21 days from the germination, we distinguished the transformation from the primary structure of the root to the primary structure of the stem, underlining the level where the histological changes take place along the axis of the seedlings, the order in which the xylem vessels appear, extinguish and other appear in different positions. The gathered data support the theory of torsion as well as the theory of desmogenesis. The type of germination does not influence the level where the vascular transition takes place. Key words: blastogeny, vascular transition. Introduction The metamorphosis of the alternative structure of the vascular apparatus of the root into the overlapped structure of the stem has been a very interesting topic since the beginning of the 20th century, especially for the French school of Botanic. During the last decades, very many theories and hypothesis were stated, among which the desmogenesis developed by G. Chauveaud, revolutionary as thinking manner through its data about the hystogenesis. Although numerous pieces of information accumulated conclude in this direction, it seams that the theory of rotation and torsion is assimilated by the majority of the botanists in their studies regarding the hystogenesis of the vascular system.in this paper we wish to show based on the analyzed material that the theory of rotation actually provides data in favor of the Chauveaud theory. The lack of information regarding the hystogenesis of the vascular apparatus in the Romanian literature of specialty encouraged us in this work, even if it will only become a starting point for future research in the field of vegetal histology. Botanical Garden of Iassy University Al.I.Cuza Iassy, Faculty of Biology 123

2 Historical references As we have already mentioned, at the beginning of the 20 th century and during its course the French botanists have approached many aspects regarding the structure of the vascular apparatus at seedlings and its transformations in ontogenesis. Thus, Lenoir M. [3], as follower of torsion and deduplication, supports this theory with the modifications of the vascular system at seedlings from Veronica and Cucumis species, also given the histological data and the physiological argumenţs. Chauveaud G. [1] rejects vehemently the previous theories regarding the vascular transition, elaborating a new one related to the evolution of the vascular system and to desmogensis, distinguishing the, alternative position of the vascular bundles (characteristic to the root), the intermediary one (characteristic to hypocotyl) and overlapped (characteristic to the stem). The author also claims that the first elements conductor of phloem and then of xylem appear from the direct differentiations of the fundamental parenchyma and the next ones from the differentiation of a meristem (procambium). The same G. Chauveaud first defines the notion of contingent, taken over later by A. Tronchet [5, 6] and used to describe the structure modifications of the vascular system at Brassicaceae. H. Hayward [1967] in his monographic work named "The structure of economic plants", studying the morphology and anatomy of some culture plants, also refers to a few particularities of the germination of seeds, to the structure of seedlings and to the hystogenesis of their vascular system. The school of vegetal morphology and anatomy from Iaşi, considering some aspects of blastogenie at different species of Fabaceae [4] underlined the fact that the most important characters with taxonomic value are offered by the shape and size of the cotyledons, of the folios and tendrils. Material and methods The morphology of germination and seedlings (starting with its cotiledonar phase and lasting until the appearance of the first 2-3 leaves) was studied on material obtained from sowing in Petri boxes or flower pots. We analyzed seedlings from 3 to 21 days old belonging to the following species: Mirabilis jalapa L., Pisum sativum L., Ricinus communis L. and Tropaeolum majus L. To observe the changes of the vascular tissues, the hysto-anatomical analyze was done on transversal sections at three levels trough the root, the hypocotyls and epicotyls. The sections were done using the hand microtome but also using the one with paraffin and then they were colored with Heidenhaim hematoxyline and/or with green iodine and alaunat carmine. 124

3 The purpose being to research the evolution of the vascular system, our attention was focused on the central cylinder and less on the other anatomical zones of the investigated organs in which the modifications were not very significant during the first 21 days from germination. Results Mirabilis jalapa L. (Nyctaginaceae) The morphology of the seedlings. The germination is epigeous and takes place after 14 days from the sowing, when at the surface of the soil the two asymmetrical cotyledons appear. After another 2-3 days, the root measures 6-7 cm and. the hypocotyl 2 cm. At seedlings of 21 days the growth is obvious the growth in length of the root and of cotyledons and less at the hypocotyl that forms tubers (just cm). The cotyledons, big and foliaceous have the limb of times wider than its length, with a long and emarginated tip. The slightly heterocotily and the forming of tubers are characteristic also to other species from the same family (for example Abronia umbellata). The structure of the seedling. The structure of the central cylinder of the root from a 14-day old seedling (at the upper and middle level) is diarch. The ligneous fascicles are next to the centre trough the metaxylem vessels relatively large and the phloem forms two blades tangential at the pericycle. In the upper third of the root new metaxylem vessels appear, lateral to the ones already mentioned above, along the axis of the organ forming a compact xylem corp. After 2 (3) days, in the same area but especially at the lower third of the hypocotyls, the central cylinder becomes very thick; in its axis we can find a parenchyma mass with very big cells. Meanwhile, other new ligneous vessels have formed in the shape of tangential blades that alternate with the two fascicules of primary xylem still persistent; almost simultaneously new groups of phloem elements are formed. During this phase of siphonostele, the vascular system is represented by 4 fascicles with overlapped xylem and phloem, typical structure for the stem. The hypocotyl prepare a stem structure with 4 fascicles at the lower and 8 at the upper part. The conductor tissue of the epicotyl (the epicotyledonary internode) has a ring shaped type, with procambium in two layers, which has produced in the exterior groups of phloem elements overlapped on some vessels of xylem. In the medullar parenchyma we can distinguish more libero ligneous fascicles (12-13). Pisum sativum L. (Fabaceae) The morphology of the seedling. The germination is hypogeous and takes place 12 (14) days after the sowing. It is visible when trough the micropyl the axis root125

4 hypocotyls appear at 1-2 (3) mm in length at the beginning. In 5-6 days it reaches cm; in this stage the first layer of epicotyl internode is also visible of 2-3 mm in length. It is curved at the beginning but in 14 days it becomes straight and measures cm; on the surface of the root we observe 3 orthostichies of lateral roots as nipples shaped. The first two leaves look like some bractei and it seems that they have formed previous to the germination; only the third leaf is a typical nomophyll. The structure of the seedling. Inside the central cylinder of a root belonging to a 14-day old seedling (in the lower and middle third) and then to a 21-day old (in the lower third) we can observe 3 fascicles of xylem and 3 of phloem. Each fascicule of xylem present 7-8 narrow vessels of protoxylem (of 10-20μm) and 4-6 wide vessels of metaxylem (of μm). The phloem fascicules contain 4-5 (6) vessels next to the pericycle. In the small length (3-4 mm) of the hypocotyl the axis becomes parenchymatic. The xylem vessels group in 3 tangential blades neighbors to 2 groups of phloem vessels fascicles. Under the cotyledons, 2 of the phloem fascicles together with the new formed will penetrate toward their inside. In the epicotyl internode (in the lower and middle third) we find a typical structure for the root, with the xylem occupies the center at this day with 4 xylemic poles; next to them, at side, we distinguish 4 groups of phloem elements. The next internodes of the epicotyls (2 and 3) have a intermediary structure between root and stem: 4 blades of tangential xylem and 4 of phloem opposed to the fîrst; next to them, in the centre, the initial protoxylem and metaxylem persist. In the upper third of the internode number 3 and all along internode number 4 the typical caulinar structure ofthe conductor tissue consists of 6 libero ligneous fascicles, among which 2 belong to [Hayward H., 1967] the 3 and 4 nomopylls; these are vîsible since the fîrst epicotilar internode, as the 2 cortical fascicles probably belonging to l and 2 bracteant leaves. Ricinus communis L. (Euphorbiaceae) The morphology of the seedling. At 14 days from the sowing, the epigean germination takes place. The growth of the root's length happens simultaneously with the hypocotyl s. At the beginning, the hypocotyl is curved and then becomes straight reaching the extraction of the cotyledons from the albumen. Until the first leaves appear (after 21 days) the cotyledons grow and become foliaceous so able of photosynthesis with a 5-6 cm petiole and a slightly oval limb of 6-7 cm in length and 5-6 cm wide. The structure of the seedling. The central cylinder of the root is tetrarch. At a 14-day, the xylem from the lower third of the organ is represented by 4 fascicles with 9-10 tight vessels each, with polygonal contour in transversal section, alternating with the same number of phloem fascicles. After a week, at the same level at the root, between the mentioned fascicles 8-9 long metaxylem vessels appear. At the same age (21 days) at the upper part of the root, the axis of the central cylinder becomes parenchymatic trough the 126

5 resorbtion of the metaxylem. We can still see protoxylem vessels (alternative) and the phloem vessels opposed to them; the new vessels of xylem are wide, with thin and still nonlignified walls. Discussions and conclusions A long time scientists considered that the transition from the root's structure to the stem's one was done in the collet area. But, as we have already seen, the transition from the alternative structure of the root to the overlapped structure of the stem takes place at different levels in the root, hypocotyl and epicotyl. According to G. Chauveaud [1] the three organs represent different stadiums of evolution of the vascular system. During the ontogenetic evolution different phenomena took place: appearance of xylem and phloem vessels, their resorbtion, re-settlement of the new vascular elements, passing from the altern stage to the intermediary (tangential) one and overlapped. The start of the overlapping phase is given by the appearance of a meristematic tissue which will produce xylem and phloem in centrifugal direction and respectively centripetal. These structures are not different types but are different phases of the general evolution type of the conductor system. The alternative structure we observed at the 4 species studied is found only at the lower third of the root; at the middle and superior level (basal),the tangential phase is obvious at Ricinus communis L. and even overlapped at Mirabilis jalapa L. and Tropaeolum majus L. At Pisum sativum L. the modifîcation of the conductor system take place in the l, 2, 3 and 4 internodes of the epicotyl. In the basal internode of the epicotyl (1) on a small area of its base, we find a xylemic central core characteristic to the root. The vascular evolution in the hypocotyl, even if only conserving the tangential phase, makes us believe that this formation belongs to the hypocotyl root axis. The type of germination epigeal and hipogeal does not influence the level of vascular transformations along the axis; it can be produced in the epicotyl (Pisum sativum L.) or in the root (Tropaeolum majus L.). BIBLIOGRAPHY 1. CHAVEAUD G., 1911 L appareil conducteur des plantes vasculaires et les phases principales de son évolution. Ann. Des Sci. Nat., Bot., sér. 9, 13: HAYWARD H., 1967 The structure of economic plants. Ed. Cramer J., New York 3. LENOIR M., 1920 Evolution du tissus vasculaire chez quelques plantules de Dicotylédones. Ann. Des Sci. Nat., Bot., sér. 10, 2: TOMA C., GEORGETA TEODORESCU, ANGELA TONIUC, 1975 Donées morphologiques concernant les plantules de quelques Légumineuses. An. st. Univ. Al. I. Cuza Iasi, s. II a (biol.),

6 5. TRONCHET A., 1930 Recherches sur les types d organisation les plus répandus de la plantule des Dicotylédones. Leurs principales modifications, leur rapports. Extr. d Arch. De Bot., 4, 1: TRONCHET A., 1952 La valeur de notion de convergent chez Phanérogames et la réalité des phénomènes d acceleration basifuge. L Année biol., 56e ann., sér. 3, 28, 7 8 : Explanation of plates Plate I Mirabilis jalapa L. Transections at various level of root and hypocotyl Plate II Ricinus communis L. Transections at various level of root and hypocotyl Plate III Pisum sativum L. Transections at various level of root and epicotyl 12, 14, 16, 21 d day of the seedlings Abreviations A, B, C root, at lower (A), middle (B) and upper (C) level D, E hypocotyls, at lower (D) and upper (E) level F, G - epicotyl, 2 (F) and 3 (G) internode 1 cortical parenchyma; 2 endodermis; 3 pericycle; 4, 5 alternative xylem: proto- (4) and metaxylem (5); 6 tangential xylemic vessels; 7 superposed xylemic vessels; 8 alternative phloem; 9 tangential phloem; 10 superposed phloem; 11 cambium; 12 pith ray; 13 pith. 128

7 129

8 130

9 131

HISTO-ANATOMICAL LESS KNOW ASPECTS UPON SOME LAMIACEAE TAXA CAMELIA IFRIM *, IRINA TOMA ** Introduction. Material and method

HISTO-ANATOMICAL LESS KNOW ASPECTS UPON SOME LAMIACEAE TAXA CAMELIA IFRIM *, IRINA TOMA ** Introduction. Material and method Analele ştiinţifice ale Universităţii Al. I. Cuza Iaşi Tomul L, s. II a. Biologie vegetală, 2004 HISTO-ANATOMICAL LESS KNOW ASPECTS UPON SOME LAMIACEAE TAXA CAMELIA IFRIM *, IRINA TOMA ** Abstract: The

More information

Exercise 12. Procedure. Aim: To study anatomy of stem and root of monocots and dicots.

Exercise 12. Procedure. Aim: To study anatomy of stem and root of monocots and dicots. Aim: To study anatomy of stem and root of monocots and dicots. Principle: The study of internal morphology, i.e., cells of various tissues in an organ of a living body is called Anatomy. Tissue, which

More information

Chapter 6. Biology of Flowering Plants. Anatomy Seedlings, Meristems, Stems, and Roots

Chapter 6. Biology of Flowering Plants. Anatomy Seedlings, Meristems, Stems, and Roots BOT 3015L (Outlaw/Sherdan/Aghoram); Page 1 of 6 Chapter 6 Biology of Flowering Plants Anatomy Seedlings, Meristems, Stems, and Roots Objectives Seedling germination and anatomy. Understand meristem structure

More information

Plant Anatomy and Tissue Structures

Plant Anatomy and Tissue Structures Plant Anatomy and Tissue Structures The Two Major Plant Systems Reproductive shoot (flower) Terminal bud Node Internode Angiosperm plants have threse major organs: Roots Stems Leaves & Flowers Terminal

More information

Plant Anatomy Lab 7 - Stems II

Plant Anatomy Lab 7 - Stems II Plant Anatomy Lab 7 - Stems II This exercise continues the previous lab in studying primary growth in the stem. We will be looking at stems from a number of different plant species, and emphasize (1) the

More information

Plants. Tissues, Organs, and Systems

Plants. Tissues, Organs, and Systems Plants Tissues, Organs, and Systems Meristematic cells Specialized cells that are responsible for producing specialized cells, they produce three types of tissue in the body of a plant. Meristematic Cells

More information

THE LEAF STRUCTURE OF SOME NEPENTHES DANSER SPECIES IRINA STĂNESCU, C. TOMA. Introduction

THE LEAF STRUCTURE OF SOME NEPENTHES DANSER SPECIES IRINA STĂNESCU, C. TOMA. Introduction Analele ştiinţifice ale Universităţii Al. I. Cuza Iaşi Tomul LIV, fasc. 1, s. II a. Biologie vegetală, 2008 THE LEAF STRUCTURE OF SOME NEPENTHES DANSER SPECIES IRINA STĂNESCU, C. TOMA Abstract: The authors

More information

Visit For All NCERT solutions, CBSE sample papers, Question papers, Notes for Class 6 to 12. Chapter-6 ANATOMY OF FLOWERING PLANTS

Visit  For All NCERT solutions, CBSE sample papers, Question papers, Notes for Class 6 to 12. Chapter-6 ANATOMY OF FLOWERING PLANTS Chapter-6 ANATOMY OF FLOWERING PLANTS POINTS TO REMEMBER Anatomy : Anatomy is the study of internal structure of organisms. Plant anatomy includes organisation and structure of tissues. Tissue : A group

More information

Question 1: State the location and function of different types of meristem. Meristems are specialised regions of plant growth. The meristems mark the regions where active cell division and rapid division

More information

Class XI Chapter 6 Anatomy of Flowering Plants Biology

Class XI Chapter 6 Anatomy of Flowering Plants Biology Class XI Chapter 6 Anatomy of Flowering Plants Biology Question 1: State the location and function of different types of meristem. Meristems are specialised regions of plant growth. The meristems mark

More information

(Photo Atlas: Figures 9.147, 9.148, 9.150, 9.1, 9.2, )

(Photo Atlas: Figures 9.147, 9.148, 9.150, 9.1, 9.2, ) BIOL 221 Concepts of Botany Fall 2007 Topic 07: Primary Plant Body: The Root System (Photo Atlas: Figures 9.147, 9.148, 9.150, 9.1, 9.2, 9.5 9.23) A. Introduction The root has the primary functions of

More information

Chapter 35~ Plant Structure and Growth

Chapter 35~ Plant Structure and Growth Chapter 35~ Plant Structure and Growth Plant Organization Plant morphology is based on plant s evolutionary history Need to draw in nutrients from the ground and the air Plant Organs Root system = roots

More information

Anatomy of Flowering Plants. K C Meena PGT Biology

Anatomy of Flowering Plants. K C Meena PGT Biology Anatomy of Flowering Plants K C Meena PGT Biology Tissues A group of similar cells performing same function. Types of plant tissues - Meristematic tissues and permanent tissues. Meristematic tissues Have

More information

Chapter #35~ Plant Structure and Growth

Chapter #35~ Plant Structure and Growth Chapter #35~ Plant Structure and Growth What part of a plant is represented by each of these: Carrot Celery Red Pepper Tomato Lettuce Garbanzo Bean Angiosperm structure Three basic organs: Roots (root

More information

Primary Internal structure & Normal Secondary growth in Sunflower stem

Primary Internal structure & Normal Secondary growth in Sunflower stem Primary Internal structure & Normal Secondary growth in Sunflower stem B. Sc. II - Botany Dr. (Miss) Kalpana R. Datar Assistant Professor DEPARTMENT OF BOTANY Willingdon College, Sangli. kalpana_datar@yahoo.com.

More information

Early Development. Typical Body Plan 9/25/2011. Plant Histology Early development, cells & Chapters 22 & 23

Early Development. Typical Body Plan 9/25/2011. Plant Histology Early development, cells & Chapters 22 & 23 Plant Histology Early development, cells & tissues Chapters 22 & 23 Early Development Formation of the embryo The Mature Embryo & Seed Requirements for seed germination Embryo to Adult Apical meristems

More information

BIOL 305L Laboratory One

BIOL 305L Laboratory One Please print Full name clearly: BIOL 305L Laboratory One General plant anatomy a great place to start! Introduction Botany is the science of plant life. Traditionally, the science included the study of

More information

The Shoot System: Primary Stem Structure - 1

The Shoot System: Primary Stem Structure - 1 The Shoot System: Primary Stem Structure - 1 Shoot System The shoot system comprises the leaves and stems of plants. Leaves are located at nodes on the stem; the distance along the stem between nodes is

More information

Plant Structure. Lab Exercise 24. Objectives. Introduction

Plant Structure. Lab Exercise 24. Objectives. Introduction Lab Exercise Plant Structure Objectives - Be able to identify plant organs and give their functions. - Learn distinguishing characteristics between monocot and dicot plants. - Understand the anatomy of

More information

Plant Anatomy. By Umanga Chapagain

Plant Anatomy. By Umanga Chapagain Plant Anatomy By Umanga Chapagain PLANT ANATOMY The science of the structure of the organized plant body learned by dissection is called Plant Anatomy. In general, Plant Anatomy refers to study of internal

More information

Topic 2: Plant Structure & Growth Ch. 35 Angiosperms are the most complex plants. They are composed of cells, tissues, organs and organ systems.

Topic 2: Plant Structure & Growth Ch. 35 Angiosperms are the most complex plants. They are composed of cells, tissues, organs and organ systems. Topic 2: Plant Structure & Growth Ch. 35 Angiosperms are the most complex plants. They are composed of cells, tissues, organs and organ systems. Fig. 35.8 Plant Cells pp.798-802 Types of plant cells Include:

More information

Roots and Soil Chapter 5

Roots and Soil Chapter 5 Roots and Soil Chapter 5 Plant Organs Plant organs are groups of several types of tissues that together perform a particular function. Vegetative organs roots, stems, leaves make and use food, absorb water

More information

PLANTS FORM AND FUNCTION PLANT MORPHOLOGY PART I: BASIC MORPHOLOGY. Plant Form & Function Activity #1 page 1

PLANTS FORM AND FUNCTION PLANT MORPHOLOGY PART I: BASIC MORPHOLOGY. Plant Form & Function Activity #1 page 1 AP BIOLOGY PLANTS FORM AND FUNCTION ACTIVITY #1 NAME DATE HOUR PLANT MORPHOLOGY PART I: BASIC MORPHOLOGY Plant Form & Function Activity #1 page 1 PART II: ROOTS 1. Examine the examples of the two root

More information

Plant Structure And Growth

Plant Structure And Growth Plant Structure And Growth The Plant Body is Composed of Cells and Tissues Tissue systems (Like Organs) made up of tissues Made up of cells Plant Tissue Systems Ground Tissue System Ø photosynthesis Ø

More information

Plants. Plant Form and Function. Tissue Systems 6/4/2012. Chapter 17. Herbaceous (nonwoody) Woody. Flowering plants can be divided into two groups:

Plants. Plant Form and Function. Tissue Systems 6/4/2012. Chapter 17. Herbaceous (nonwoody) Woody. Flowering plants can be divided into two groups: Monocots Dicots 6/4/2012 Plants Plant Form and Function Chapter 17 Herbaceous (nonwoody) In temperate climates, aerial parts die back Woody In temperate climates, aerial parts persist The Plant Body Functions

More information

Stems BI 103: Plant & Animal A & P. Learning Objectives

Stems BI 103: Plant & Animal A & P. Learning Objectives Stems BI 103: Plant & Animal A & P Outline: 1. Stems: monocots vs dicots--handout 2. Woody plant growth 3. Discussion problems 4. Monocots & soutside Learning Objectives What are the differences between

More information

CHAPTER 6 ANATOMY OF FLOWERING PLANTS MULTIPLE CHOICE QUESTIONS

CHAPTER 6 ANATOMY OF FLOWERING PLANTS MULTIPLE CHOICE QUESTIONS ANATOMY OF FLOWERING PLANTS 27 27 CHAPTER 6 ANATOMY OF FLOWERING PLANTS MULTIPLE CHOICE QUESTIONS 1. A transverse section of stem is stained first with safranin and then with fast green following the usual

More information

A COMPARATIVE STUDY REGARDING THE MORPHOLOGY AND ANATOMY OF THE VEGETATIVE APPARATUS IN TWO OCIMUM BASILICUM L. BREEDS.

A COMPARATIVE STUDY REGARDING THE MORPHOLOGY AND ANATOMY OF THE VEGETATIVE APPARATUS IN TWO OCIMUM BASILICUM L. BREEDS. Analele ştiinţifice ale Universităţii Al. I. Cuza Iaşi Tomul LIV, fasc. 2, s.ii a. Biologie vegetală, 2008 A COMPARATIVE STUDY REGARDING THE MORPHOLOGY AND ANATOMY OF THE VEGETATIVE APPARATUS IN TWO OCIMUM

More information

Chapter 29: Plant Tissues

Chapter 29: Plant Tissues Chapter 29: Plant Tissues Shoots and Roots Shoots (Leaves and Stem) Produce food by photosynthesis Carry out reproductive functions Roots Anchor the plant Penetrate the soil and absorb water and dissolved

More information

Life Science Chapter 11 SEED PLANTS PART 2

Life Science Chapter 11 SEED PLANTS PART 2 Life Science Chapter 11 SEED PLANTS PART 2 Advanced Seed Producing Advanced Seed Producing Vascular Plants Class: Gymnospermae Class: Angiospermae» Subclass: Monocotyledoneae» Subclass: Dicotyledoneae

More information

CONSIDERATIONS UPON THE ANATOMICAL FEATURES OF SOME TAXA OF TRADESCANTIA GENERA

CONSIDERATIONS UPON THE ANATOMICAL FEATURES OF SOME TAXA OF TRADESCANTIA GENERA Buletinul Grădinii Botanice Iaşi Tomul 14, 2007 CONSIDERATIONS UPON THE ANATOMICAL FEATURES OF SOME TAXA OF TRADESCANTIA GENERA IFRIM CAMELIA Abstract: The structure of two taxa of the Tradescantia genre

More information

Downloaded from

Downloaded from POINTS TO REMEMBER : 6. Anatomy of Flowering Plants Study of internal structure of plant is called anatomy. In plants cells are the basic unit. Cells organized into tissues and tissues organized into organs.

More information

ANATOMY OF PLANTS Introduction: The study of gross internal structure of plant organs by the technique of section cutting is called plant anatomy.

ANATOMY OF PLANTS Introduction: The study of gross internal structure of plant organs by the technique of section cutting is called plant anatomy. ANATOMY OF PLANTS Introduction: The study of gross internal structure of plant organs by the technique of section cutting is called plant anatomy. (Pandey, 2002). Various plant organ viz. root, stem, leaves,

More information

Primary Plant Body: Embryogenesis and the Seedling

Primary Plant Body: Embryogenesis and the Seedling BIOL 221 Concepts of Botany Primary Plant Body: Embryogenesis and the Seedling (Photo Atlas: Figures 1.29, 9.147, 9.148, 9.149, 9.150, 9.1, 9.2) A. Introduction Plants are composed of fewer cell types,

More information

TARGET STUDY MATERIAL

TARGET STUDY MATERIAL TARGET STUDY MATERIAL Plus-1 Botany VOL I TARGET EDUCATIONAL INSTITUTION Target Educational institution is the one and only Entrance coaching and CBSE 10 th coaching centre at Mukkam with advanced technologies

More information

PHARMACOBOTANY LECTURE 5. PLANT TISSUES III.

PHARMACOBOTANY LECTURE 5. PLANT TISSUES III. PHARMACOBOTANY LECTURE 5. PLANT TISSUES III. VASCULAR TISSUES VASCULAR TISSUES Xylem transporting water and mineral substances from the root upwards to other plant organs Phloem carries photosynthetic

More information

Bring Your Text to Lab!!!

Bring Your Text to Lab!!! Bring Your Text to Lab!!! Vascular Plant Anatomy: Flowering Plants Objectives: 1. To observe what the basic structure of vascular plants is, and how and where this form originates. 2. To begin to understand

More information

THE ROOTS OF WILD RICE. ZIZANIA AQUATICA L.

THE ROOTS OF WILD RICE. ZIZANIA AQUATICA L. THE ROOTS OF WILD RICE. ZIZANIA AQUATICA L. E. L. STOVER, Eastern Illinois State Teachers College. This grass grows from Maine to Minnesota in aquatic habitats (2 and 5). It is common in marsh lands all

More information

Plant Structure. Objectives At the end of this sub section students should be able to:

Plant Structure. Objectives At the end of this sub section students should be able to: Name: 3.2 Organisation and the Vascular Structures 3.2.1 Flowering plant structure and root structure Objectives At the end of this sub section students should be able to: 1. Label a diagram of the external

More information

Chapter 23 Notes Roots Stems Leaves

Chapter 23 Notes Roots Stems Leaves Chapter 23 Notes Roots Stems Leaves I. Specialized tissue in plants - effective way to ensure the plant s survival A. Seed plant structure 1. Roots - a. Absorbs water and dissolves nutrients b. anchors

More information

Name: Plant stems and leaves (p. 1 of )

Name: Plant stems and leaves (p. 1 of ) Name: Plant stems and leaves (p. 1 of ) Introduction: Plants have a variety of configurations but the same basic structures. The three main parts of a plant are the roots, stems, and leaves. The tracheids

More information

Irina Berciu *, Constantin Toma Department of Biology, Al. I. Cuza University, Iasi

Irina Berciu *, Constantin Toma Department of Biology, Al. I. Cuza University, Iasi HISTO-ANATOMICAL ASPECTS OF VEGETATIVE ORGANS OF THYMUS DACICUS BORB. AND THYMUS GLABBRESCENS WILLD. Irina Berciu *, Constantin Toma Department of Biology, Al. I. Cuza University, Iasi * Correspondence:

More information

Plant Tissues and Organs. Topic 13 Plant Science Subtopics , ,

Plant Tissues and Organs. Topic 13 Plant Science Subtopics , , Plant Tissues and Organs Topic 13 Plant Science Subtopics 13.1.2, 13.1.3, 13.1.4 Objectives: List and describe the major plant organs their structure and function List and describe the major types of plant

More information

Anatomy of dicotyledonous plants

Anatomy of dicotyledonous plants Anatomy of dicotyledonous plants Differences between Monocotyledons and Dicotyledons All plants are classified as producing seeds or not producing seeds. Those that produce seeds are divided into flowering

More information

THE OHIO JOURNAL OF SCIENCE

THE OHIO JOURNAL OF SCIENCE THE OHIO JOURNAL OF SCIENCE VOL. XXIV JULY, 1924 No.. 4 THE VASCULAR ANATOMY OF CALAMOVILFA LONGIFOLIA.* ERNEST LINCOLN STOVER Eastern Illinois State Teachers' College The present study of the anatomy

More information

STEMS Anytime you use something made of wood, you re using something made from the stem of a plant. Stems are linear structures with attached leaves

STEMS Anytime you use something made of wood, you re using something made from the stem of a plant. Stems are linear structures with attached leaves STEMS OUTLINE External Form of a Woody Twig Stem Origin and Development Stem Tissue Patterns Herbaceous Dicotyledonous Stems Woody Dicotyledonous Stems Monocotyledonous Stems Specialized Stems Wood and

More information

Botany Basics. Botany is...

Botany Basics. Botany is... Botany Basics John Punches Oregon State University Botany is... The study of plants. 1 Plants in our Ecosystem Capture sun s energy Food source Replenish atmospheric oxygen Participate in water cycle Moderate

More information

CYTOLOGY OF VIOLA ODORATA L. POLLEN GERMINATION SILVICA PĂDUREANU 1. Introduction

CYTOLOGY OF VIOLA ODORATA L. POLLEN GERMINATION SILVICA PĂDUREANU 1. Introduction Analele ştiinţifice ale Universităţii Al. I. Cuza Iaşi Tomul LIII, s. II a. Biologie vegetală, 27 CYTOLOGY OF VIOLA ODORATA L. POLLEN GERMINATION SILVICA PĂDUREANU 1 Abstract: The paper presents the characteristics

More information

MORPHOLOGICAL EXAMINATION OF PRAIRIE TURNIP (PSORALEA ESCULENTA PURSH) ROOT

MORPHOLOGICAL EXAMINATION OF PRAIRIE TURNIP (PSORALEA ESCULENTA PURSH) ROOT Proceedings of the South Dakota Academy of Science, Vol. 82 (2003) 113 MORPHOLOGICAL EXAMINATION OF PRAIRIE TURNIP (PSORALEA ESCULENTA PURSH) ROOT April L. Stahnke and R. Neil Reese Biology & Microbiology

More information

Lab Exercise 4: Primary Growth and Tissues in Stems

Lab Exercise 4: Primary Growth and Tissues in Stems Lab Exercise 4: Primary Growth and Tissues in Stems Tissues of the plant body can be classified in a variety of ways: functionally (based on the tissue function, e.g. vascular tissue ), morphologically

More information

Plant Organization. Learning Objectives. Angiosperm Tissues. Angiosperm Body Plan

Plant Organization. Learning Objectives. Angiosperm Tissues. Angiosperm Body Plan Plant Organization Learning Objectives 1. List and give the major function of the three main types of plant tissues 2. Identify a monocot verses a eudicot plant by observing either root, stem, leaf, or

More information

Chapter 28 Active Reading Guide Plant Structure and Growth

Chapter 28 Active Reading Guide Plant Structure and Growth Name: AP Biology Mr. Croft Chapter 28 Active Reading Guide Plant Structure and Growth In this unit on plants, the challenge for students will be to learn the new vocabulary. As we work through this unit,

More information

tree of life phylogeny morphology gram stain chapter 28-29, other groups of organisms Bacteria

tree of life phylogeny morphology gram stain chapter 28-29, other groups of organisms Bacteria tree of life chapter 28-29, other groups of organisms phylogeny key lineages of prokaryotes Domain Archaea (sister to eukarya) 3 clades defined by genetic characters Domain Bacteria Firmicutes Spirochaetes

More information

Name the tube-like tissue found in part C in which water moves. Name the cells which are responsible for controlling the size of the opening at Z

Name the tube-like tissue found in part C in which water moves. Name the cells which are responsible for controlling the size of the opening at Z Past Questions on Plant Structure Note: You need to be able to draw and label all the diagrams in this worksheet for your exam. Name the parts labelled B, C and E. C E Give one main function each for the

More information

tree of life phylogeny gram stain morphology chapter 28-29, other groups of organisms Bacteria

tree of life phylogeny gram stain morphology chapter 28-29, other groups of organisms Bacteria tree of life chapter 28-29, other groups of organisms phylogeny key lineages of prokaryotes Domain Archaea (sister to eukarya) 3 clades defined by genetic characters Domain Bacteria Firmicutes Spirochaetes

More information

IX. PRIMARY STEM STRUCTURE AND DEVELOPMENT Bot 404 Fall 2004

IX. PRIMARY STEM STRUCTURE AND DEVELOPMENT Bot 404 Fall 2004 IX. PRIMARY STEM STRUCTURE AND DEVELOPMENT Bot 404 Fall 2004 A. Shoot apex -plants have an open system of growth, therefore the ability (at least potentially) to continue growth because there is a meristem

More information

The three principal organs of seed plants are roots, stems, and leaves.

The three principal organs of seed plants are roots, stems, and leaves. 23 1 Specialized Tissues in Plants Seed Plant Structure The three principal organs of seed plants are roots, stems, and leaves. 1 of 34 23 1 Specialized Tissues in Plants Seed Plant Structure Roots: absorb

More information

today finish up cell division Continue intro to plant anatomy main plant organs basic anatomy: monocots versus dicots How to tell the organs apart

today finish up cell division Continue intro to plant anatomy main plant organs basic anatomy: monocots versus dicots How to tell the organs apart Download as an RTF file Download as a PDF file Biology 20 Fall 2001 Lecture #4 Jan 18, 2001 What did we get from last lecture? Plant anatomy introduction Tissue Types in plants Four basic tissue: meristem,

More information

Biology 2 Chapter 21 Review

Biology 2 Chapter 21 Review Biology 2 Chapter 21 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is not a tissue system of vascular plants? a. vascular

More information

NOTES: CH 35 - Plant Structure & Growth

NOTES: CH 35 - Plant Structure & Growth NOTES: CH 35 - Plant Structure & Growth In their evolutionary journey, plants adapted to the problems of a terrestrial existence as they moved from water to land ANGIOSPERMS (flowering plants) -most diverse

More information

Forms strands that conduct water, minerals, and organic compounds. Much of the inside of nonwoody parts of plants. Includes roots, stems, and leaves

Forms strands that conduct water, minerals, and organic compounds. Much of the inside of nonwoody parts of plants. Includes roots, stems, and leaves Biology II Vascular plants have 3 tissue systems: Dermal Protective outer layer of plant Vascular Forms strands that conduct water, minerals, and organic compounds Ground Much of the inside of nonwoody

More information

Plant Structure and Function Extension

Plant Structure and Function Extension Plant Structure and Function Extension NGSSS: SC.912.L.14.7 Relate the structure of each of the major plant organs and tissues to physiological processes. (AA) Part 1A: Leaves The leaf of a plant serves

More information

Answer Key. Vocabulary Practice. 1. guard cell 2. parenchyma cell 3. sclerenchyma cell 4. collenchyma cell 5. All are types of plant cells

Answer Key. Vocabulary Practice. 1. guard cell 2. parenchyma cell 3. sclerenchyma cell 4. collenchyma cell 5. All are types of plant cells Answer Key Vocabulary Practice A. Choose the Right Word 1. guard cell 2. parenchyma cell 3. sclerenchyma cell 4. collenchyma cell 5. All are types of cells 6. meristem 7. ground tissue 8. dermal tissue

More information

RODICA RUGINĂ, C. TOMA

RODICA RUGINĂ, C. TOMA Analele ştiinţifice ale Universităţii Al. I. Cuza Iaşi Tomul LIII, s. II a. Biologie vegetală, 2007 HISTO-ANATOMICAL ASPECTS OF SOME LONICERA L. SPECIES RODICA RUGINĂ, C. TOMA Abstract. The authors investigate

More information

23 1 Specialized Tissues in Plants Slide 1 of 34

23 1 Specialized Tissues in Plants Slide 1 of 34 23 1 Specialized Tissues in Plants 1 of 34 Seed Plant Structure The three principal organs of seed plants are roots, stems, and leaves. These organs perform functions such as the transport of nutrients,

More information

2/25/2013. o Plants take up water and minerals from below ground o Plants take up CO2 and light from above ground THREE BASIC PLANT ORGANS ROOTS

2/25/2013. o Plants take up water and minerals from below ground o Plants take up CO2 and light from above ground THREE BASIC PLANT ORGANS ROOTS o Plants take up water and minerals from below ground o Plants take up CO2 and light from above ground THREE BASIC PLANT ORGANS o Roots o Stems o Leaves ROOTS o Anchor plant o Absorb water and minerals

More information

Introduction to Botany. Lecture 25

Introduction to Botany. Lecture 25 Introduction to Botany. Lecture 25 Alexey Shipunov Minot State University November 2, 2015 Shipunov (MSU) Introduction to Botany. Lecture 25 November 2, 2015 1 / 33 Outline 1 Questions and answers 2 Stem

More information

Learning objectives: Gross morphology - terms you will be required to know and be able to use. shoot petiole compound leaf.

Learning objectives: Gross morphology - terms you will be required to know and be able to use. shoot petiole compound leaf. Topic 1. Introduction to Plants Introduction: Because of its history, several unrelated taxa have been grouped together with plants into the discipline of botany. Given this context, in this first lab

More information

Stems and Transport in Vascular Plants. Herbaceous Stems. Herbaceous Dicot Stem 3/12/2012. Chapter 34. Basic Tissues in Herbaceous Stems.

Stems and Transport in Vascular Plants. Herbaceous Stems. Herbaceous Dicot Stem 3/12/2012. Chapter 34. Basic Tissues in Herbaceous Stems. Bud scale Terminal bud Stems and Transport in Plants One year's growth Terminal bud scale scars Axillary bud Leaf scar Node Internode Node Chapter 34 Lenticels Terminal bud scale scars Bundle scars A Woody

More information

Topic 15. The Shoot System

Topic 15. The Shoot System Topic 15. The Shoot System Introduction. This is the second of two lab topics that focus on the three plant organs (root, stem, leaf). In these labs we want you to recognize how tissues are organized in

More information

SESSION 6: SUPPORT AND TRANSPORT SYSTEMS IN PLANTS PART 1

SESSION 6: SUPPORT AND TRANSPORT SYSTEMS IN PLANTS PART 1 SESSION 6: SUPPORT AND TRANSPORT SYSTEMS IN PLANTS PART 1 KEY CONCEPTS In this session we will focus on summarising what you need to know about: - Anatomy of dicotyledonous plants Root and stem: distribution

More information

Angiosperms: Dicotyledons

Angiosperms: Dicotyledons Angiosperms: Dicotyledons This section contains anatomical descriptions of stem and twig xylem, as well as the bark and pith regions of 244 dicotyledonous species belonging to 61 families. Angiosperms:

More information

Introduction to Botany. Lecture 24

Introduction to Botany. Lecture 24 Introduction to Botany. Lecture 24 Alexey Shipunov Minot State University October 31, 2014 Shipunov (MSU) Introduction to Botany. Lecture 24 October 31, 2014 1 / 33 Outline 1 Questions and answers 2 Leaf

More information

Botany Physiology. Due Date Code Period Earned Points

Botany Physiology. Due Date Code Period Earned Points Botany Physiology Name C/By Due Date Code Period Earned Points Bot Phys 5N5 Stem Forms Bot Phys 5-05 Identify the major forms of stems in plants I. Identify the major forms of stems in plants A. internal

More information

Big Advantage!:Vegetative reproduction is a faster way to reproduce compared to sexual reproduction if the environment is favorable.

Big Advantage!:Vegetative reproduction is a faster way to reproduce compared to sexual reproduction if the environment is favorable. DAY 5 OF CHAPTER 25 NOTES http://www.toto.com/misha/mavica/folliage2.jpg Asexual reproduction in plants is also known as vegetative reproduction. Methods of vegetative reproduction include plant structures

More information

UNIT 8: ANGIOSPERMS 3 (Early Development of the Plant, Cells, and Tissues)

UNIT 8: ANGIOSPERMS 3 (Early Development of the Plant, Cells, and Tissues) 55 UNIT 8: ANGIOSPERMS 3 (Early Development of the Plant, Cells, and Tissues) th Biology of Plants, Raven et al., 7 Ed. - Chapter 22 OBJECTIVES The fruit is the dispersal vehicle for angiosperms seeds;

More information

Plant Anatomy: roots, stems and leaves

Plant Anatomy: roots, stems and leaves Plant Anatomy: roots, stems and leaves The plant body has a hierarchy of organs, tissues and cells Plants, like animals, have organs composed of different tissues, which are composed of cells. Tissue is

More information

TEXT The name stele has been derived from Greek word meaning pillar or column. Sachs in 1875 proposed that the vascular system of the plant body is a

TEXT The name stele has been derived from Greek word meaning pillar or column. Sachs in 1875 proposed that the vascular system of the plant body is a TEXT The name stele has been derived from Greek word meaning pillar or column. Sachs in 1875 proposed that the vascular system of the plant body is a continuous system. For the first time, the stelar organisation

More information

COMPARATIVE HISTO-ANATOMICAL ANALYSIS OF THE VEGETATIVE ORGANS OF SEDUM TELEPHIUM L. SSP. MAXIMUM (L.) KROCK. IN VITRO AND FROM NATURE

COMPARATIVE HISTO-ANATOMICAL ANALYSIS OF THE VEGETATIVE ORGANS OF SEDUM TELEPHIUM L. SSP. MAXIMUM (L.) KROCK. IN VITRO AND FROM NATURE ARDELEAN MIRELA, STĂNESCU IRINA, CACHIŢĂ-COSMA DORINA J. Plant Develop. 16 (2009): 3 8 COMPARATIVE HISTO-ANATOMICAL ANALYSIS OF THE VEGETATIVE ORGANS OF SEDUM TELEPHIUM L. SSP. MAXIMUM (L.) KROCK. IN VITRO

More information

Fun with Botany 2009

Fun with Botany 2009 Fun with Botany 2009 Fun with Botany April, 2002 Plant Uses and Types Gymnosperms Angiosperms Monocots Dicots Gymnosperms Keep leaves which are either needles or flat scales Seeds are not enclosed Give

More information

CHAPTER 6 ANATOMY OF FLOWERING PLANTS

CHAPTER 6 ANATOMY OF FLOWERING PLANTS 84 BIOLOGY CHAPTER 6 ANATOMY OF FLOWERING PLANTS 6.1 The Tissues 6.2 The Tissue System 6.3 Anatomy of Dicotyledonous and Monocotyledonous Plants 6.4 Secondary Growth You can very easily see the structural

More information

I. Morphology of the bean plant: Phaseolus vulgaris.

I. Morphology of the bean plant: Phaseolus vulgaris. wrong 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 right 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 score 100 99 98 97 96 95 94.1 93.1 92.1 91.1 90.1 89.1 88.1 87.1 86.1 85.1 84.2 83.2

More information

Roots and leaves together are sufficient to take up all essential resources, so why make stems?

Roots and leaves together are sufficient to take up all essential resources, so why make stems? STEMS Roots and leaves together are sufficient to take up all essential resources, so why make stems? Stem functions 1. Support leaves 2. Conductance (connect root and leaf vasculature) 3. Storage (some

More information

The plant body has a hierarchy of organs, tissues, and cells. Plants, like multicellular animals:

The plant body has a hierarchy of organs, tissues, and cells. Plants, like multicellular animals: Chapter 28 The plant body has a hierarchy of organs, tissues, and cells Plants, like multicellular animals: o Have organs composed of different tissues, which are in turn composed of cells 3 basic organs:

More information

CHAPTER 6 ANATOMY OF FLOWERING PLANTS

CHAPTER 6 ANATOMY OF FLOWERING PLANTS 84 BIOLOGY CHAPTER 6 ANATOMY OF FLOWERING PLANTS 6.1 The Tissues 6.2 The Tissue System 6.3 Anatomy of Dicotyledonous and Monocotyledonous Plants 6.4 Secondary Growth You can very easily see the structural

More information

SEASONAL VARIATION IN RESPONSE TO GRAVITY IN LUPINUS POLYPHYLLUS SEEDLINGS: DISTRIBUTION OF STATOLITH STARCH

SEASONAL VARIATION IN RESPONSE TO GRAVITY IN LUPINUS POLYPHYLLUS SEEDLINGS: DISTRIBUTION OF STATOLITH STARCH [ 292 ] SEASONAL VARIATION IN RESPONSE TO GRAVITY IN LUPINUS POLYPHYLLUS SEEDLINGS: DISTRIBUTION OF STATOLITH STARCH BY E. D. BRAIN [Received ii April 1954) (With 2 figures in the text) In the previous

More information

Plant Structure and Growth

Plant Structure and Growth Plant Structure and Growth A. Flowering Plant Parts: The flowering plants or are the most diverse group of plants. They are divided into 2 classes and. Examples of monocots: Examples of dicots: The morphology

More information

Stelar evolution. B. Sc. III Botany

Stelar evolution. B. Sc. III Botany Stelar evolution B. Sc. III Botany Dr. (Miss) Kalpana R. Datar Assistant Professor DEPARTMENT OF BOTANY WILLINGDON COLLEGE, SANGLI. kalpana_datar@yahoo.com Stelar Evolution Stele is unit of vascular system.

More information

THE OHIO JOURNAL OF SCIENCE

THE OHIO JOURNAL OF SCIENCE THE OHIO JOURNL OF SCIENCE VOL. XLVII JNURY, 1947 No. 1 DEVELOPMENTL NTOMY OF SEEDLING OF JTROPH CORDT 1 RICHRD. POPHM, The Ohio State University, Columbus, Ohio The anatomical literature of the Euphorbiaceae

More information

Topic 14. The Root System. II. Anatomy of an Actively Growing Root Tip

Topic 14. The Root System. II. Anatomy of an Actively Growing Root Tip Topic 14. The Root System Introduction. This is the first of two lab topics that focus on the three plant organs (root, stem, leaf). In these labs we want you to recognize how tissues are organized in

More information

Level 2 Part II. MSU Extension Horticulture Associate Specialist. Pages Montana Master Gardener Handbook

Level 2 Part II. MSU Extension Horticulture Associate Specialist. Pages Montana Master Gardener Handbook Plant Growth and Development Level 2 Part II Toby Day MSU Extension Horticulture Associate Specialist Pages 24-48 Montana Master Gardener Handbook Vegetative parts of a plant Definitions Apical bud or

More information

A group of cells with common origin is called a tissue. The cells of a tissue usually perform a common function.

A group of cells with common origin is called a tissue. The cells of a tissue usually perform a common function. Anatomy of Flowering Plants Tissues A group of cells with common origin is called a tissue. The cells of a tissue usually perform a common function. Types of Tissue: There are two main types of plant tissues,

More information

CONTRIBUTIONS REGARDING THE LEAF HISTO-ANATOMY OF SOME PELARGONIUM SPECIES

CONTRIBUTIONS REGARDING THE LEAF HISTO-ANATOMY OF SOME PELARGONIUM SPECIES Rev. Med. Chir. Soc. Med. Nat., Iaşi 2013 vol. 117, no. 3 PHARMACY ORIGINAL PAPERS CONTRIBUTIONS REGARDING THE LEAF HISTO-ANATOMY OF SOME PELARGONIUM SPECIES Cristina Elena Iancu, Oana Cioanca, Cornelia

More information

ROOTS. Syllabus Theme A Plant Structure and Function. Root systems. Primary Growth of Roots. Taproot system. Fibrous root system.

ROOTS. Syllabus Theme A Plant Structure and Function. Root systems. Primary Growth of Roots. Taproot system. Fibrous root system. Syllabus Theme A lant Structure and Function A2: Structure and function of the basic plant organs ampbell & Reece hap. 35 Selected page numbers ROOTS Functions Anchors the vascular plant Absorbs minerals

More information

Plant Organs. Roots & Stems

Plant Organs. Roots & Stems Plant Organs Roots & Stems I. Roots A. F(x)s = grow underground 1. Absorb water & nutrients from soil 2. Anchor plant in the soil 3. Make hormones important for growth & development I. Roots B. Structure

More information

Chapter. Transport in. Structure of. 1- Epidermis: 2- Cortex: All plants 2- a specialized. In higher moving by. hydra and. with cuticles) 1-2-

Chapter. Transport in. Structure of. 1- Epidermis: 2- Cortex: All plants 2- a specialized. In higher moving by. hydra and. with cuticles) 1-2- Chapter 2 Transport in living organisms The concept of transport and the need for it: All plants need CO 2, water and mineral salts to perform photosynthesis In primitive plants such as algae these materials

More information

UNIT A: Basic Principles of Plant Science with a focus on Field Crops. Lesson 1: Examining Plant Structures and Functions

UNIT A: Basic Principles of Plant Science with a focus on Field Crops. Lesson 1: Examining Plant Structures and Functions UNIT A: Basic Principles of Plant Science with a focus on Field Crops Lesson 1: Examining Plant Structures and Functions 1 Terms Alternate leaf arrangement Bulb Cell Cell specialization Cladophyll Compound

More information

Chapter 35: Plant Structure, Growth and Development - No two Plants Are Alike Plant structure

Chapter 35: Plant Structure, Growth and Development - No two Plants Are Alike Plant structure Chapter 35: Plant Structure, Growth and Development - No two Plants Are Alike Plant structure Systems Root and Shoot system Organs Roots, Stems, Leaves Tissues Dermal, Vascular, Ground Cells parencyma,

More information

The Petiolar Structure of Christella dentata (Forssk.) Brownsey & Jermy (Thelypteridaceae, Pteridophyta)

The Petiolar Structure of Christella dentata (Forssk.) Brownsey & Jermy (Thelypteridaceae, Pteridophyta) Ethnobotanical Leaflets 12: 96-102. 2008. The Petiolar Structure of Christella dentata (Forssk.) Brownsey & Jermy (Thelypteridaceae, Pteridophyta) KAMINI SRIVASTAVA, M.Sc, D.Phil Department of Botany,

More information

Lecture 4 Root Put line under your answer! There is only one correct answer in the multiple choice questions

Lecture 4 Root Put line under your answer! There is only one correct answer in the multiple choice questions Lecture 4 Root Put line under your answer! There is only one correct answer in the multiple choice questions 1. The perception of gravity by a root is thought to take place in a) root hairs b) the region

More information