TEXT The name stele has been derived from Greek word meaning pillar or column. Sachs in 1875 proposed that the vascular system of the plant body is a

Size: px
Start display at page:

Download "TEXT The name stele has been derived from Greek word meaning pillar or column. Sachs in 1875 proposed that the vascular system of the plant body is a"

Transcription

1 TEXT The name stele has been derived from Greek word meaning pillar or column. Sachs in 1875 proposed that the vascular system of the plant body is a continuous system. For the first time, the stelar organisation appeared in pteridophytes. Hence the pteridophytes are called as first vascular plants. The stelar theory was proposed by, Van Tiegham and Douliot in According to which the root and stem are fundamentally similar in gross anatomy, because in both the cortex encloses the central part of the axis, called the stele. According to them, stele is the core of the axis, which includes the vascular system, interfascicular portion, the pith (if present), and some surrounding portion of the fundamental tissue in the vicinity of vascular bundles (pericycle). The term stele is applied to the primary tissue only. On the basis of structural variations, in the primary vascular system, following types of steles have been recognized. 1. Protostele: This is the simplest type of stele. It consists of a solid central column of vascular tissue. Pith is absent. Xylem is located in the centre surrounded by phloem. On the basis of shape of xylem, the following types of protosteles have been recognized:

2 a. Haplostele: It has a smooth core of xylem surrounded by a uniform layer of phloem, e.g. Lycopodium cernum and Selaginella kraussiana (Fig. 1-A). b. Actinostele: It has a xylem core with radiating ribs (starshaped = stellate). In actinostele phloem is present in the form of separate patches alternating with projecting parts of xylem, e.g. Lycopodium serratum, Psilotum triquetrum (Fig. 1-B). c. Plectostele: In this type of protostele, xylem occurs in the form of separate plates which lie parallel to one another, with phloem situated between them. It is found in Lycopodium volubile, L. clavatum, etc. (Fig. 1-C). d. Mixed protostele with phloem: In this stele xylem groups are scattered in the form of irregular patches that are embedded in the ground mass of phloem, e.g., Lycopodium cernuum (Fig. 1-D). e. Mixed protostele with parenchyma: In this stele xylem groups are scattered in the form of irregular patches that are embedded in the ground mass of parenchyma, e.g. Hymenophyllum demissum. 2. Siphonostele or medullated protostele: A type of stele in which there is present a pith in the central region, is called a siphonostele or medullated protostele. In

3 siphonostele, vascular tissue is arranged in the form of a hollow cylinder, with distant pith in the centre. It is found in the stems of most members of Filicophyta. It is of the following two types: a. Ectophloic siphonostele; It is a type of siphonostele where xylem cylinder lies next to the pith and is surrounded by the phloem cylinder on the outer side. It is found in Osmunda, Equistem, etc. (Fig. 2-A). b. Amphiphloic siphonostele: In this type of siphonostele the pith is surrounded by inner endodermis, inner pericycle, inner phloem, xylem, outer phloem, outer pericycle and outer endodermis. So in this case phloem surrounds the xylem internally as well as externally. It is found in Adiantum, Marsilea, etc. (Fig. 2-B). In both ectophloic and amphiphloic siphonosteles, vascular tissue occurs as continuous cylinder. This is because the leaf traces do not break the vascular cylinder. Such plants in which the vascular supply to the leaf is without any break in vascular cylinder are called microphyllous. 3. Solenostele: This is similar to siphonostele in having central pith, but differs in producing leaf gaps, wherever leaf

4 traces originate. Thus due to production of leaf gapes, the cylinder becomes dissected at places. This type of solenostele may be ectophloic or amphiphloic, depending upon the type of siphonostele from which it is produced. Such plants where leaf gapes occur in vascular cylinder are called magaphyllous (Fig. 3). 4. Dictyostele: In many siphonostelic Filicophyta, leaves are inserted on the stem in close succession. In such cases, leaf gaps overlap in their longitudinal extent to such a degree that vascular cylinder of stem appears dissected into tubular network of interconnected longitudinal strands (meristeles), separated from one another by parenchymatous tissue (leaf gaps). These meristeles in a transverse section appear arranged in a ring. Such a stele is known as dissected siphonostele or dictyostele. The vascular parts of a dictyostele between two neighbouring leaf gaps, appearing in transverse section as separate strands, are termed as meristeles. In a Dictyostele, each meristele has the general structure of a protostele, e.g. Dryopteris filix-max (Fig. 4). 5. Eustele: This is a modification of siphonostele, in which vascular system consists of a ring of collateral or bicollateral vascular bundles. These are separated from one another by a wide medullary or interfasicular regions and leaf gaps are not

5 clearly distinguishable. It is found in the stems of gymnosperms and angiosperms (Fig. 5). 6. Atactostele: This is the most complex type of stele. In this type, the vascular bundles are irregularly dispersed in the ground tissue as in the stems of monocotyledonous (Fig. 6). 7. Polycyclic stele: When more than one steles are present in the axis of pteridophytes, e.g. 2 in Selaginella kraussiana, 16 in S. laevigata, the condition is called polycyclic stele (Fig. 7). B. Stelar evolution: According to Jeffrey (1898), protostele is the most primitive type of stele, from a phylogenetic stand point, from which other types of steles have evolved in the course of evolutionary specialization (Fig. 8). It is considered to be the fundamental stelar organisation that was present in the earliest vascular plants, and is now retained by some living vascular cryptogames such as Psilotum, Tmesipteris and Lycopodium, etc. The primitive vascular plants, like the extinct Psilophytales also possessed protostelic vascular organisation. Presence of exclusively protostelic stems in the earliest vascular plants, and their retention in some of the living vascular cryptogames, lends a strong support to

6 Jeffrey's view that protostele is phylogenetically a primitive type of vasculature. In its simplest form, protostele is haplostelic. During further elaboration, the central core of xylem became irregular and assumed almost a star-like shape. Such a modification of stele is termed as actinostele. As a result of further evolution, the xylem splits up into a number of parallel plates alternating with phloem. Such a modification is called plectostele. It is found in some species of Lycopodium. Haplostele to actinostele, and then to plectostele, is considered to be one line of evolution of the protostele. It is regarded as Lycopsid line of evolution. The various types of protosteles may show relative variation in the position of protoxylem and metaxylem. It may be exarch with the protoxylem near the periphery of the xylem strands, or may be endarch with the protoxylem at the inner surface. In the mesarch condition, metaxylem is present both towards the outer and inner sides of protoxylem. The endarch condition is considered to be the most evolved and exarch condition as the primitive in the context of stelar evolution. Another very important evolutionary change that occurred in the protostele was the appearance of the central pith. This step led to many important changes in the

7 protostelic organisation and gave rise, on further elaboration, to complicated stelar types. Two theories have been proposed accounting the phylogenetic origin of the pith. These are: I) Intrastelar theory, II) Extrastelar theory I). Intrastelar theory: According to intrastelar origin of pith or expansion theory, the inner vascular tissue metamorphosed into the parenchymatous pith. The occurrence of mixed pith in some living forms supports this view. A mixed pith shows tracheids within the parenchymatous pith. This may be looked upon as a transition stage between a true protostele and true siphonostele. II) Extrastelar theory: According to the extrastelar origin of pith or invasion theory the pith is cortical in origin. The parenchymatous cortex is said to have intruded through the leaf gapes and branch gaps into the centre of vascular cylinder to give rise to the pith. But this cortical invasion could not have produced polycyclic siphonostele. Eames (1936) considered that in primitive forms, it may be intrastelar in origin, and in higher forms extrastelar in origin.

8 Appearance of pith led to the conversion of the protostele into a new type of stele, called the siphonostele. Elaboration of siphonostele also followed two courses of evolution, as follows: i). The appearance of pith resulted in the formation of a stele consisting of a central pith surrounded by a complete ring of xylem, which in turn was surrounded by a complete ring of outer phloem, pericycle and endodermis. Such a stele was named as ectophloic siphonostele. In its simplest form such a stele is uninterrupted by leaf gaps and is called cladosiphonic. In the magaphyllous vascular plants, the complete and uninterrupted cylinder of ectopholic siphonostele became interrupted by the appearance of leaf gaps, which is now called phyllosiphonic. In case the leaf gaps do not overlap, the stele is, interrupted only at considerable distances (nodes) by one leaf gap, so in between the two leaf gaps, the vascular cylinder remains complete. Such a stele is also called solenostele or siphoneustele. During the course of evolution, in certain pteridophytes, leaf gaps on the stem overlap and lead to formation of a much dissected stelar organisation, called eustele. It is made up of a number of separate and collateral vascular bundles. In certain cases, the vascular bundles are

9 scattered, as in monocotyledonous, this kind of stele is termed as atactostele. ii). During another line of evolution, the medullation of protostele was followed by the appearance of phloem on either side of the xylem; likewise internal pericycle and also appeared. As a result, the siphonostele consisted of central pith, surrounded by a internal endodermis, internal pericycle, internal phloem, external pericycle and external endodermis. Such a stele led to the formation of amphiphloic siphonostele. It may be cladosiphonic or phyllosiphonic. The phyllosiphonic amphiphloic siphonostele with only one leaf gap at the node is called amphiphloic solenostele. In case the leaf gaps overlap, the resultant stele is called the dictyostele. Dictyostele is very common in Filicophyta. In many eusporangiate and leptosporangiate ferns, the dictyostelic stems are protostelic at their bases. Recent experimental studies also reveal that dictyostelic condition can be changed to solenostelic, or even to protostelic condition by removing the young leaf primordial from shoot apices. All these observations prove that protostele is the basic or the fundamental stelar type, from which the complicated steles or vascular systems arose by elaboration.

10 Among the pteridophytes, polycyclic stele is the most advanced condition exhibited by some ferns like Marattia, Matonia, etc. It also originated from the protostelic condition by further elaboration. This is born out by the fact that in Matonia pectinata, there is a regular transition from protostelic condition to solenostele and then to polycyclic condition. This developmental phenomenon is termed as recapitulation. Occurrence of such a developmental phenomenon leads further support to Jeffrey's view that protostele is the primitive condition. Thus, the evolution of stellar organisation has taken place along several independent lines; even a single genus, like Gleichenia, shows some species with protostelic structure, and some with the siphonostelic organisation. So the stellar structure has not been of much significance in establishing phylogenetic relationships.

Stelar evolution. B. Sc. III Botany

Stelar evolution. B. Sc. III Botany Stelar evolution B. Sc. III Botany Dr. (Miss) Kalpana R. Datar Assistant Professor DEPARTMENT OF BOTANY WILLINGDON COLLEGE, SANGLI. kalpana_datar@yahoo.com Stelar Evolution Stele is unit of vascular system.

More information

Plant Anatomy Lab 7 - Stems II

Plant Anatomy Lab 7 - Stems II Plant Anatomy Lab 7 - Stems II This exercise continues the previous lab in studying primary growth in the stem. We will be looking at stems from a number of different plant species, and emphasize (1) the

More information

IX. PRIMARY STEM STRUCTURE AND DEVELOPMENT Bot 404 Fall 2004

IX. PRIMARY STEM STRUCTURE AND DEVELOPMENT Bot 404 Fall 2004 IX. PRIMARY STEM STRUCTURE AND DEVELOPMENT Bot 404 Fall 2004 A. Shoot apex -plants have an open system of growth, therefore the ability (at least potentially) to continue growth because there is a meristem

More information

Primary Internal structure & Normal Secondary growth in Sunflower stem

Primary Internal structure & Normal Secondary growth in Sunflower stem Primary Internal structure & Normal Secondary growth in Sunflower stem B. Sc. II - Botany Dr. (Miss) Kalpana R. Datar Assistant Professor DEPARTMENT OF BOTANY Willingdon College, Sangli. kalpana_datar@yahoo.com.

More information

Int.J.Curr.Res.Aca.Rev.2017; 5(6): 81-85

Int.J.Curr.Res.Aca.Rev.2017; 5(6): 81-85 International Journal of Current Research and Academic Review ISSN: 2347-3215 (Online) Volume 5 Number 6 (June-2017) Journal homepage: http://www.ijcrar.com doi: https://doi.org/10.20546/ijcrar.2017.506.011

More information

Visit For All NCERT solutions, CBSE sample papers, Question papers, Notes for Class 6 to 12. Chapter-6 ANATOMY OF FLOWERING PLANTS

Visit  For All NCERT solutions, CBSE sample papers, Question papers, Notes for Class 6 to 12. Chapter-6 ANATOMY OF FLOWERING PLANTS Chapter-6 ANATOMY OF FLOWERING PLANTS POINTS TO REMEMBER Anatomy : Anatomy is the study of internal structure of organisms. Plant anatomy includes organisation and structure of tissues. Tissue : A group

More information

Downloaded from

Downloaded from POINTS TO REMEMBER : 6. Anatomy of Flowering Plants Study of internal structure of plant is called anatomy. In plants cells are the basic unit. Cells organized into tissues and tissues organized into organs.

More information

Introduction to Botany. Lecture 25

Introduction to Botany. Lecture 25 Introduction to Botany. Lecture 25 Alexey Shipunov Minot State University November 2, 2015 Shipunov (MSU) Introduction to Botany. Lecture 25 November 2, 2015 1 / 33 Outline 1 Questions and answers 2 Stem

More information

CHAPTER 6 ANATOMY OF FLOWERING PLANTS MULTIPLE CHOICE QUESTIONS

CHAPTER 6 ANATOMY OF FLOWERING PLANTS MULTIPLE CHOICE QUESTIONS ANATOMY OF FLOWERING PLANTS 27 27 CHAPTER 6 ANATOMY OF FLOWERING PLANTS MULTIPLE CHOICE QUESTIONS 1. A transverse section of stem is stained first with safranin and then with fast green following the usual

More information

Question 1: State the location and function of different types of meristem. Meristems are specialised regions of plant growth. The meristems mark the regions where active cell division and rapid division

More information

Exercise 12. Procedure. Aim: To study anatomy of stem and root of monocots and dicots.

Exercise 12. Procedure. Aim: To study anatomy of stem and root of monocots and dicots. Aim: To study anatomy of stem and root of monocots and dicots. Principle: The study of internal morphology, i.e., cells of various tissues in an organ of a living body is called Anatomy. Tissue, which

More information

Structural Botany Laboratory 3 Simplest and Earliest Land Plants

Structural Botany Laboratory 3 Simplest and Earliest Land Plants Structural Botany Laboratory 3 Simplest and Earliest Land Plants At one time all of the most ancient (i.e., fossils of the Silurian and Devonian) and simple vascular plants were placed in the class Psilopsida.

More information

Class XI Chapter 6 Anatomy of Flowering Plants Biology

Class XI Chapter 6 Anatomy of Flowering Plants Biology Class XI Chapter 6 Anatomy of Flowering Plants Biology Question 1: State the location and function of different types of meristem. Meristems are specialised regions of plant growth. The meristems mark

More information

On Descriptions of Vascular Structures 107

On Descriptions of Vascular Structures 107 On Descriptions of Vascular Structures 107 fluids xylol is found to be rather too volatile to be easy of use, a mixture of equal parts of xylol and cedar-wood oil works, perhaps, most easily. If cedar-wood

More information

STRUCTURAL BOTANY LABORATORY 3. Simplest and Earliest Land Plants. Fig. 1. Generalized relationships of Vascular Plants (Rothwell, 1994)

STRUCTURAL BOTANY LABORATORY 3. Simplest and Earliest Land Plants. Fig. 1. Generalized relationships of Vascular Plants (Rothwell, 1994) STRUCTURAL BOTANY LABORATORY 3 Simplest and Earliest Land Plants At one time all of the most ancient (i.e., fossils of the Silurian and Devonian) and simple vascular plants were placed in the class Psilopsida.

More information

Chapter 28 Active Reading Guide Plant Structure and Growth

Chapter 28 Active Reading Guide Plant Structure and Growth Name: AP Biology Mr. Croft Chapter 28 Active Reading Guide Plant Structure and Growth In this unit on plants, the challenge for students will be to learn the new vocabulary. As we work through this unit,

More information

The Shoot System: Primary Stem Structure - 1

The Shoot System: Primary Stem Structure - 1 The Shoot System: Primary Stem Structure - 1 Shoot System The shoot system comprises the leaves and stems of plants. Leaves are located at nodes on the stem; the distance along the stem between nodes is

More information

Plants. Tissues, Organs, and Systems

Plants. Tissues, Organs, and Systems Plants Tissues, Organs, and Systems Meristematic cells Specialized cells that are responsible for producing specialized cells, they produce three types of tissue in the body of a plant. Meristematic Cells

More information

THE ANATOMY OF SIX EPIPHYTIC SPECIES OF LYCOPODIUM

THE ANATOMY OF SIX EPIPHYTIC SPECIES OF LYCOPODIUM THE ANATOMY OF SIX EPIPHYTIC SPECIES OF LYCOPODIUM CONTRIBUTIONS FROM THE HULL BOTANICAL LABORATORY i8g J. BEN HILL (WITH TWENTY-EIGHT FIGURES) In this investigation, six epiphytic species of Lycopodium

More information

ANATOMY OF PLANTS Introduction: The study of gross internal structure of plant organs by the technique of section cutting is called plant anatomy.

ANATOMY OF PLANTS Introduction: The study of gross internal structure of plant organs by the technique of section cutting is called plant anatomy. ANATOMY OF PLANTS Introduction: The study of gross internal structure of plant organs by the technique of section cutting is called plant anatomy. (Pandey, 2002). Various plant organ viz. root, stem, leaves,

More information

Anatomy of Flowering Plants. K C Meena PGT Biology

Anatomy of Flowering Plants. K C Meena PGT Biology Anatomy of Flowering Plants K C Meena PGT Biology Tissues A group of similar cells performing same function. Types of plant tissues - Meristematic tissues and permanent tissues. Meristematic tissues Have

More information

Fabulous Ferns. The Monilophyte Lineage. Monilophytes. Seed plants. Lycophytes. Monilophytes. From Pryer et al Leptosporangiate ferns

Fabulous Ferns. The Monilophyte Lineage. Monilophytes. Seed plants. Lycophytes. Monilophytes. From Pryer et al Leptosporangiate ferns Monilophytes Fabulous Ferns The Monilophyte Lineage From Pryer et al. 2001 Leptosporangiate ferns Equisetaceae Monilophytes Psilotaceae Eusporangiate ferns Seed plants Lycophytes Megaphylls Leaf gap More

More information

PLANT ANATOMY. Chapter-1. Anatomy (Gr. ana-to split, tome-cutting): Tissues. Meristematic Tissues (Gr. Meristos : Divide)

PLANT ANATOMY. Chapter-1. Anatomy (Gr. ana-to split, tome-cutting): Tissues. Meristematic Tissues (Gr. Meristos : Divide) Chapter-1 PLANT ANATOMY Anatomy (Gr. ana-to split, tome-cutting): Tissues It deals with internal organisation of plants. There is no difference between term anatomy and histology in plants. Father of plant

More information

VI. Ferns I: The Marattiales and the Polypodiales, Vegetative Features

VI. Ferns I: The Marattiales and the Polypodiales, Vegetative Features VI. Ferns I: The Marattiales and the Polypodiales, Vegetative Features We now take up the ferns, two orders that together include about 12,000 species. Members of these two orders have megaphylls that

More information

THE OHIO JOURNAL OF SCIENCE

THE OHIO JOURNAL OF SCIENCE THE OHIO JOURNAL OF SCIENCE VOL. XXIV JULY, 1924 No.. 4 THE VASCULAR ANATOMY OF CALAMOVILFA LONGIFOLIA.* ERNEST LINCOLN STOVER Eastern Illinois State Teachers' College The present study of the anatomy

More information

Topic 2: Plant Structure & Growth Ch. 35 Angiosperms are the most complex plants. They are composed of cells, tissues, organs and organ systems.

Topic 2: Plant Structure & Growth Ch. 35 Angiosperms are the most complex plants. They are composed of cells, tissues, organs and organ systems. Topic 2: Plant Structure & Growth Ch. 35 Angiosperms are the most complex plants. They are composed of cells, tissues, organs and organ systems. Fig. 35.8 Plant Cells pp.798-802 Types of plant cells Include:

More information

SHRI VIDHYABHARATHI MATRIC HR.SEC.SCHOOL

SHRI VIDHYABHARATHI MATRIC HR.SEC.SCHOOL SHRI VIDHYABHARATHI MATRIC HR.SEC.SCHOOL SAKKARAMPALAYAM, AGARAM (PO) ELACHIPALAYAM TIRUCHENGODE(TK), NAMAKKAL (DT) PIN-6370 Cell : 996-377, 9443-377 COMMON QUARTERLY EXAMINATION 08 STD: XI-PURE SCIENCE

More information

Introduction to the Plant Kingdom - 1

Introduction to the Plant Kingdom - 1 Introduction to the Plant Kingdom - 1 The Plant Kingdom comprises a large and varied group of organisms that have the following characteristics in common. All plants are: Eukaryotic Photosynthetic Multicellular

More information

A group of cells with common origin is called a tissue. The cells of a tissue usually perform a common function.

A group of cells with common origin is called a tissue. The cells of a tissue usually perform a common function. Anatomy of Flowering Plants Tissues A group of cells with common origin is called a tissue. The cells of a tissue usually perform a common function. Types of Tissue: There are two main types of plant tissues,

More information

I. Lycopodiales: The Vegetative Features of the Sporophyte Phase

I. Lycopodiales: The Vegetative Features of the Sporophyte Phase Lab II. Lycopodiales: the Clubmosses I. Lycopodiales: The Vegetative Features of the Sporophyte Phase The clubmosses (traditionally classified as species of the genus Lycopodium) are low, evergreen plants

More information

LECTURES ON THE EVOLUTION OF THE FILICINEAN VASCULAR SYSTEM.' (University Lecturer in Botany, Cambridge). LECTURE VI.

LECTURES ON THE EVOLUTION OF THE FILICINEAN VASCULAR SYSTEM.' (University Lecturer in Botany, Cambridge). LECTURE VI. PHYTOIiOGIST. VOL. VI., No. 8. OCT. 31ST, 1907. LECTURES ON THE EVOLUTION OF THE FILICINEAN VASCULAR SYSTEM.' BY A. G. TANSLEY, M.A. (University Lecturer in Botany, Cambridge). LECTURE VI. THE EVOLUTION

More information

TARGET STUDY MATERIAL

TARGET STUDY MATERIAL TARGET STUDY MATERIAL Plus-1 Botany VOL I TARGET EDUCATIONAL INSTITUTION Target Educational institution is the one and only Entrance coaching and CBSE 10 th coaching centre at Mukkam with advanced technologies

More information

Histology and Anatomy of Flowering Plants

Histology and Anatomy of Flowering Plants Histology and Anatomy of Flowering Plants Very Short Answer Type Questions 1. The transverse section of a plant material shows the following anatomical features: a) The vascular bundles are conjoint, scattered

More information

THE TISSUES A tissue is a group of cells having a common origin and usually performing a common function. Tissues. Parenchyma

THE TISSUES A tissue is a group of cells having a common origin and usually performing a common function. Tissues. Parenchyma 1 CHAPTER 6 ANATOMY OF FLOWERING PLANTS Study of internal structure of plants is called anatomy. Plants have cells as the basic unit, cells are organised into tissues and in turn the tissues are organised

More information

CHAPTER 6 ANATOMY OF FLOWERING PLANTS

CHAPTER 6 ANATOMY OF FLOWERING PLANTS 84 BIOLOGY CHAPTER 6 ANATOMY OF FLOWERING PLANTS 6.1 The Tissues 6.2 The Tissue System 6.3 Anatomy of Dicotyledonous and Monocotyledonous Plants 6.4 Secondary Growth You can very easily see the structural

More information

Name: Plant stems and leaves (p. 1 of )

Name: Plant stems and leaves (p. 1 of ) Name: Plant stems and leaves (p. 1 of ) Introduction: Plants have a variety of configurations but the same basic structures. The three main parts of a plant are the roots, stems, and leaves. The tracheids

More information

CHAPTER 6 ANATOMY OF FLOWERING PLANTS

CHAPTER 6 ANATOMY OF FLOWERING PLANTS 84 BIOLOGY CHAPTER 6 ANATOMY OF FLOWERING PLANTS 6.1 The Tissues 6.2 The Tissue System 6.3 Anatomy of Dicotyledonous and Monocotyledonous Plants 6.4 Secondary Growth You can very easily see the structural

More information

Plant Tissues and Organs. Topic 13 Plant Science Subtopics , ,

Plant Tissues and Organs. Topic 13 Plant Science Subtopics , , Plant Tissues and Organs Topic 13 Plant Science Subtopics 13.1.2, 13.1.3, 13.1.4 Objectives: List and describe the major plant organs their structure and function List and describe the major types of plant

More information

The Plant body has a hierarch of organs, tissues, and cells. [2]

The Plant body has a hierarch of organs, tissues, and cells. [2] GUIDED READING - Ch. 35 PLANT STRUCTURE NAME: Please print out these pages and HANDWRITE the answers directly on the printouts. Typed work or answers on separate sheets of paper will not be accepted. Importantly,

More information

ANATOMY OF FLOWERING PLANTS

ANATOMY OF FLOWERING PLANTS ANATOMY OF FLOWERING PLANTS Finish Line & Beyond The Tissues The Tissue System Anatomy of Dicotyledonous and Monocotyledonous Plants Secondary Growth THE TISSUES A tissue is a group of cells having a common

More information

Plant Anatomy and Tissue Structures

Plant Anatomy and Tissue Structures Plant Anatomy and Tissue Structures The Two Major Plant Systems Reproductive shoot (flower) Terminal bud Node Internode Angiosperm plants have threse major organs: Roots Stems Leaves & Flowers Terminal

More information

Bring Your Text to Lab!!!

Bring Your Text to Lab!!! Bring Your Text to Lab!!! Vascular Plant Anatomy: Flowering Plants Objectives: 1. To observe what the basic structure of vascular plants is, and how and where this form originates. 2. To begin to understand

More information

Plant Anatomy. By Umanga Chapagain

Plant Anatomy. By Umanga Chapagain Plant Anatomy By Umanga Chapagain PLANT ANATOMY The science of the structure of the organized plant body learned by dissection is called Plant Anatomy. In general, Plant Anatomy refers to study of internal

More information

Chapter #35~ Plant Structure and Growth

Chapter #35~ Plant Structure and Growth Chapter #35~ Plant Structure and Growth What part of a plant is represented by each of these: Carrot Celery Red Pepper Tomato Lettuce Garbanzo Bean Angiosperm structure Three basic organs: Roots (root

More information

PHARMACOBOTANY LECTURE 5. PLANT TISSUES III.

PHARMACOBOTANY LECTURE 5. PLANT TISSUES III. PHARMACOBOTANY LECTURE 5. PLANT TISSUES III. VASCULAR TISSUES VASCULAR TISSUES Xylem transporting water and mineral substances from the root upwards to other plant organs Phloem carries photosynthetic

More information

THE LECTURES ON THE EVOLUTION OF THE FILICINEAN VASCULAR SYSTEM.' BY A. G. TANSLBY, M.A. University Lecturer in Botany, Cambridge. LECTURE IX.

THE LECTURES ON THE EVOLUTION OF THE FILICINEAN VASCULAR SYSTEM.' BY A. G. TANSLBY, M.A. University Lecturer in Botany, Cambridge. LECTURE IX. THE PHYTOLOGIST. VOL. VII., No. i. JAN. 31ST, 1908. LECTURES ON THE EVOLUTION OF THE FILICINEAN VASCULAR SYSTEM.' BY A. G. TANSLBY, M.A. University Lecturer in Botany, Cambridge. LECTURE IX. THE LEAF-TRACB.

More information

2.1 PLANT TISSUE HALIMAHTUN SAEDIAH BT ABU BAKAR KOLEJ TEKNOLOGI TIMUR

2.1 PLANT TISSUE HALIMAHTUN SAEDIAH BT ABU BAKAR KOLEJ TEKNOLOGI TIMUR 2.1 PLANT TISSUE HALIMAHTUN SAEDIAH BT ABU BAKAR KOLEJ TEKNOLOGI TIMUR GENERAL Plant cell are differentiated possessing structural adaptations that make specific functions possible. Modifications of cell

More information

A COMPARATIVE STUDY OF THE PRIMARY VASCULAR SYSTE~1 CONIFERS. III. STELAR EVOLUTION IN GYMNOSPERMS 1

A COMPARATIVE STUDY OF THE PRIMARY VASCULAR SYSTE~1 CONIFERS. III. STELAR EVOLUTION IN GYMNOSPERMS 1 Amer. J. Bot. 55(4): 464-472. 1!16'>. A COMPARATIVE STUDY OF THE PRIMARY VASCULAR SYSTE~1 CONIFERS. III. STELAR EVOLUTION IN GYMNOSPERMS 1 OF KADAMBARI K. NAMBOODIRI 2 AND CHARLES B. BECK Department of

More information

NUCLEUS ALBUMINOUS CELL SIEVE CELL SIEVE AREA SMALL PORES SIEVE CELL PHLOEM L.S. SUGAR

NUCLEUS ALBUMINOUS CELL SIEVE CELL SIEVE AREA SMALL PORES SIEVE CELL PHLOEM L.S. SUGAR NUCLEUS? ALBUMINOUS CELL SUGAR SIEVE CELL SIEVE AREA SMALL PORES SIEVE CELL PHLOEM L.S. NUCLEUS S ALBUMINOUS CELL SUGAR SIEVE? CELL SIEVE PLATE LARGE PORES SIEVE? CELL PHLOEM L.S. NUCLEUS? ALBUMINOUS CELL

More information

A Branched Cone of Equisetum, 113

A Branched Cone of Equisetum, 113 A Branched Cone of Equisetum, 113 6. E. C. Jeffrey. " The Development, Structure and Affinities of the genus Equisetum." Memoirs of the Boston Society of Natural History, Vol. V., No. 5, 1899. 7. R. Kidston.

More information

BIOL/APBI 210. In-class test #1- (50 marks total, worth 12% of grade) February 9, 2011

BIOL/APBI 210. In-class test #1- (50 marks total, worth 12% of grade) February 9, 2011 Student Name KEY TO YELLOW EXAM Student Number BIOL/APBI 210 In-class test #1- (50 marks total, worth 12% of grade) February 9, 2011 MC 1 2 3 Essay Total 20 7 7 6 10 50 PART I Multiple Choice (2 marks

More information

NOTES: CH 35 - Plant Structure & Growth

NOTES: CH 35 - Plant Structure & Growth NOTES: CH 35 - Plant Structure & Growth In their evolutionary journey, plants adapted to the problems of a terrestrial existence as they moved from water to land ANGIOSPERMS (flowering plants) -most diverse

More information

PLANT TISSUES 12 MARCH 2014

PLANT TISSUES 12 MARCH 2014 PLANT TISSUES 12 MARCH 2014 Lesson Description In this lesson we: Identify the different types of plant tissue Be able to relate the different structures with the different functions Plant Tissue Summary

More information

Chapter 35~ Plant Structure and Growth

Chapter 35~ Plant Structure and Growth Chapter 35~ Plant Structure and Growth Plant Organization Plant morphology is based on plant s evolutionary history Need to draw in nutrients from the ground and the air Plant Organs Root system = roots

More information

tree of life phylogeny morphology gram stain chapter 28-29, other groups of organisms Bacteria

tree of life phylogeny morphology gram stain chapter 28-29, other groups of organisms Bacteria tree of life chapter 28-29, other groups of organisms phylogeny key lineages of prokaryotes Domain Archaea (sister to eukarya) 3 clades defined by genetic characters Domain Bacteria Firmicutes Spirochaetes

More information

Roots anchor plants and absorb water and minerals in solution. A germinating seed radicle becomes the first root. Four zones, or regions, of young

Roots anchor plants and absorb water and minerals in solution. A germinating seed radicle becomes the first root. Four zones, or regions, of young Roots anchor plants and absorb water and minerals in solution. A germinating seed radicle becomes the first root. Four zones, or regions, of young roots are recognized: (1) A protective root cap that also

More information

tree of life phylogeny gram stain morphology chapter 28-29, other groups of organisms Bacteria

tree of life phylogeny gram stain morphology chapter 28-29, other groups of organisms Bacteria tree of life chapter 28-29, other groups of organisms phylogeny key lineages of prokaryotes Domain Archaea (sister to eukarya) 3 clades defined by genetic characters Domain Bacteria Firmicutes Spirochaetes

More information

OF late years evidence of the presence of secondary thickening

OF late years evidence of the presence of secondary thickening 2o8 On Secondary Thickening in Pteridophyta. ON SECONDARY THICKENING IN RECENT PTERIDOPHYTA. A OF late years evidence of the presence of secondary thickening in recent Pteridophyta has accumulated, and

More information

Chapter 29: Plant Tissues

Chapter 29: Plant Tissues Chapter 29: Plant Tissues Shoots and Roots Shoots (Leaves and Stem) Produce food by photosynthesis Carry out reproductive functions Roots Anchor the plant Penetrate the soil and absorb water and dissolved

More information

Plant Structure. Lab Exercise 24. Objectives. Introduction

Plant Structure. Lab Exercise 24. Objectives. Introduction Lab Exercise Plant Structure Objectives - Be able to identify plant organs and give their functions. - Learn distinguishing characteristics between monocot and dicot plants. - Understand the anatomy of

More information

NOTES ON GINKGO BILOBA'

NOTES ON GINKGO BILOBA' NOTES ON GINKGO BILOBA' WALTER WV. TUPPER (WITH PLATE xx) Among the gymnosperms, one of the groups most interesting from a morphological standpoint is the Ginkgoales, the only living representative of

More information

Lab Exercise 4: Primary Growth and Tissues in Stems

Lab Exercise 4: Primary Growth and Tissues in Stems Lab Exercise 4: Primary Growth and Tissues in Stems Tissues of the plant body can be classified in a variety of ways: functionally (based on the tissue function, e.g. vascular tissue ), morphologically

More information

(Photo Atlas: Figures 9.147, 9.148, 9.150, 9.1, 9.2, )

(Photo Atlas: Figures 9.147, 9.148, 9.150, 9.1, 9.2, ) BIOL 221 Concepts of Botany Fall 2007 Topic 07: Primary Plant Body: The Root System (Photo Atlas: Figures 9.147, 9.148, 9.150, 9.1, 9.2, 9.5 9.23) A. Introduction The root has the primary functions of

More information

Plant Structure And Growth

Plant Structure And Growth Plant Structure And Growth The Plant Body is Composed of Cells and Tissues Tissue systems (Like Organs) made up of tissues Made up of cells Plant Tissue Systems Ground Tissue System Ø photosynthesis Ø

More information

Aurealcaulis crossii gen. et sp. nov., an arborescent, osmundaceous trunk from the Fort Union

Aurealcaulis crossii gen. et sp. nov., an arborescent, osmundaceous trunk from the Fort Union Brigham Young University BYU ScholarsArchive All Faculty Publications 1987-06-01 Aurealcaulis crossii gen. et sp. nov., an arborescent, osmundaceous trunk from the Fort Union Formation (Paleocene), Wyoming

More information

Topic 23. The Ferns and Their Relatives

Topic 23. The Ferns and Their Relatives Topic 23. The Ferns and Their Relatives Domain: Eukarya Kingdom: Plantae Ferns Leptosporangiate Ferns Psilophytes Genus: Psilotum Horsetails Genus: Equisetum In this treatment we lump the Psilophytes and

More information

Chapter. Transport in. Structure of. 1- Epidermis: 2- Cortex: All plants 2- a specialized. In higher moving by. hydra and. with cuticles) 1-2-

Chapter. Transport in. Structure of. 1- Epidermis: 2- Cortex: All plants 2- a specialized. In higher moving by. hydra and. with cuticles) 1-2- Chapter 2 Transport in living organisms The concept of transport and the need for it: All plants need CO 2, water and mineral salts to perform photosynthesis In primitive plants such as algae these materials

More information

Chapter 23 Notes Roots Stems Leaves

Chapter 23 Notes Roots Stems Leaves Chapter 23 Notes Roots Stems Leaves I. Specialized tissue in plants - effective way to ensure the plant s survival A. Seed plant structure 1. Roots - a. Absorbs water and dissolves nutrients b. anchors

More information

LYCOPODIUM Sub- Division- Lycopsida Order- Lycopodiales Family- Lycopodiaceae

LYCOPODIUM Sub- Division- Lycopsida Order- Lycopodiales Family- Lycopodiaceae LYCOPODIUM Sub- Division- Lycopsida Order- Lycopodiales Family- Lycopodiaceae LYCOPODIUM Distribution and Occurrence Commonly called: Club moss Ground pine Trailing over green Represented by 400 species,

More information

Pteridophytes: Pteridophytes are vascular cryptogams. They are the earliest know vascular plants which originated in the Silurian period of

Pteridophytes: Pteridophytes are vascular cryptogams. They are the earliest know vascular plants which originated in the Silurian period of Pteridophytes: Pteridophytes are vascular cryptogams. They are the earliest know vascular plants which originated in the Silurian period of Palaeozoic era. They are the successful colonizers on land habit.

More information

Lecture 4 Root Put line under your answer! There is only one correct answer in the multiple choice questions

Lecture 4 Root Put line under your answer! There is only one correct answer in the multiple choice questions Lecture 4 Root Put line under your answer! There is only one correct answer in the multiple choice questions 1. The perception of gravity by a root is thought to take place in a) root hairs b) the region

More information

SESSION 6: SUPPORT AND TRANSPORT SYSTEMS IN PLANTS PART 1

SESSION 6: SUPPORT AND TRANSPORT SYSTEMS IN PLANTS PART 1 SESSION 6: SUPPORT AND TRANSPORT SYSTEMS IN PLANTS PART 1 KEY CONCEPTS In this session we will focus on summarising what you need to know about: - Anatomy of dicotyledonous plants Root and stem: distribution

More information

Effects of Sun-Blotch on the Anatomy of the Avocado Stem

Effects of Sun-Blotch on the Anatomy of the Avocado Stem California Avocado Association 1935 Yearbook 20: 125-129 Effects of Sun-Blotch on the Anatomy of the Avocado Stem Charles A. Schroeder Because of the comparatively recent discovery of the avocado disease

More information

STEMS Anytime you use something made of wood, you re using something made from the stem of a plant. Stems are linear structures with attached leaves

STEMS Anytime you use something made of wood, you re using something made from the stem of a plant. Stems are linear structures with attached leaves STEMS OUTLINE External Form of a Woody Twig Stem Origin and Development Stem Tissue Patterns Herbaceous Dicotyledonous Stems Woody Dicotyledonous Stems Monocotyledonous Stems Specialized Stems Wood and

More information

Plant Structure and Function

Plant Structure and Function Plant Structure and Function A Meridian Biology AP Study Guide by John Ho and Tim Qi Plant Terms Growth: Growth Types Type Location Description Primary Primary Vertical growth (up-down), dominant direction

More information

Angiosperms: Dicotyledons

Angiosperms: Dicotyledons Angiosperms: Dicotyledons This section contains anatomical descriptions of stem and twig xylem, as well as the bark and pith regions of 244 dicotyledonous species belonging to 61 families. Angiosperms:

More information

Anatomy of Flowering Plants

Anatomy of Flowering Plants 76 Anatomy of Flowering Plants 1. Tunica corpus theory is connected with (a) root apex (b) root cap (c) shoot apex (d) secondary growth The shoot apex or stem apical meristem has two zones, outer tunica

More information

Chapter 29. Table of Contents. Section 1 Plant Cells and Tissues. Section 2 Roots. Section 3 Stems. Section 4 Leaves. Plant Structure and Function

Chapter 29. Table of Contents. Section 1 Plant Cells and Tissues. Section 2 Roots. Section 3 Stems. Section 4 Leaves. Plant Structure and Function Plant Structure and Function Table of Contents Section 1 Plant Cells and Tissues Section 2 Roots Section 3 Stems Section 4 Leaves Section 1 Plant Cells and Tissues Objectives Describe the three basic types

More information

Plant Organization. Learning Objectives. Angiosperm Tissues. Angiosperm Body Plan

Plant Organization. Learning Objectives. Angiosperm Tissues. Angiosperm Body Plan Plant Organization Learning Objectives 1. List and give the major function of the three main types of plant tissues 2. Identify a monocot verses a eudicot plant by observing either root, stem, leaf, or

More information

SOME ASPECTS OF THE MORPHOLOGY OF THE RHIZOME OF PTERIS WALLICHIANA. BY SUBHASH CHANDRA AND B. K, I'qAYAR. (National Botanic Gardens, Lucknow)

SOME ASPECTS OF THE MORPHOLOGY OF THE RHIZOME OF PTERIS WALLICHIANA. BY SUBHASH CHANDRA AND B. K, I'qAYAR. (National Botanic Gardens, Lucknow) SOME ASPECTS OF THE MORPHOLOGY OF THE RHIZOME OF PTERIS WALLICHIANA BY SUBHASH CHANDRA AND B. K, I'qAYAR (National Botanic Gardens, Lucknow) Received June 14, 1969 (Communicated by T. N. Khoshoo, F.A.SC.)

More information

The three principal organs of seed plants are roots, stems, and leaves.

The three principal organs of seed plants are roots, stems, and leaves. 23 1 Specialized Tissues in Plants Seed Plant Structure The three principal organs of seed plants are roots, stems, and leaves. 1 of 34 23 1 Specialized Tissues in Plants Seed Plant Structure Roots: absorb

More information

ROOTS. Syllabus Theme A Plant Structure and Function. Root systems. Primary Growth of Roots. Taproot system. Fibrous root system.

ROOTS. Syllabus Theme A Plant Structure and Function. Root systems. Primary Growth of Roots. Taproot system. Fibrous root system. Syllabus Theme A lant Structure and Function A2: Structure and function of the basic plant organs ampbell & Reece hap. 35 Selected page numbers ROOTS Functions Anchors the vascular plant Absorbs minerals

More information

Topic 22. Introduction to Vascular Plants: The Lycophytes

Topic 22. Introduction to Vascular Plants: The Lycophytes Topic 22. Introduction to Vascular Plants: The Lycophytes Introduction to Vascular Plants Other than liverworts, hornworts, and mosses, all plants have vascular tissues. As discussed earlier, the mosses

More information

Chapter 6. Biology of Flowering Plants. Anatomy Seedlings, Meristems, Stems, and Roots

Chapter 6. Biology of Flowering Plants. Anatomy Seedlings, Meristems, Stems, and Roots BOT 3015L (Outlaw/Sherdan/Aghoram); Page 1 of 6 Chapter 6 Biology of Flowering Plants Anatomy Seedlings, Meristems, Stems, and Roots Objectives Seedling germination and anatomy. Understand meristem structure

More information

B300 VASCULAR PLANTS LABORATORY 1

B300 VASCULAR PLANTS LABORATORY 1 B300 VASCULAR PLANTS LABORATORY 1 THE IDENTIFICATION OF TREES BASED ON WINTER TWIGS In this course you will learn, among other things, what kinds of organisms constitute the highly visible and important

More information

Plant Structure. Objectives At the end of this sub section students should be able to:

Plant Structure. Objectives At the end of this sub section students should be able to: Name: 3.2 Organisation and the Vascular Structures 3.2.1 Flowering plant structure and root structure Objectives At the end of this sub section students should be able to: 1. Label a diagram of the external

More information

The Petiolar Structure of Christella dentata (Forssk.) Brownsey & Jermy (Thelypteridaceae, Pteridophyta)

The Petiolar Structure of Christella dentata (Forssk.) Brownsey & Jermy (Thelypteridaceae, Pteridophyta) Ethnobotanical Leaflets 12: 96-102. 2008. The Petiolar Structure of Christella dentata (Forssk.) Brownsey & Jermy (Thelypteridaceae, Pteridophyta) KAMINI SRIVASTAVA, M.Sc, D.Phil Department of Botany,

More information

[279] A NOTE ON THE ORIGIN OF LATERAL ROOTS AND THE STRUCTURE OF THE ROOT-APEX OF LYGINOPTERIS OLDHAMIA

[279] A NOTE ON THE ORIGIN OF LATERAL ROOTS AND THE STRUCTURE OF THE ROOT-APEX OF LYGINOPTERIS OLDHAMIA [279] A NOTE ON THE ORIGIN OF LATERAL ROOTS AND THE STRUCTURE OF THE ROOT-APEX OF LYGINOPTERIS OLDHAMIA BY A. C. HALKET (With Plate XI and i figure in the text) E 'GlNOPTERis oi.dh.imi.i, a plant of the

More information

Plant Anatomy: roots, stems and leaves

Plant Anatomy: roots, stems and leaves Plant Anatomy: roots, stems and leaves The plant body has a hierarchy of organs, tissues and cells Plants, like animals, have organs composed of different tissues, which are composed of cells. Tissue is

More information

Q. No.1. Write down the habit and habitat of genus Lycopodium.

Q. No.1. Write down the habit and habitat of genus Lycopodium. Frequently asked questions (FAQ S) Q. No.1. Write down the habit and habitat of genus Lycopodium. Ans. Plants are slender, herbaceous or shrubby sporophyte with a wide in habit and habitat. Stems of most

More information

Anatomy of dicotyledonous plants

Anatomy of dicotyledonous plants Anatomy of dicotyledonous plants Differences between Monocotyledons and Dicotyledons All plants are classified as producing seeds or not producing seeds. Those that produce seeds are divided into flowering

More information

Topic 14. The Root System. II. Anatomy of an Actively Growing Root Tip

Topic 14. The Root System. II. Anatomy of an Actively Growing Root Tip Topic 14. The Root System Introduction. This is the first of two lab topics that focus on the three plant organs (root, stem, leaf). In these labs we want you to recognize how tissues are organized in

More information

Structural Botany Laboratory 6. Class Pteropsida (Filicopsida)

Structural Botany Laboratory 6. Class Pteropsida (Filicopsida) Structural Botany Laboratory 6 Class Pteropsida (Filicopsida) The class Pteropsida is characterized by pteridophytic plants that have large, dissected leaves, and sporangia that are borne on the leaves.

More information

BIOL 305L Laboratory One

BIOL 305L Laboratory One Please print Full name clearly: BIOL 305L Laboratory One General plant anatomy a great place to start! Introduction Botany is the science of plant life. Traditionally, the science included the study of

More information

Today: Plant Structure Exam II is on F March 31

Today: Plant Structure Exam II is on F March 31 Next few lectures are on plant form and function Today: Plant Structure Exam II is on F March 31 Outline Plant structure I. Plant Cells structure & different types II. Types of meristems Apical meristems:

More information

Secondary growth in stems

Secondary growth in stems Secondary growth in stems Secondary growth Some of the meristematic cells in plants with secondary growth keep their meristematic state and become cells of the cambium. The addition of secondary vascular

More information

Q. Amphivasal vascular bundle. b) Dracaena and Yucca c) Helianthus and Cucurbita d) maize and Wheat

Q. Amphivasal vascular bundle. b) Dracaena and Yucca c) Helianthus and Cucurbita d) maize and Wheat PLANT HISTOLOGY AND ANATOMY Q. Transcellular strands are seen in a) Xylem vessels b) Tracheids c) Parenchyma cells d) Sieve tubes Q. Epiphytes absorb water by a spongy tissue called a) Mesophyll b) Velamen

More information

Honors Biology I Ch 29 Plant Structure & Function

Honors Biology I Ch 29 Plant Structure & Function 3 Basic types of plant cells Honors Biology I Ch 29 Plant Structure & Function 1) Parenchyma cells- loosely packed or cells with a and thin, Involved in metabolic functions 2) Collenchyma cells- thicker

More information

2/25/2013. o Plants take up water and minerals from below ground o Plants take up CO2 and light from above ground THREE BASIC PLANT ORGANS ROOTS

2/25/2013. o Plants take up water and minerals from below ground o Plants take up CO2 and light from above ground THREE BASIC PLANT ORGANS ROOTS o Plants take up water and minerals from below ground o Plants take up CO2 and light from above ground THREE BASIC PLANT ORGANS o Roots o Stems o Leaves ROOTS o Anchor plant o Absorb water and minerals

More information

POLYXYLIC STEM OF CYCAS MEDIA

POLYXYLIC STEM OF CYCAS MEDIA POLYXYLIC STEM OF CYCAS MEDIA CONTRIBUTIONS FROM THE HULL BOTANICAL LABORATORY 252 WARD L. MILLER (WITH ELEVEN FIGURES) The question which lends particular interest to the polyxylic situation in 4 of the

More information