CYTOLOGY OF VIOLA ODORATA L. POLLEN GERMINATION SILVICA PĂDUREANU 1. Introduction

Size: px
Start display at page:

Download "CYTOLOGY OF VIOLA ODORATA L. POLLEN GERMINATION SILVICA PĂDUREANU 1. Introduction"

Transcription

1 Analele ştiinţifice ale Universităţii Al. I. Cuza Iaşi Tomul LIII, s. II a. Biologie vegetală, 27 CYTOLOGY OF VIOLA ODORATA L. POLLEN GERMINATION SILVICA PĂDUREANU 1 Abstract: The paper presents the characteristics of Viola odorata L. pollen germination process. We also mention here other points concerning the length of pollen tubes in the dynamics of germination process and according to the glucide concentration of nutritive mediums used in the experiment. A certain length of pollen tubes was very important, as they ensured ovule fertilization and implicitly, the fructification of this taxon. We have also mentioned other points on the characteristics of pollen tubes and abnormalities that might appear during the germination process of sweet violet pollen. Key words: pollen tube, generative cell, vegetative cell, abnormalities of pollen tubes Introduction Pollen as an organization organ takes part to a very important stage of the vegetal world, the stage of reproduction. Once it reached the surface of stylus, the pollen grain begins to germinate and to form a pollen tube, which crosses the tissues of stigmata and stylus, being directed through chemotropism to an ovule it fertilizes. The pollen tube of angiosperms contains two haploid, immobile spermatic cells, which have the value of male gametes. In fact, the pollen tube is a vector of male gametes. Once reached the ovule micropyle, the pollen tube is resorbed, and its valuable content (the two male gametes) is flowed into ovule for its fertilization: a male gamete is joined to oosphere, resulting the zygote. The other male gamete is joined to central cell of embryo sac from ovule, resulting the endosperm of the future seed. The double fecundation specific to angiosperms is done this way [2, 3, 6]. Pollen is finally found in direct correlation with the fructification of the vegetal body. The knowledge of the way of forming the pollen tube and of factors, which influence this process, results in solving many eco-physiological, genetic, diagnosis aspects, typical of each vegetal taxon [4]. The aim of this paper was the study on the pollen behaviour in the germination process in a widely spread taxon Viola odorata L. Material and Methods The biological material was represented by a population made of a few hundreds of samples with chasmogamous flowers belonging to species Viola odorata, a spontaneous species found in the Botanical Garden of Iassy. For the investigation carried out on sweet violet pollen, we sampled anthers at the stage of anthesis. Pollen grains have been inoculated on agar nutritive mediums, at which sucrose was added at different concentration, from to 3%. The quantity of pollen inoculated on these mediums was the same in all the cases. 1 University of Agricultural Sciences and Veterinary Medicine Ion Ionescu de la Brad Iaşi 6

2 For each experimental variant, we carried out 15 preparations. In order to maintain a wet medium, which was vital for pollen viability, we have used van Tieghem wet chambers [5]. Micromeasurements for determining the dynamics for the extension of pollen tubes were carried out every 3, 24, 48 and 72 hours since the inoculation of pollen grains on nutritive medium. For pointing out the characteristics of pollen tube from this taxon, photographs were taken at Nikon optical microscope and drawings at camera lucida. Results and Discussions After three hours since inoculation, the first pollen tubes appeared on mediums, with glucide concentration ( - 45%) allowed the germination during this interval. The length of these tubes was between 6 and μm, the longest ones being found on 15% sucrose medium, and the shortest ones, on the medium without sucrose (fig. 1). micrometers % sucrose in medium Fig. 1 The average lenght of the pollen tube at Viola odorata L., 3 hours after inoculation After 24 hours since inoculation, pollen tubes have increased in length. Other tubes appeared on other mediums with high until 3% glucide concentration (fig. 2). The longest pollen tubes were formed on 15% sucrose medium ( μm). micrometers % sucrose in medium Fig. 2 The average lenght of the pollen tube at Viola odorata L., 24 hours after inoculation After 48 hours since inoculation, the length of pollen tubes was double, and in some cases, triple. On 15%, 2% and 25% sucrose mediums, pollen tubes were the longest from all experimental variants: μm, 1925 μm and respectively, 175 μm. On the medium without sucrose, the tubes were, on the average, μm long, while on the 61

3 medium with the highest sucrose concentration - 3%, pollen tubes extended until μm (fig. 3) micrometers % sucrose in medium Fig. 3 The average lenght of the pollen tube at Viola odorata L., 48 hours after inoculation After 72 hours since inoculation, we found out that many pollen tubes degenerated. The viable ones either stopped their growth or broke at top, being resorbed (fig. 4). micrometers % sucrose in medium Fig. 4 The average lenght of the pollen tube at Viola odorata L., 72 hours after inoculation The dynamic analysis of length growth for Viola odorata pollen tubes has shown that this parameter was much influenced by glucide concentration of nutritive mediums (fig. 5, 6). In the first 48 hours since inoculation, a significant elongation of pollen tubes took place on all the mediums used in the experiment; then, after 72 hours, a partial resorption of tubes and a general stagnation of the growth process of pollen tubes were noticed. On mediums, which glucide concentration exceeds 11%, the elongation process of pollen tubes was active, even after 72 hours since inoculation, but at minimum height. Different aspects of pollen tubes formed on different nutritive mediums are presented in fig As concerns the structure of Viola odorata L. pollen grains, we found that in this taxon, pollen is bicellular. The generative cell has an elongated shape, being a refringent zone. The germination process starts with the formation of a mammilla. In a few hours, the pollen tube is thus formed. The vegetative cell is quartered on the top of the tube, and the generative cell penetrates the tube when it reaches a mean length of 193 μm. In vitaceae, the generative cell penetrates the tube when it has 1 μm [1]. Therefore, the moment of generative cell penetrating the tube may be considered as a diagnosis character. 62

4 micrometers h 24 h 48 h 72 h time (hours) Fig. 5 Dynamics of average lenght of the pollen tube at Viola odorata L. % sucr. 1% sucr. 5% sucr. 1% sucr. 15% sucr. 2% sucr. 25% sucr. 3% sucr. 35% sucr. 4% sucr. 45% sucr. micrometers h 24 h 48 h 72 h time (hours) Fig. 6 Dynamics of average lenght of the pollen tube at Viola odorata L. 6% sucr. 7% sucr. 8% sucr. 9% sucr. 1% sucr. 11% sucr. 15% sucr. 18% sucr. 2% sucr. 22% sucr. 25% sucr. 3% sucr. During the pollen tube elongation, the generative cell is found at an average distance of 26 μm compared to the base of tube and of 635 μm compared to the top of tube. Viable pollen tubes have a constant diameter on the entire length, of 11 μm, while the tubes broken at the top or near the top have a decreasing diameter to the top. In many variants of the experiment, we found out the formation of pollen tubes with spiral extremity at the base or in the upper third (fig. 13, 14, 15). The spiral forms of these pollen tubes are not conditioned by certain glucide concentrations and cannot be considered abnormalities. During the germination process of Viola odorata pollen, some abnormalities in the shape of pollen tube were found; they do not depend on glucide concentration of medium and on the length of the tube. These abnormalities consist in tubes branched out at the base or near the base of the tube, pollen grains with two tubes, which came from two germinating pores, tubes with dilatations at the top or on the line of the tube (fig. 16, 17). As concerns the length of pollen tubes, we found out that the longest tubes were formed on 1-35% sucrose mediums, when they might have, on the average, 2 μm after h since pollen inoculation on medium. We have also noticed that there was a positive correlation between pollen germination capacity and length of pollen tubes in Viola odorata. After measuring the length of 2 styluses in Viola odorata flowers, which took part of the investigated population, an average of 28 μm was obtained. Therefore, only the pollen tubes with an average length of at least 2 μm could penetrate the entire long stylus of sweet violet flower, in order to reach the ovules. In Viola odorata, a concentration of stigmatic liquid of 1-35% glucide guarantees the success of pollen tubes reaching the ovules during hours. 63

5 Conclusions 1. Viola odorata L. pollen is bicellular. 2. The generative cell penetrates the pollen tube only when it has a length of at least 19 μm. 3. Viable pollen tubes have a constant thickness of 11 micrometers on the entire length, while the broken degenerating tubes have a smaller and smaller diameter to the top. 4. Nutritive mediums with 1-35% glucide concentration lead to the formation of the longest pollen tubes (around 2 micrometers) in hours since inoculation; these tubes can penetrate the long stylus of 28 micrometers of this taxon. 5. There is a positive correlation between pollen germination capacity and length of pollen tubes. 6. During the germination process of Viola odorata pollen, abnormalities in the morphology of pollen tubes may appear (indifferently of the concentration of nutritive layer): branched out tubes, tubes with dilatations placed at different sites, and two pollen tubes of pollen grains. 7. During the germination of sweet violet pollen, spiral pollen tubes may appear at high rates; their presence does not depend on glucide concentration of nutritive medium. This could be a genotypic specific feature. BIBLIOGRAPHY 1. GHERASIM C., 197. Ampelografia R.S.R., vol. 1, Edit. Acad. R.S.R., 189 pp. 2. IVĂNESCU LĂCRĂMIOARA, TOMA IRINA, 23. Embriologie vegetală, Edit. Junimea, Iassy, pp. 3. NEWBIGIN E., ANDERSON M.A., CLARKE A.E., Gametophytic self incompatibility sistem. Plant cell, 5: pp. 4. PĂDUREANU SILVICA 23. The cytological variability of the pollen grain germination in Fetească neagră grspe-vine variety. Anale st. Univ. Al.I. Cuza Iassy, tom XLIX, s.ii a. Biologie vegetală, RAICU P Metode noi în genetică, Edit. Did. Pedag., Bucureşti, PP. 6. RUSSEL S.D., Double fertilization. Intern. Review of Cytology, 14:

6 Fig. 7 Pollen germination on % sucrose medium, 24 hours after inoculation in Viola odorata L. (2X) (Original) Fig. 8 Pollen germination on 1% sucrose medium, 24 hours after inoculation in Viola odorata L. (2X) (Original) 65

7 Fig. 9 Pollen germination on 1% sucrose medium, 24 hours after inoculation in Viola odorata L. (2X) (Original) Fig. 1 Pollen germination on 5% sucrose medium, 48 hours after inoculation in Viola odorata L. (2X) (Original) 66

8 Fig. 11 Pollen germination on 15% sucrose medium, 24 hours after inoculation in Viola odorata L. (2X) (Original) Fig. 12 Pollen germination on 4% sucrose medium, 48 hours after inoculation in Viola odorata L. (2X) (Original) 67

9 Fig. 13. Spiral pollen tubes on 1% sucrose medium, in Viola odorata L. (2X) (Original) Fig. 14. Spiral pollen tubes on 25% sucrose medium,in Viola odorata L. (2X) (Original) 68

10 Fig. 15 Spiral pollen tubes on 15% sucrose medium, in Viola odorata L. (2X) (Original) Fig. 16 Pollen tubes branched and with dilatations, in Viola odorata L.(Original) Fig. 17 Pollen grains with two tubes, in Viola odorata L. (Original) 69

RESEARCHES REGARDING THE VARIABILITY OF POLLEN GERMINATION CAPACITY AT AMPELOPSIS ACONITIFOLIA BGE. SILVICA PĂDUREANU * Introduction

RESEARCHES REGARDING THE VARIABILITY OF POLLEN GERMINATION CAPACITY AT AMPELOPSIS ACONITIFOLIA BGE. SILVICA PĂDUREANU * Introduction Analele ştiinţifice ale Universităţii Al. I. Cuza Iaşi Tomul L, s. II a. Biologie vegetală, 24 RESEARCHES REGARDING THE VARIABILITY OF POLLEN GERMINATION CAPACITY AT AMPELOPSIS ACONITIFOLIA BGE. SILVICA

More information

Ms.Sastry, AP Biology Unit 4/Chp 26 to 34/Diversity 1 Chapter in class follow along lecture notes

Ms.Sastry, AP Biology Unit 4/Chp 26 to 34/Diversity 1 Chapter in class follow along lecture notes Ms.Sastry, AP Biology Unit 4/Chp 26 to 34/Diversity 1 Chapter 26 34 in class follow along lecture notes Chp 26 Origin of life: 1) When did earth form? 2) What is the order of evolution of life forms on

More information

a. capture sunlight and absorb CO 2

a. capture sunlight and absorb CO 2 BIO 274-01 Exam 1 Name Matching (10 pts) 1. Match each plant part with its function: root c a. capture sunlight and absorb CO 2 for photosynthesis leaves a b. provides support, conducts water and nutrients

More information

Sporic life cycles involve 2 types of multicellular bodies:

Sporic life cycles involve 2 types of multicellular bodies: Chapter 3- Human Manipulation of Plants Sporic life cycles involve 2 types of multicellular bodies: -a diploid, spore-producing sporophyte -a haploid, gamete-producing gametophyte Sexual Reproduction in

More information

Ch. 22: Plant Growth, Reproduction & Response

Ch. 22: Plant Growth, Reproduction & Response Ch. 22: Plant Growth, Reproduction & Response generally reproduce sexually, though many can also reproduce asexually. Some have lost ability to reproduce sexually. All plant lifecycles involve alternation

More information

IGCSE Double Award Extended Coordinated Science

IGCSE Double Award Extended Coordinated Science IGCSE Double Award Extended Coordinated Science Biology 8.2 - Sexual Reproduction in Plants Sexual Reproduction in Plants In a plant, the flower is the sexual organ, and it has both male and females parts.

More information

Flowers Seeds Pollination Germination

Flowers Seeds Pollination Germination * Flowers Seeds Pollination Germination *In order for plants to be successful in many different environments they must be able to reproduce themselves. *The reproductive patterns of plants reflect the

More information

Worksheet for Morgan/Carter Laboratory #16 Plant Diversity II: Seed Plants

Worksheet for Morgan/Carter Laboratory #16 Plant Diversity II: Seed Plants Worksheet for Morgan/Carter Laboratory #16 Plant Diversity II: Seed Plants BE SURE TO CAREFULLY READ THE INTRODUCTION PRIOR TO ANSWERING THE QUESTIONS!!! You will need to refer to your text book to answer

More information

HISTO-ANATOMICAL LESS KNOW ASPECTS UPON SOME LAMIACEAE TAXA CAMELIA IFRIM *, IRINA TOMA ** Introduction. Material and method

HISTO-ANATOMICAL LESS KNOW ASPECTS UPON SOME LAMIACEAE TAXA CAMELIA IFRIM *, IRINA TOMA ** Introduction. Material and method Analele ştiinţifice ale Universităţii Al. I. Cuza Iaşi Tomul L, s. II a. Biologie vegetală, 2004 HISTO-ANATOMICAL LESS KNOW ASPECTS UPON SOME LAMIACEAE TAXA CAMELIA IFRIM *, IRINA TOMA ** Abstract: The

More information

Plants Notes. Plant Behavior Phototropism - growing towards light

Plants Notes. Plant Behavior Phototropism - growing towards light Plants Notes Plant Behavior Phototropism - growing towards light Geotropism - roots knowing which direction is down Thigmotropism - a plant's response to touch Ex. a vine wrapping around and climbing a

More information

SGTB Khalsa College, University of Delhi Lesson Plan ( ) Department of Botany

SGTB Khalsa College, University of Delhi Lesson Plan ( ) Department of Botany SGTB Khalsa College, University of Delhi Lesson Plan (2016-17) Department of Botany Course Name: B.Sc. (H) Life Sciences III year Title of the Paper: Developmental Biology and Physiology - Plant Name of

More information

Announcements. Lab Quiz #1 on Monday: (30pts) conifers + cones, vegetative morphology. Study: Display case outside HCK 132 with labeled conifers

Announcements. Lab Quiz #1 on Monday: (30pts) conifers + cones, vegetative morphology. Study: Display case outside HCK 132 with labeled conifers Announcements Lab Quiz #1 on Monday: (30pts) conifers + cones, vegetative morphology Study: Display case outside HCK 132 with labeled conifers Movie: Sexual Encounters of the Floral Kind Intro to Keying/Greenhouse

More information

PLANT GROWTH. IB Topic 9.3 & 9.4 Urry text ref: Ch 28 & 31

PLANT GROWTH. IB Topic 9.3 & 9.4 Urry text ref: Ch 28 & 31 PLANT GROWTH IB Topic 9.3 & 9.4 Urry text ref: Ch 28 & 31 INDETERMINATE GROWTH = throughout life meristems like stem cells in humans Shoot tip (shoot apical meristem and young leaves) lateral Axillary

More information

Kingdom Plantae. Biology : A Brief Survey of Plants. Jun 22 7:09 PM

Kingdom Plantae. Biology : A Brief Survey of Plants. Jun 22 7:09 PM Kingdom Plantae Biology 2201 6.1 6.2 : A Brief Survey of Plants The study of plants is called botany. Plants are believed to have evolved from green algae. The main plant (land) characteristics are as

More information

06/09/05. A survey of the plant kingdom based on a detailed study of the morphology, anatomy and physiology of selected representative specimens.

06/09/05. A survey of the plant kingdom based on a detailed study of the morphology, anatomy and physiology of selected representative specimens. 06/09/05 Common Course Number: BOT -1010 Course Title: General Botany Catalog Course Description: A survey of the plant kingdom based on a detailed study of the morphology, anatomy and physiology of selected

More information

*Modifications in reproduction were key adaptations enabling plants to spread into a variety of terrestrial habitats.

*Modifications in reproduction were key adaptations enabling plants to spread into a variety of terrestrial habitats. Plant Reproduction *Modifications in reproduction were key adaptations enabling plants to spread into a variety of terrestrial habitats. Reproduction In Plants Plant reproduction is the production of new

More information

Major lineages and life cycles of land plants. Green plants: viridiplantae

Major lineages and life cycles of land plants. Green plants: viridiplantae Liverworts Mosses Hornworts Lycophytes Major lineages and life cycles of land plants Green plants: viridiplantae Green plants Embryophytes (land plants) Bryophytes Tracheophytes (vascular plants) Seed

More information

Summer vacation Home work

Summer vacation Home work Biology Class Xth 1. Define the following terms: 1) nutrition 2) photosynthesis 3) peristalsis 4) excretion 5) osmoregulation 6) holozoic nutrition 2. Distinguish between: 1) breathing and respiration

More information

Kingdom: Plantae. Domain Archaea. Domain Eukarya. Domain Bacteria. Common ancestor

Kingdom: Plantae. Domain Archaea. Domain Eukarya. Domain Bacteria. Common ancestor Kingdom: Plantae Domain Eukarya Domain Bacteria Domain Archaea Domain Eukarya Common ancestor The First Plants For more than 3 billion years, Earth s terrestrial surface was lifeless life evolved in the

More information

Unit 7: Plant Evolution, Structure and Function

Unit 7: Plant Evolution, Structure and Function Time: 7 Days (some time spent working over breaks on this topic) and then an exam 16% of the AP Exam is on this material. Topics Covered: Reproduction, growth, and development Structural, physiological,

More information

Molecular Genetics of. Plant Development STEPHEN H. HOWELL CAMBRIDGE UNIVERSITY PRESS

Molecular Genetics of. Plant Development STEPHEN H. HOWELL CAMBRIDGE UNIVERSITY PRESS Molecular Genetics of Plant Development STEPHEN H. HOWELL CAMBRIDGE UNIVERSITY PRESS Contents Preface A Word on Genetic Nomenclature page xiii xvii 1 Approaches to the Study of Plant Development 1 Pattern

More information

Unit 11: Plants Guided Reading Questions (75 pts total)

Unit 11: Plants Guided Reading Questions (75 pts total) Name: AP Biology Biology, Campbell and Reece, 7th Edition Adapted from chapter reading guides originally created by Lynn Miriello Unit 11: Plants Guided Reading Questions (75 pts total) Chapter 29 Plant

More information

BIO10 Plant Lecture Notes ch. 17. Plant Kingdom

BIO10 Plant Lecture Notes ch. 17. Plant Kingdom Plant Kingdom Characteristics of the Plant Kingdom; eukaryotic, multicellular, sexually reproducing organisms autotroph feed themselves by photosynthesis Facts about members of this kingdom the dominant

More information

What is a Plant? Plant Life Cycle. What did they evolve from? Original Habitat 1/15/2018. Plant Life Cycle Alternation of Generations

What is a Plant? Plant Life Cycle. What did they evolve from? Original Habitat 1/15/2018. Plant Life Cycle Alternation of Generations What is a Plant? Multicellular Eukaryotic Autotrophic (photosynthesis) Has cell walls containing cellulose Lack mobility (sessile) Display Alternation of Generations in their life cycle Introduction to

More information

Reproductive Development

Reproductive Development Plant Reproduction Chapter 42 Angiosperms represent an evolutionary innovation with their production of flowers and fruits Plants go through developmental changes leading to reproductive maturity by adding

More information

SYLLABUS THEME B PLANT CLASSIFICATION & DIVERSITY INTRODUCTION TO TAXONOMY HISTORICAL DEVELOPMENT

SYLLABUS THEME B PLANT CLASSIFICATION & DIVERSITY INTRODUCTION TO TAXONOMY HISTORICAL DEVELOPMENT SYLLABUS THEME B PLANT CLASSIFICATION & DIVERSITY B1: Naming and classification of organisms Biology of Plants - Raven et al. 2005 pp. 219-237 INTRODUCTION TO TAXONOMY Taxonomy Naming Describing Classifying

More information

Propagating Plants Sexually

Propagating Plants Sexually Lesson C5 1 Propagating Plants Sexually Unit C. Plant and Soil Science Problem Area 5. Plant Propagation Lesson 1. Propagating Plants Sexually New Mexico Content Standard: Pathway Strand: Plant Systems

More information

Biology Slide 1 of 28

Biology Slide 1 of 28 Biology 1 of 28 2 of 28 22-4 Seed Plants Seed plants are the most dominant group of photosynthetic organisms on land. 3 of 28 22-4 Seed Plants Seed plants are divided into two groups: Gymnosperms bear

More information

Slide 1 / 86. Angiosperms: The Flowering Plants

Slide 1 / 86. Angiosperms: The Flowering Plants Slide 1 / 86 Angiosperms: The Flowering Plants Slide 2 / 86 Brief Phylogeny of Plants Monocot Dicot This presentation will focus on angiosperms Angiosperm Gymnosperm Seeded Plants Non-Seeded plants Vascular

More information

Plant Diversity & Evolution (Outline)

Plant Diversity & Evolution (Outline) Plant Diversity & Evolution (Outline) Review the Life cycle of Fungi Characteristics of organisms in the Kingdom Plantae. Evolution of plants: Challenges and adaptations to living on land Highlights of

More information

Unit 8 Angiosperms Student Guided Notes

Unit 8 Angiosperms Student Guided Notes Unit 8 Angiosperms Student Guided Notes Angiosperms General Characteristics of FloweringPlants All belong to the division Magnoliophyta and. Developing from the flower is. This extremely diverse division

More information

1 Mosses and other bryophytes are like ferns in that both bryophytes and ferns exhibit each of the following traits EXCEPT

1 Mosses and other bryophytes are like ferns in that both bryophytes and ferns exhibit each of the following traits EXCEPT Page 1 1 Mosses and other bryophytes are like ferns in that both bryophytes and ferns exhibit each of the following traits EXCEPT A haploid spores. B specialized cells and tissues. C vascular tissue for

More information

Bryophytes Pteridophytes Progymnosperms Gymnosperms Angiosperms. Vascularity

Bryophytes Pteridophytes Progymnosperms Gymnosperms Angiosperms. Vascularity Biology 3B Laboratory Vascular Seed Plants Gymnosperm & Angiosperm Objectives To understand the general systematic relationships of gymnosperms and angiosperms To describe the general features of gymnosperms

More information

Unit 2B- The Plants. Plants can be classified according to the presence or absence of vascular tissue.

Unit 2B- The Plants. Plants can be classified according to the presence or absence of vascular tissue. Unit 2B- The Plants Botany is the study of plants. All plants are said to have a common ancestor; (ie.) it is thought that plants have evolved from an ancient group of green algae. Plants and green algae

More information

Maximizing productivity of wheat and barley under dry-land systems HYBRIDIZATION. Faddel Ismail NCARE June,

Maximizing productivity of wheat and barley under dry-land systems HYBRIDIZATION. Faddel Ismail NCARE June, Maximizing productivity of wheat and barley under dry-land systems HYBRIDIZATION Faddel Ismail NCARE June, 8-10 2015 Hybridization Hybridization is the process of crossing two genetically different individuals

More information

Pollen Identification Lab

Pollen Identification Lab Name Pollen Identification Lab Objectives Practice using a microscope to see what pollen looks like, to observe the diversity of pollen morphology. Compare reference pollen from flowers with local pollen

More information

Pollination and Seed Yield in Grass Seed Crops. Thomas G Chastain Oregon State University

Pollination and Seed Yield in Grass Seed Crops. Thomas G Chastain Oregon State University Pollination and Seed Yield in Grass Seed Crops Thomas G Chastain Oregon State University Seed Yield Potential vs. Actual Yield An example for perennial ryegrass Florets not pollinated, fertilized, or aborted

More information

Shoot System. Root System. below-ground organs (roots) Dermal Tissue. Ground Tissue. Vascular Tissue. above-ground organs (leaves, stems, flowers)

Shoot System. Root System. below-ground organs (roots) Dermal Tissue. Ground Tissue. Vascular Tissue. above-ground organs (leaves, stems, flowers) Shoot System above-ground organs (leaves, stems, flowers) Root System below-ground organs (roots) Dermal Tissue type of plant tissue that is the outer covering of the plant and serves as a protective barrier

More information

Kingdom Plantae. Plants or metaphytes are, autotrophic multicellular eukaryotes, with tissues.

Kingdom Plantae. Plants or metaphytes are, autotrophic multicellular eukaryotes, with tissues. Kingdom Plantae Key words feature bryophytes herbaceous node to release pteridophytes sporangium, leaf (leaves) damp gymnosperms vascular apix cluster angiosperms rhizome sepal shrub tropism fronds calyx

More information

9-1 The Work of Gregor

9-1 The Work of Gregor 9-1 The Work of Gregor 11-1 The Work of Gregor Mendel Mendel 1 of 32 11-1 The Work of Gregor Mendel Gregor Mendel s Peas Gregor Mendel s Peas Genetics is the scientific study of heredity. Gregor Mendel

More information

STUDY QUESTIONS TEST 2 ANTHOCEROPHYTA, TRACHEOPHYTES AND PLANT STRUCTURE

STUDY QUESTIONS TEST 2 ANTHOCEROPHYTA, TRACHEOPHYTES AND PLANT STRUCTURE STUDY QUESTIONS TEST 2 ANTHOCEROPHYTA, TRACHEOPHYTES AND PLANT STRUCTURE 1. Name the Bryophyte phylum that is most closely related to vascular plants? 2. How do Anthocerophyta differ from other Bryophytes?

More information

Prokaryotes Divide Asexually! Cell Cycles & Life Cycles. Heyer 1. Cell Cycles, Sex, & Ploidy! Cells divide to reproduce! Growth & Development

Prokaryotes Divide Asexually! Cell Cycles & Life Cycles. Heyer 1. Cell Cycles, Sex, & Ploidy! Cells divide to reproduce! Growth & Development Cell Cycles, Sex, & Ploidy! 1. DNA is the molecule of inheritance. 2. A chromosome is one long dsdna. In eukaryotes, the dsdna molecule is wrapped with histones & other proteins to form chromatin. 3. A

More information

Plant Classification

Plant Classification Plant Classification 1. General Characteristics and structures These organisms are all multicellular eukaryotes that are autotrophs and acquire their nutrients by photosynthesis. They have plastids which

More information

Topic 2: Plants Ch. 16,28

Topic 2: Plants Ch. 16,28 Topic 2: Plants Ch. 16,28 Characteristics of Plants p. 316 1. Multicellular eukaryotic organisms 2. Composed of tissues, organs and organ systems. 3. Cell walls made of cellulose. 4. Store energy as starch.

More information

Classification of Plants

Classification of Plants Classification of Plants Plants Aquatic Plants Ex. green algae Similarities between green algae and land plants: A) have chlorophylls a and b B) cellulose cell walls C) store food energy in the form of

More information

Ch. 4- Plants. STRUCTURE AND FUNCTION And Taxonomy

Ch. 4- Plants. STRUCTURE AND FUNCTION And Taxonomy Ch. 4- Plants STRUCTURE AND FUNCTION And Taxonomy Plants belong to the kingdom: Plantae PLANTS AND PLANT REPRODUCTION STRUCTURE AND FUNCTION And Classification Two types of seed plants are gymnosperms

More information

2. Which of the following are NOT prokaryotes? A) eubacteria B) archaea C) viruses D) ancient bacteria

2. Which of the following are NOT prokaryotes? A) eubacteria B) archaea C) viruses D) ancient bacteria 1. Which of the following statements is FALSE? A) Errors in chromosome separation are rarely a problem for an organism. B) Errors in chromosome separation can result in a miscarriage. C) Errors in chromosome

More information

Plants Have Changed the World

Plants Have Changed the World Chapter 19 Plants Man: G. R. "Dick" Roberts/Natural Sciences Image Library Copyright McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill

More information

AP Biology. Evolution of Land Plants. Kingdom: Plants. Plant Diversity. Animal vs. Plant life cycle. Bryophytes: mosses & liverworts

AP Biology. Evolution of Land Plants. Kingdom: Plants. Plant Diversity. Animal vs. Plant life cycle. Bryophytes: mosses & liverworts Kingdom: Plants Domain Eukarya Domain Domain Domain Eubacteria Archaea Eukarya 2007-2008 Common ancestor Evolution of Land Plants 500 mya land plants evolved special adaptations for life on dry land protection

More information

Nonvascular plants Vascular plants Spore Gymnosperm Angiosperm Germinate. Copyright Houghton Mifflin Harcourt Publishing Company

Nonvascular plants Vascular plants Spore Gymnosperm Angiosperm Germinate. Copyright Houghton Mifflin Harcourt Publishing Company Nonvascular plants Vascular plants Spore Gymnosperm Angiosperm Germinate Tubes for Transport Warm Up 1 Tubes for Transport Nonvascular plants are simple plants that lack vascular tissue, which easily transports

More information

T R L J. Version 2, 2018 NAME: OPTION GROUP: CELL DIVISION MEIOSIS WORKBOOK

T R L J. Version 2, 2018 NAME: OPTION GROUP: CELL DIVISION MEIOSIS WORKBOOK NAME: OPTION GROUP: CELL DIVISION MEIOSIS WORKBOOK 1 STUDY CHECKLIST AND ASSESSMENT OBJECTIVES Instructions Regular revision throughout the year is essential. It s vital you keep a track of what you understand

More information

A diploid somatic cell from a rat has a total of 42 chromosomes (2n = 42). As in humans, sex chromosomes determine sex: XX in females and XY in males.

A diploid somatic cell from a rat has a total of 42 chromosomes (2n = 42). As in humans, sex chromosomes determine sex: XX in females and XY in males. Multiple Choice Use the following information for questions 1-3. A diploid somatic cell from a rat has a total of 42 chromosomes (2n = 42). As in humans, sex chromosomes determine sex: XX in females and

More information

Angiosperms: The Flowering Plants

Angiosperms: The Flowering Plants Slide 1 / 86 ngiosperms: The Flowering Plants rief Phylogeny of Plants Slide 2 / 86 Monocot icot This presentation will focus on angiosperms ngiosperm Gymnosperm Seeded Plants Non-Seeded plants Vascular

More information

Plant Evolution & Diversity

Plant Evolution & Diversity Plant Evolution & Diversity Ancestors of plants were probably charophytes (green algae) Chlorophyll a and b, beta carotene Similar thylakoid arrangements Identical cell walls Starch as a storage carbohydrate

More information

11-1 The Work of Gregor Mendel. The Work of Gregor Mendel

11-1 The Work of Gregor Mendel. The Work of Gregor Mendel 11-1 The Work of Gregor Mendel The Work of Gregor Mendel Gregor Mendel s Peas! Gregor Mendel s Peas Genetics is the scientific study of heredity. " Gregor Mendel was an Austrian monk. His work was important

More information

Anatomy of Flowering Plants

Anatomy of Flowering Plants Dry Lab BIOLOGY Anatomy of Flowering Plants Investigation Manual ANATOMY OF FLOWERING PLANTS Table of Contents 2 Overview 2 Outcomes 2 Time Requirements 3 Background 6 Safety 6 Materials 7 Activity 1 10

More information

Plants Review 1. List the 6 general characteristics of plants. 2. What did plants probably evolve from? 3. What are some advantages for life on land

Plants Review 1. List the 6 general characteristics of plants. 2. What did plants probably evolve from? 3. What are some advantages for life on land Plants Review 1. List the 6 general characteristics of plants. 2. What did plants probably evolve from? 3. What are some advantages for life on land for a plant? 4. What are the 3 main groups of plants?

More information

UNIVERSITY OF BOLTON SCHOOL OF SPORT AND BIOMEDICAL SCIENCES BSC(HONS) BIOLOGY SEMESTER ONE EXAMINATION 2015/2016 DIVERSITY OF LIFE MODULE NO: BIO4003

UNIVERSITY OF BOLTON SCHOOL OF SPORT AND BIOMEDICAL SCIENCES BSC(HONS) BIOLOGY SEMESTER ONE EXAMINATION 2015/2016 DIVERSITY OF LIFE MODULE NO: BIO4003 [LH4] UNIVERSITY OF BOLTON SCHOOL OF SPORT AND BIOMEDICAL SCIENCES BSC(HONS) BIOLOGY SEMESTER ONE EXAMINATION 2015/2016 DIVERSITY OF LIFE MODULE NO: BIO4003 Date: Friday 15 January 2016 Time: 10.00 am

More information

Downloaded from

Downloaded from A.I.P.M.T. Foundation - XI Biology MCQs Time: 30 min MCQ#8 Full Marks: 40 Choose the most appropriate answer. 1. They are non-vascular plants: 1. Hosrsetails 2. Conifers 3. Club mosses 4. Liverworts 2.

More information

Plant Propagation PLS 3221/5222

Plant Propagation PLS 3221/5222 Plant Propagation PLS 3221/5222 Dr. Sandra Wilson Dr. Mack Thetford Chapter 2 Introduction to the Biology of Plant Propagation -A review- 1 The Plant Breeder and the Plant Propagator Plant Breeder, The

More information

Introduction to Botany. Lecture 31

Introduction to Botany. Lecture 31 Introduction to Botany. Lecture 31 Alexey Shipunov Minot State University November 17th, 2010 Outline Spermatophyta: seed plants 1 Spermatophyta: seed plants Pinopsida Spermatophyta: seed plants Three

More information

Melon Meiosis.

Melon Meiosis. Objective Students will read about the discovery of colchicine, which made seedless watermelon possible. Students will use modelling clay and beans to model meiosis and mitosis. Students will design imaginary

More information

BRYOPHYTA, PTERIDOPHYTA

BRYOPHYTA, PTERIDOPHYTA Botany Rexine Charts CYTOLOGY (ELB.106.125).01 Cell Membrane showing structure & functions.02 Cell Wall, showing structure & functions.03 Endoplasmic Reticulum showing structure & functions.04 Mitochondrion

More information

CAPE Biology Unit 1 Scheme of Work

CAPE Biology Unit 1 Scheme of Work CAPE Biology Unit 1 Scheme of Work 2011-2012 Term 1 DATE SYLLABUS OBJECTIVES TEXT PAGES ASSIGNMENTS COMMENTS Orientation Introduction to CAPE Biology syllabus content and structure of the exam Week 05-09

More information

EVOLUTION Unit 1 Part 9 (Chapter 24) Activity #13

EVOLUTION Unit 1 Part 9 (Chapter 24) Activity #13 AP BIOLOGY EVOLUTION Unit 1 Part 9 (Chapter 24) Activity #13 NAME DATE PERIOD SPECIATION SPECIATION Origin of new species SPECIES BIOLOGICAL CONCEPT Population or groups of populations whose members have

More information

-Producers & Cellular Energy Notes-

-Producers & Cellular Energy Notes- -Producers & Cellular Energy Notes- Part 1 Plants LT 5.1 - I can describe basic information about plants, including the ways they move materials, are classified, reproduce, and evolved. What are plants?

More information

Autotrophs/producers- make own energy through

Autotrophs/producers- make own energy through Name Class EXAM Date Unit 11 Plant Kingdom Characteristics of Plants Multicellular- made of cells Eukaryotes- have & membrane bound organelles Cell - made of Autotrophs/producers- make own energy through

More information

PLEASE WRITE LEGIBLY

PLEASE WRITE LEGIBLY Biology 162 LAB EXAM 1 Wednesday, 27 February 2001 page 1 Instructions: There are 10 sets of questions in total, each set worth 16 points. PLEASE ATTEMPT ALL QUESTIONS, SINCE WE OFFER A GREAT DEAL OF PARTIAL

More information

Embryo Development. Embryo Development. Embryo Development. Embryo Development (Cont.) Vegetative Plant Development

Embryo Development. Embryo Development. Embryo Development. Embryo Development (Cont.) Vegetative Plant Development Vegetative Plant Development Chapter 37 Embryo Development Begins once the egg cell is fertilized -The growing pollen tube enters angiosperm embryo sac and releases two sperm cells -One sperm fertilizes

More information

PLANT KINGDOM ICA & WORKSHEET CHAPTERS 22-25

PLANT KINGDOM ICA & WORKSHEET CHAPTERS 22-25 PLANT KINGDOM ICA & WORKSHEET CHAPTERS 22-25 1 I.IMPORTANCE OF PLANTS: A. Human dependence on plants: 1. Plants as a source of food Summarize briefly the history of the plants, humans relationship: Describe

More information

COMPARATIVE BIOCHEMICAL AND PHYSIOLOGICAL RESEARCH ON TAXA OF MENTHA L. GENUS

COMPARATIVE BIOCHEMICAL AND PHYSIOLOGICAL RESEARCH ON TAXA OF MENTHA L. GENUS J. Plant Develop. 18(2011): 41-45 COMPARATIVE BIOCHEMICAL AND PHYSIOLOGICAL RESEARCH ON TAXA OF MENTHA L. GENUS ANDRO ANCA-RALUCA 1, BOZ IRINA 1, PĂDURARIU CLAUDIA 1, ATOFANI DOINA 1, COISIN MAGDA 1, ZAMFIRACHE

More information

Chapter 23: Plant Diversity and Life Cycles

Chapter 23: Plant Diversity and Life Cycles Chapter 23: Plant Diversity and Life Cycles Section 1: Introduction to Plants Cuticle: a waxy or fatty and watertight layer on the external wall of epidermal cells Spore: a reproductive cell or multicellular

More information

Exam 1 PBG430/

Exam 1 PBG430/ 1 Exam 1 PBG430/530 2014 1. You read that the genome size of maize is 2,300 Mb and that in this species 2n = 20. This means that there are 2,300 Mb of DNA in a cell that is a. n (e.g. gamete) b. 2n (e.g.

More information

Chapter 29 Plant Diversity I: How Plants Colonized Land

Chapter 29 Plant Diversity I: How Plants Colonized Land Chapter 29: Plant Diversity I: How Plants Colonized Land Chapter 29 Plant Diversity I: How Plants Colonized Land Name Period Concept 29.1 Land plants evolved from green algae 1. Plants colonized land about

More information

Upskilling community leaders for Australian Pollinator Week

Upskilling community leaders for Australian Pollinator Week Upskilling community leaders for Australian Pollinator Week Classroom or other educational activities DISCLAIMER Hello and thank you for being part of this project. This presentation is designed to be

More information

3. Diagram a cladogram showing the evolutionary relationships among the four main groups of living plants.

3. Diagram a cladogram showing the evolutionary relationships among the four main groups of living plants. OBJECTIVE SHEET PLANTS Phylum: Coniferophyta (gymnosperms the conifers) Phylum: Anthophyta (angiosperms the flowering plants) 1. Explain the alternation of generations in the two-phase life cycle of all

More information

LAB 13 The Plant Kingdom

LAB 13 The Plant Kingdom LAB 13 The Plant Kingdom Overview The importance of plants for life on earth cannot be overstated. Plants along with photosynthetic microbes produce all of the oxygen gas (O 2 ) in our atmosphere. Essentially

More information

Plants. and their classi.ication

Plants. and their classi.ication + Plants and their classi.ication +Why are plants important? n Photosynthesis Carbon dioxide + water + energy à sugar + oxygen 6CO 2 + 6H 2 O à C 6 H 12 O 6 + 6O 2 n Food (green tea, fruits, seeds, roots,

More information

Plant Development. Chapter 31 Part 1

Plant Development. Chapter 31 Part 1 Plant Development Chapter 31 Part 1 Impacts, Issues Foolish Seedlings, Gorgeous Grapes Gibberellin and other plant hormones control the growth and development of plants environmental cues influence hormone

More information

BIODIVERSITY OF PLANTS 12 FEBRUARY 2014

BIODIVERSITY OF PLANTS 12 FEBRUARY 2014 BIODIVERSITY OF PLANTS 12 FEBRUARY 2014 In this lesson we: Lesson Description Look at how plants are classified Define Alternation of generations Summarise the main characteristics of four groupings of

More information

Organogenesis and Embryogenesis

Organogenesis and Embryogenesis Organogenesis and Embryogenesis Medium and growth conditions are manipulated to obtain a complete plant from explant through either organogenesis or embryogenesis; both of them may be direct or following

More information

CHAPTERS 16 & 17: PROKARYOTES, FUNGI, AND PLANTS Honors Biology 2012 PROKARYOTES PROKARYOTES. Fig Lived alone on Earth for over 1 billion years

CHAPTERS 16 & 17: PROKARYOTES, FUNGI, AND PLANTS Honors Biology 2012 PROKARYOTES PROKARYOTES. Fig Lived alone on Earth for over 1 billion years CHAPTERS 6 & 7: PROKARYOTES, FUNGI, AND PLANTS Honors Biology 0 PROKARYOTES Lived alone on Earth for over billion years Most numerous and widespread organisms (total biomass of prokaryotes is ten times

More information

(b) The foods synthesized by the plants are stored as. (c) In photosynthesis solar energy is captured by the pigment called.

(b) The foods synthesized by the plants are stored as. (c) In photosynthesis solar energy is captured by the pigment called. WORKSHEET -1 CHAPTER- HOW DO PLANTS LIVE SUBJECT-BIOLOGY GRADE:7 LEVEL 1 1. Fill in the blanks: (a) Green plants are called since they synthesize their own food. (b) The foods synthesized by the plants

More information

Structures and Functions of Living Organisms

Structures and Functions of Living Organisms Structures and Functions of Living Organisms Date: 6.L.1 Understand the structures, processes and behaviors of plants that enable them to survive and reproduce. 6.L.1.1 Summarize the basic structures and

More information

The move from water to land. The move from water to land. Chapter 16- Evolution of Plants. Green algae are the ancestors to all plants

The move from water to land. The move from water to land. Chapter 16- Evolution of Plants. Green algae are the ancestors to all plants Chapter 16- Evolution of Plants From Protists to Plants Moving right along! Green algae are the ancestors to all plants Who, ME? Wow I feel so important! Charophyceans 475 million years ago, shallow seas

More information

Chapter 7 Lesson 3 Seed Reproduc4on

Chapter 7 Lesson 3 Seed Reproduc4on Chapter 7 Lesson 3 Seed Reproduc4on Demonstrate an understanding of sexual reproduc4on in flowering plants Describe various methods of plant pollina4on What You ll Learn Examine the life cycles of typical

More information

Biology 211 (1) Exam 3 Review! Chapter 31!

Biology 211 (1) Exam 3 Review! Chapter 31! Biology 211 (1) Exam 3 Review Chapter 31 Origin of Land Plants: 1. Fill in the correct amount of years ago the following events occurred. years ago there was a thin coating of cyanobacteri b. years ago

More information

Upskilling community leaders for Australian Pollinator Week

Upskilling community leaders for Australian Pollinator Week Upskilling community leaders for Australian Pollinator Week Science activities DISCLAIMER Hello and thank you for being part of this project. This presentation is designed to be shared with the broader

More information

Homeostasis of Plants

Homeostasis of Plants Homeostasis of Plants Transport, Reproduction, and Responses Domain Bacteria Domain Archaea Domain Eukarya 2007-2008 Common ancestor Plant Diversity Bryophytes non-vascular land plants mosses Pteridophytes

More information

Types of Plants. Unit 6 Review 5/2/2011. Plants. A. pine B. moss C. corn plant D. bean plant E. liverwort

Types of Plants. Unit 6 Review 5/2/2011. Plants. A. pine B. moss C. corn plant D. bean plant E. liverwort Unit 6 Review Plants Initial questions are worth 1 point each. Each question will be followed by an explanation All questions will be asked a second time at the very end, each of those questions will be

More information

Annals of RSCB Vol. XVII, Issue 2/2012

Annals of RSCB Vol. XVII, Issue 2/2012 CYTOGENETIC STUDIES REGARDING TWO SPECIES OF INULA FROM THE ROMANIAN FLORA: INULA HELENIUM L. AND INULA ENSIFOLIA L. Marinela Afemei 1, C. Tudose 1 *, Gabriela Voichita 2 1 UNIVERSITY AL. I. CUZA IAŞI,

More information

CHAPTER 29 PLANT DIVERSITY I: HOW PLANTS COLONIZED LAND. Section A: An Overview of Land Plant Evolution

CHAPTER 29 PLANT DIVERSITY I: HOW PLANTS COLONIZED LAND. Section A: An Overview of Land Plant Evolution CHAPTER 29 PLANT DIVERSITY I: HOW PLANTS COLONIZED LAND Section A: An Overview of Land Plant Evolution 1. Evolutionary adaptations to terrestrial living characterize the four main groups of land plants

More information

UNIT 3. PLANTS. PRIMARY 4/ Natural Science Pedro Antonio López Hernández

UNIT 3. PLANTS. PRIMARY 4/ Natural Science Pedro Antonio López Hernández UNIT 3. PLANTS PRIMARY 4/ Natural Science Pedro Antonio López Hernández They help to keep it in place. Roots They take in the water and minerals a plant needs to make its food. They support the leaves.

More information

Bio Ch Plants.notebook. April 09, 2015

Bio Ch Plants.notebook. April 09, 2015 1 Plants are vitally important to all life on Earth, especially humans Form the base of the food chain Medicines Clothing Building Materials 2 Plants for Food Cereals - The grass family - Rich in carbohydrates

More information

PLANT Labs summary questions (30 pts)

PLANT Labs summary questions (30 pts) PLANT Labs summary questions (30 pts) 1. SEEDS--Without this part of the seed, the embryo has no food to grow before photosynthesis. a. seed coat b. embryo c. leaves d. cotyledon e. tap root 2. SEEDS--Which

More information

Structures and Functions of Living Organisms

Structures and Functions of Living Organisms Structures and Functions of Living Organisms 6.L.1 Understand the structures, processes and behaviors of plants that enable them to survive and reproduce. 6.L.1.1 Summarize the basic structures and functions

More information

Chapter III- The Flower

Chapter III- The Flower Worksheet Class 8-Flower, Pollination and Fertilization, Ecosystem. Chapter III- The Flower 1.Name the following. a.a flower in which both male and female reproductive organs are lacking. b.the groups

More information

Multicellular Eukaryotic Autotrophic Sessile means cannot move Have cellulose in their cell walls

Multicellular Eukaryotic Autotrophic Sessile means cannot move Have cellulose in their cell walls 1 Plant Characteristics: Multicellular Eukaryotic Autotrophic Sessile means cannot move Have cellulose in their cell walls chloroplast vacuole Golgi body Cell wall nucleus mitochondria Cell membrane 2

More information

Basic Botany Master Gardener and Horticulture Training. Mark Heitstuman. WSU Asotin and Garfield County Director January 12, 2016

Basic Botany Master Gardener and Horticulture Training. Mark Heitstuman. WSU Asotin and Garfield County Director January 12, 2016 Basic Botany 2016 Master Gardener and Horticulture Training Mark Heitstuman WSU Asotin and Garfield County Director January 12, 2016 Topics we ll discuss in Chapter 1- Basic Botany Plant life cycles Internal

More information

Plants. Chapter Test A. Multiple Choice. 1 Pearson Education, Inc., or its affiliates. All rights reserved.

Plants. Chapter Test A. Multiple Choice. 1 Pearson Education, Inc., or its affiliates. All rights reserved. Plants Chapter Test A Multiple Choice Write the letter of the correct answer on the line at the left. 1. The leaf s cuticle a. stores water. b. reduces evaporation. c. transports water in the leaf. d.

More information