Terrific trichomes (and other specialised cells) in African violets: how to get a lot from one plant in the classroom

Size: px
Start display at page:

Download "Terrific trichomes (and other specialised cells) in African violets: how to get a lot from one plant in the classroom"

Transcription

1 Terrific trichomes (and other specialised cells) in African violets: how to get a lot from one plant in the classroom Vicki M. Cottrell ABSTRACT African violet (genus Saintpaulia) was identified as a particularly suitable genus for the study of specialised plant cells in the classroom using microscopes. The techniques described here involve simple preparation without staining. The cells and structures that can be investigated include: trichomes (hairs); stomata; guard cells and their subsidiary cells; xylem with lignified spirals; petal cells; and pollen grains. The techniques were written with the curriculum for those aged in mind, although there is no reason why they could not be used with younger students, or extended for use with post-16 students. Introduction Plant cell studies in the classroom at key stages 3 (age 11 14) and 4 (age 14 16) are often limited to cells of onion epidermis. While these cells are easy to observe, they lack chloroplasts (a characteristic of a typical plant cell) and do not have an obvious specialised function related to their structure. Stomata are often studied indirectly using nail varnish peels that leave an impression of the pores and their guard cells. Obviously, the chloroplasts present in guard cells will not be seen from these impressions. African violet (genus Saintpaulia) plants are easy to obtain and to maintain in a school environment. They possess a range of easily viewable specialised cells, making them particularly useful in the classroom. Using Saintpaulia to see specialised plant cells Saintpaulia spp. are native to Tanzania and Kenya, and so need to be able to survive in high temperatures where water may be in short supply. They have large, easily visible stomata on the underside of the leaves. The chloroplasts inside the guard cells can be viewed easily using a basic light microscope. The plant is also covered in multicellular trichomes (hairs) that are easily viewed. The cells that make up the trichomes 54 SSR June 2013, 94(349) are large, may contain chloroplasts, and contain small granules (possibly starch grains although the author has not been able to confirm this with plant scientists) that can be seen moving around inside the cells. Trichomes and cytoplasmic movement The cells making up the trichomes are large and clearly visible at all magnifications on a standard microscope. Movement of particles, suspected to be starch grains, is visible using a 40 objective lens. Students are able to obtain good-quality samples from the leaves by using a sharp scalpel. The trichomes are large, protrude from the plant surface, and so do not require the sample to be particularly thin. Stomata and guard cells Using plants with natural pink pigment on the underside of leaves works particularly well, as it is easy to see the stomata, guard cells and subsidiary cells standing out as white areas against the surrounding pink cells. Students do need to make sure samples are fairly thin for this to work well, although at the edge of most thicker samples there are normally easily identifiable stomata. If the sample is thin enough, it is just as reliable and fast as a stomatal peel. Additionally, the chloroplasts are clearly visible in the guard cells using a 40 objective lens, something which is obviously not possible to see using stomatal peels.

2 Cottrell Specialised cells in African violets: how to get a lot from one plant in the classroom Other structures to investigate Xylem vessels with spirals of lignin can be seen in the leaf veins, petioles (leaf stalks), pedicels (flower stalks) and flower petals themselves. When petal cells are torn and the ragged edge looked at, it is apparent that the petal cells are dome-shaped and completely filled with pigment. Trichomes are also visible on the petals and movement of particles within these cells is visible. The pollen is easily visible without the need for staining. As the leaves are thick it is fairly easy to take cross sections (of leaves that have been removed from the plant) using a sharp scalpel to show the epidermal cells, palisade layer (very dense; appears black), spongy mesophyll cells and lower epidermal cells. Method for obtaining samples Trichomes and stomata Take small sections of tissue from the underside of a leaf using a sharp blade or scalpel (Figure 1). To remove the tissue in one piece, after slicing underneath the tissue (and before removing the tissue completely), the scalpel can be withdrawn, used to cut across the end of the slice, and then placed back under the slice, which will now easily lift off. Figure 1 A razor blade cutting into the underside of a leaf See Box 1 for safety information on handling scalpels, blades and glass slides. Have a microscope slide ready with a drop of water on it onto which to place the slice of tissue, and then place a cover slip over the sample. On low magnifications, stomata, guard cells and subsidiary cells stand out as white patches against a pink background. Trichomes, typically made of two to five elongated large cells (although they can be up to 12 cells long), can be seen easily and clearly at all magnifications. BOX 1 Risk assessment for Saintpaulia microscopy practical session Hazard Risk Reducing risk Emergency action Scalpel/blades Glass microscope slides and cover slips (these are thin and can break producing sharps) Cuts Infection in cuts Cuts/splinters from broken glass Students shown how to hold and use scalpels and scalpel blades. If blades are not new, ensure they are disinfected, cleaned and dried before use. Emphasise to students that they should not pick up broken glass. A dust pan and brush should be used by them or the teacher in charge. Show students how to handle cover slips and not to press down with fingers unless there is a thick layer of paper towel over the cover slip Wash cuts thoroughly in clean running cold water. Dress wound if required, avoiding sticking plasters where allergic, etc. Seek first aider if cut is deep/ problematic/possiblility of infection who can advise on whether medical attention is required. Cuts treat as above. Splinters seek first aider to remove splinter hygienically. First aider will advise if medical attention is required. SSR June 2013, 94(349) 55

3 Specialised cells in African violets: how to get a lot from one plant in the classroom Cottrell Petal cells Tear a petal so that you create a ragged edge with some thin areas. Mount a small section of the petal (with the thin ragged edge) onto a microscope slide in a drop of water and cover with a cover slip. Examination of the ragged edge should reveal that the cells are cone-shaped with a thick and slightly iridescent cell wall. Spirals of lignified xylem are also often seen if the tear crosses the vascular tissue of the petals. What you should see All images in this article were taken with a Canon S90 digital compact camera that was manually held to the eyepiece of the micorscope (no adapter was used). The photographs have been cropped and labelled using a commonly available software programme (in this case, Microsoft Paint). The microscope was a standard school monocular microscope with built-in illumination. Trichomes and stomata Figures 2 4 show how stomata may look through the microscope. Figure 2 shows that by choosing leaves with natural pink pigment the stomata are easily identified as pale/white structures against a pink background. Figure 3 Saintpaulia stoma, guard cells and subsidiary cells, taken using a 40 objective lens; the stoma appears to be open and the guard cells are turgid; this was a very thin sample, allowing for good focus; s = stoma, gc = guard cell, sc = subsidiary cell, c = chloroplast Figure 2 Saintpaulia lower leaf epidermis; s = stoma surrounded by pale subsidiary cells (many can be seen but only three have been labelled), t = multicellular trichome*, gt = shorter trichomes with rounded ends (similar to glandular trichomes in species such as tomato); photo taken using 10 objective lens. *when viewed using a 40 objective lens, the cell contents (as dark or light granules) can often be seen moving round the cell Figure 4 Saintpaulia stoma, guard cells, subsidiary cells and surrounding epidermal cells with pink pigment, taken using a 40 objective lens; the stoma appears to be partially closed and the guard cells less turgid than in Figure 3 although the stoma is at a slight angle; s = stoma, gc = guard cell, sc = subsidiary cell, c = chloroplast 56 SSR June 2013, 94(349)

4 Cottrell Specialised cells in African violets: how to get a lot from one plant in the classroom Petals Figure 5 shows what you may see if you tear a petal and view the cells at the edge of the tear. Notice the dome shape of the cells that is mentioned below in the Possible discussions section. Xylem and spirals of lignin Vascular tissue is easy to spot by eye in the leaves, leaf stalks (petioles) and petals. Sectioning across this can lead to images such as those in Figure 6. Leaf cross sections As Saintpaulia leaves are fairly thick and stiff, slicing off thin cross sections of the leaf (Figure 7) is fairly easy although possibly best done by a technician beforehand to save time if a good discussion about the different layers is required. Pollen grains Figure 8 shows that pollen grains can be seen without the need for staining. Possible discussions arising from the practical work Adaptations of these plants to their environment l Possible reasons for the Saintpaulia having so many trichomes. [prevent water loss via evaporation, insulation, defence] l Why are there no stomata on the upper side of the leaf? [conserve water by reducing evaporation] l Why are petal cells dome-shaped? [better grip for pollinators (Glover, 2012)] Guard cell function and photosynthesis l Why do guard cells have chloroplasts when other epidermal cells do not? [Simply Figure 5 Saintpaulia petal cells, taken using a 40 objective lens; the dome shape can be seen in cells along the torn edge explained, energy is required for opening/closing mechanisms. This can lead to some in-depth discussions at post-16 level. In order for a stoma to open, the guard cells need to be turgid. In the Figure 6 Saintpaulia petiole xylem tissue with spirals of lignin, taken using a 40 objective lens: (left) the microscope needle is pointing at a spiral of lignin in the xylem tissue; (middle) the spirals of lignin are clearly visible running down the centre of the picture, and green chloroplasts in the petiole cells are also clearly visible; (right) two spirals of lignin have been torn out of the xylem tissue during the section SSR June 2013, 94(349) 57

5 Specialised cells in African violets: how to get a lot from one plant in the classroom Cottrell Figure 7 Saintpaulia leaf cross section, taken using a 40 objective lens; v = vacuole in mesophyll cell, s = stoma (out of focus but visible along the lower epidermis) cells reduces their water potential, causing water to flow into the guard cells from surrounding epidermal cells. As the guard cells become more turgid, their shape changes and the stoma opens.] Cytoplasmic streaming l Why do cell contents need to move around the cells? [transport proteins, nutrients and organelles around the cell] l What could the granular contents of the cells be? [from reading articles on other species with trichomes, these are likely to be lipid droplets, mitochondria and/or polysaccharides such as starch granules] Leaf structure l The reasons for the different layers in the leaf. [transparent epidermis to allow light through, etc.] Figure 8 Saintpaulia pollen grains, taken using a 40 objective lens light, proton pumps force hydrogen ions out of the guard cells. Potassium ions are then pumped into the guard cells via voltage-gated channels using adenosine triphosphate (ATP) in the process. The increase of potassium ions in the guard 58 SSR June 2013, 94(349) Cloning Saintpaulia can be used in class to demonstrate cloning. Leaves can be removed from the plant and planted in soil. After a few weeks they should start to grow into new plants (this can take a while and the most likely reason for them to fail is overwatering).

6 Cottrell Specialised cells in African violets: how to get a lot from one plant in the classroom Plant defence Trichomes such as the multicellular hair-like ones seen on Saintpaulia act as a physical barrier to herbivorous insects. Many plants (including Saintpaulia) also have shorter, glandular trichomes that produce chemicals. These may be toxic to insects and may slow down their growth and development (Stipanovic, 1983). Maintaining Saintpaulia at school Saintpaulia are easily obtained from garden centres and large supermarkets. They can be grown and maintained easily in the classroom on a windowsill. With enough bright light they can flower all year round (leaves will become scorched if left in direct sunlight). They prefer room temperature conditions. They should be watered sparingly (from below in a tray seems to work best to keep the top of the compost fairly dry). They can be susceptible to overwatering. If leaves are removed for practical work, ensure the entire leaf stalk is removed so that the stub does not rot back into the main stem of the plant (Huxley and Gilbert, 1991). When removing small slices from leaves, the whole leaf does not necessarily need to be removed from the plant. Propagation Saintpaulia are fairly easily propagated by removing the leaves and placing them stalk downwards into moist potting compost. They can take several months to develop into plantlets and care needs to be taken not to overwater. Acknowledgements This article was developed by the author while on secondment as an Education Fellow to the Nuffield Foundation and Science & Plants for Schools. References Glover, B. (2012) Gilding the lily: understanding angiosperm diversity through petal evolution and development. Lecture at Cambridge University Botanic Garden. Huxley, A. and Gilbert, R. (1991) Success with Houseplants. Reader s Digest Association. Stipanovic, R. D. (1983) Function and chemistry of plant trichomes and glands in insect resistance. In Plant Resistance to Insects, ed. Hedin, P. A. American Chemical Society Symposium Series, 208, chapter 5, Vicki Cottrell was a science teacher for 10 years, including 4 years as Head of Science at Didcot Girls School. In September 2011, she took up a 6 month secondment as an Education Fellow with the Nuffield Foundation and Science & Plants for Schools. During that time she researched the use of microscopes and plants in the classroom and produced resources for teachers that are available at vickicottrell1@aol.com SSR June 2013, 94(349) 59

stomata means mouth in Greek because they allow communication between the internal and

stomata means mouth in Greek because they allow communication between the internal and Name: Date: Period: Photosynthesis Lab #1: Leaf Structure and Function Purpose: The purpose of this lab is to explore the structure of a leaf, specifically the stomata and guard cells. Once we have an

More information

23 4 Leaves Slide 1 of 32

23 4 Leaves Slide 1 of 32 23 4 Leaves 1 of 32 Leaf Structure The structure of a leaf is optimized for absorbing light and carrying out photosynthesis. 2 of 32 Leaf Structure To collect sunlight, most leaves have thin, flattened

More information

5. Move several sections into the second well that contains a few drops of Toluidine Blue.

5. Move several sections into the second well that contains a few drops of Toluidine Blue. HAIGLER PROTOCOL FOR VIEWING CROSS SECTIONS OF PLANTS Materials (per student team): Plants Double-edged razor blades (split into two as demonstrated by the teacher) Masking tape for razor blade handle

More information

Bio Factsheet. Transport in Plants. Number 342

Bio Factsheet. Transport in Plants.   Number 342 Number 342 Transport in Plants This Factsheet: Explains why plants need a transport system Describes what plants transport Describes the tissues which carry out transport Outlines the position of the xylem

More information

CELERY LAB - Structure and Function of a Plant

CELERY LAB - Structure and Function of a Plant Name: Date: Period: CELERY LAB - Structure and Function of a Plant Plants are incredible organisms! They can make all their own food from the simple inputs of: Sunlight air (carbon dioxide) water minerals

More information

Name: Plant stems and leaves (p. 1 of )

Name: Plant stems and leaves (p. 1 of ) Name: Plant stems and leaves (p. 1 of ) Introduction: Plants have a variety of configurations but the same basic structures. The three main parts of a plant are the roots, stems, and leaves. The tracheids

More information

LOOKING AT PLANT STEMS

LOOKING AT PLANT STEMS Activity 4.17 Student Sheet LOOKING AT PLANT STEMS Purpose To look at the structure of xylem vessels, phloem sieve tubes and sclerenchyma fibres. To locate the position of these tissues within the stem.

More information

Tissues and organs PART 2

Tissues and organs PART 2 Tissues and organs PART 2 The structure and function of the mesophytic leaf (a plant organ) The mesopyhtic leaf (lives in a moderately moist environment) contains 7 layers of tissue: 1. Upper epidermis

More information

Biology. Slide 1 of 32. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 32. End Show. Copyright Pearson Prentice Hall Biology 1 of 32 23 4 Leaves 2 of 32 Leaf Structure Leaf Structure How does the structure of a leaf enable it to carry out photosynthesis? 3 of 32 Leaf Structure The structure of a leaf is optimized for

More information

Plants and Photosynthesis

Plants and Photosynthesis Plants and Photosynthesis Name: Look for more resources at www.burtbooks.com 1 Date: Let s revise the parts of the plant. Look at the names of the parts carefully. Then turn to the next page and fill in

More information

Life Science. Structure of a plant; Plants are living organisms just like. animals and humans. Like all living. things they need key things to live;

Life Science. Structure of a plant; Plants are living organisms just like. animals and humans. Like all living. things they need key things to live; 6.6.3 Life Science Structure of a plant; Plants are living organisms just like animals and humans. Like all living things they need key things to live; water, sunlight, oxygen and food. Plants are different

More information

Plant Structure and Function Extension

Plant Structure and Function Extension Plant Structure and Function Extension NGSSS: SC.912.L.14.7 Relate the structure of each of the major plant organs and tissues to physiological processes. (AA) Part 1A: Leaves The leaf of a plant serves

More information

Transport of substances in plants

Transport of substances in plants Transport of substances in plants We have already looked at why many organisms need transport systems with special reference to surface area and volume. The larger the volume : surface area ratio, the

More information

2.2 Page 3 Gas exchange S. Preston 1

2.2 Page 3 Gas exchange S. Preston 1 AS Unit BY2: Biodiversity and Physiology of Body Systems Name: Date: Topic 2.2 Adaptations for Gas Exchange Page 3 1. Read pages 2 and 3 Label the diagram showing the cross section of a leaf. Complete

More information

How do trees like the California redwoods and the aspens of Alberta get water and minerals from their roots to their leaves way up at the top?

How do trees like the California redwoods and the aspens of Alberta get water and minerals from their roots to their leaves way up at the top? Transport in Plants Have you visited or at least heard about the giant California redwoods? These amazing trees can grow up to 100 m tall! In Alberta, even the trees in the central and north central regions

More information

BI 103: Leaves. Learning Objectives

BI 103: Leaves. Learning Objectives BI 103: Leaves An examination of leaves Chapter 43 cont. Learning Objectives What is the function of the plant leaf? How are specific cells and tissues adapted in the leaf in order to help it function?

More information

2018 Version. Photosynthesis Junior Science

2018 Version. Photosynthesis Junior Science 2018 Version Photosynthesis Junior Science 1 Plants fill the role of Producers in a community Plants are special because they have leaves and are able to produce their own food by the process of photosynthesis

More information

Forms strands that conduct water, minerals, and organic compounds. Much of the inside of nonwoody parts of plants. Includes roots, stems, and leaves

Forms strands that conduct water, minerals, and organic compounds. Much of the inside of nonwoody parts of plants. Includes roots, stems, and leaves Biology II Vascular plants have 3 tissue systems: Dermal Protective outer layer of plant Vascular Forms strands that conduct water, minerals, and organic compounds Ground Much of the inside of nonwoody

More information

Plant Structure and Function. Roots, Stems, and Leaves

Plant Structure and Function. Roots, Stems, and Leaves Plant Structure and Function Roots, Stems, and Leaves What is a Plant? Plants are living things that have: roots, stems, and leaves (some have flowers) Plants are made of cells that have cell walls, a

More information

Structures of Seed Plants

Structures of Seed Plants CHAPTER 12 SECTION 4 Introduction to Plants Structures of Seed Plants BEFORE YOU READ After you read this section, you should be able to answer these questions: What are the functions of roots and stems?

More information

Plants and animals both have a layer of tissue called the epidermal layer. This is the layer of cells on the outside of the organism.

Plants and animals both have a layer of tissue called the epidermal layer. This is the layer of cells on the outside of the organism. Name Date Period Lab Number Counting Stomata Lab Introduction Plants and animals both have a layer of tissue called the epidermal layer. This is the layer of cells on the outside of the organism. Plants

More information

What factors, including environmental variables, affect the rate of transpiration in plants?

What factors, including environmental variables, affect the rate of transpiration in plants? Big Idea 4 Interactions investigation 11 TRANSPIRATION* What factors, including environmental variables, affect the rate of transpiration in plants? BACKGROUND Cells and organisms must exchange matter

More information

Bring Your Text to Lab!!!

Bring Your Text to Lab!!! Bring Your Text to Lab!!! Vascular Plant Anatomy: Flowering Plants Objectives: 1. To observe what the basic structure of vascular plants is, and how and where this form originates. 2. To begin to understand

More information

Organization of Plant Tissue. Wednesday, March 2, 16

Organization of Plant Tissue. Wednesday, March 2, 16 Organization of Plant Tissue Plant Systems Shoot System The Leaf The Stem The Flower Root System The Shoot System Has two main functions: to conduct photosynthesis and to produce flowers for sexual reproduction

More information

LAB What is in a Leaf? ACP Biology, NNHS

LAB What is in a Leaf? ACP Biology, NNHS Name Date Block LAB What is in a Leaf? ACP Biology, NNHS OBJECTIVES:! Recognize each of the tissue types and structures found in leaves and explain what they do.! Recognize the differences between monocot

More information

Plants I - Water and Nutrient Management: Plant Adaptations to Life on Land

Plants I - Water and Nutrient Management: Plant Adaptations to Life on Land Plants I - Water and Nutrient Management: Plant Adaptations to Life on Land Objectives: Understand the evolutionary relationships between plants and algae. Know the features thatt distinguish plants from

More information

Earth Has a Rich Diversity of Plants. Plant Structure, Nutrition, and Transport. Angiosperms: Monocots and Dicots. Angiosperms: Dicots

Earth Has a Rich Diversity of Plants. Plant Structure, Nutrition, and Transport. Angiosperms: Monocots and Dicots. Angiosperms: Dicots Plant Structure, Nutrition, and Transport Earth Has a Rich Diversity of Plants There are over 280,000 different plant species organized into four major groups: bryophytes (mosses), seedless vascular plants,

More information

Plant Anatomy: roots, stems and leaves

Plant Anatomy: roots, stems and leaves Plant Anatomy: roots, stems and leaves The plant body has a hierarchy of organs, tissues and cells Plants, like animals, have organs composed of different tissues, which are composed of cells. Tissue is

More information

Anatomy of Plants Student Notes

Anatomy of Plants Student Notes Directions: Fill in the blanks. Anatomy of Plants Student Notes Plant Cell Biology Segment 1. Plants Plants are organisms are incapable of movement produce food through 2. Animals Animals are multicellular

More information

Chapter 8: Plant Organs: Leaves

Chapter 8: Plant Organs: Leaves Leaf Form & Function Chapter 8: Plant Organs: Leaves Leaves are the most variable Composed of a and a May have (pair of leaf like outgrowths at petiole) : having a single blade : having a blade divided

More information

The three principal organs of seed plants are roots, stems, and leaves.

The three principal organs of seed plants are roots, stems, and leaves. 23 1 Specialized Tissues in Plants Seed Plant Structure The three principal organs of seed plants are roots, stems, and leaves. 1 of 34 23 1 Specialized Tissues in Plants Seed Plant Structure Roots: absorb

More information

Non Permanent Tissues - Meristematic Tissue

Non Permanent Tissues - Meristematic Tissue PLANT TISSUES Non Permanent Tissues - Meristematic Tissue Undifferentiated plant cells that are continually dividing by mitosis Large thin walled cells No vacuole Dense cytoplasm Large nucleus Found at

More information

LAB What is in a Leaf? Honors Biology, Newton North High

LAB What is in a Leaf? Honors Biology, Newton North High Name Date Block LAB What is in a Leaf? Honors Biology, Newton North High OBJECTIVES:! Recognize each of the tissue types and structures found in leaves and explain what they do.! Recognize the differences

More information

Plant Anatomy: roots, stems and leaves

Plant Anatomy: roots, stems and leaves Plant Anatomy: roots, stems and leaves The plant body has a hierarchy of organs, tissues and cells Plants, like animals, have organs composed of different tissues, which are composed of cells. Tissue is

More information

Class XI Chapter 6 Anatomy of Flowering Plants Biology

Class XI Chapter 6 Anatomy of Flowering Plants Biology Class XI Chapter 6 Anatomy of Flowering Plants Biology Question 1: State the location and function of different types of meristem. Meristems are specialised regions of plant growth. The meristems mark

More information

CROSS SECTION OF A LEAF INTRODUCTION

CROSS SECTION OF A LEAF INTRODUCTION CROSS SECTION OF A LEAF INTRODUCTION The leaf is an organ in a plant consisting of many different tissues. The primary function of a leaf is to make (synthesize) food through a chemical reaction called.

More information

GRADE 7: Life science 4. UNIT 7L.4 7 hours. Growing plants. Resources. About this unit. Previous learning. Expectations

GRADE 7: Life science 4. UNIT 7L.4 7 hours. Growing plants. Resources. About this unit. Previous learning. Expectations GRADE 7: Life science 4 Growing plants UNIT 7L.4 7 hours About this unit This unit is the fourth of six units on life science for Grade 7. This unit is designed to guide your planning and teaching of lessons

More information

Roots, Shoots & Leaves

Roots, Shoots & Leaves Name Test Date Hour Plant Structure & Function #2 - Notebook Roots, Shoots & Leaves LEARNING TARGETS I can describe the functions of roots I can explain the nitrogen fixing process and why it is needed.

More information

Question 1: State the location and function of different types of meristem. Meristems are specialised regions of plant growth. The meristems mark the regions where active cell division and rapid division

More information

BIOLOGY 1101 LAB 3: PHOTOSYNTHESIS

BIOLOGY 1101 LAB 3: PHOTOSYNTHESIS BIOLOGY 1101 LAB 3: PHOTOSYNTHESIS READING: Please read chapter 7 in your textbook prior to lab. INTRODUCTION: Photosynthesis is the process by which certain organisms use energy from sunlight and carbon

More information

A leaf is. Copyright 2010 Ryan P. Murphy

A leaf is. Copyright 2010 Ryan P. Murphy The leaf system A leaf is Copyright 2010 Ryan P. Murphy a plant organ, Copyright 2010 Ryan P. Murphy that s photosynthetic, Copyright 2010 Ryan P. Murphy contains chloroplasts, Copyright 2010 Ryan P. Murphy

More information

Organs and leaf structure

Organs and leaf structure Organs and leaf structure Different types of tissues are arranged together to form organs. Structure: 2 parts (Petiole and Leaf Blade) Thin flat blade, large surface area Leaves contain all 3 types of

More information

UNIT. The plant then uses the glucose produced as its food and energy source.

UNIT. The plant then uses the glucose produced as its food and energy source. Plants are living things. They need water and nutrients, they use gases from the air and they produce waste materials. They grow, they reproduce and they die. Like all living things, plants are made up

More information

of water unless it is moving via the symplast Water moves into the xylem for transport up the plant Water that does not cross the

of water unless it is moving via the symplast Water moves into the xylem for transport up the plant Water that does not cross the Uptake of water The through Casparian Strip blocks root epidermis by passage osmosis of water unless it is moving via the symplast Water moves into the xylem for transport up the plant Water that does

More information

Pacing/Teacher's Notes

Pacing/Teacher's Notes Slide 1 / 34 New Jersey Center for Teaching and Learning Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of students and

More information

AP BIOLOGY. Investigation #11 Transpiration. Slide 1 / 34. Slide 2 / 34. Slide 3 / 34. Investigation #11: Transpiration

AP BIOLOGY. Investigation #11 Transpiration. Slide 1 / 34. Slide 2 / 34. Slide 3 / 34. Investigation #11: Transpiration New Jersey Center for Teaching and Learning Slide 1 / 34 Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of students and

More information

The grade 5 English science unit, Plants, meets the academic content standards set in the Korean curriculum, which state students should:

The grade 5 English science unit, Plants, meets the academic content standards set in the Korean curriculum, which state students should: This unit deals with the structures and functions of plant organs including roots, stems, leaves, and flowers. Students learn that a plant is sustained by the systematic functioning of all its organs.

More information

Nerve cells have many branches that help them send signals throughout the body.

Nerve cells have many branches that help them send signals throughout the body. What is your body made of? You might say that you are made of atoms or cells. You might even say you are made of organs, like skin and a heart. These answers are all correct. Each focuses on a different

More information

(A) Buds (B) Lateral meristem (C) Apical meristem (D) Stem (E) Trichomes

(A) Buds (B) Lateral meristem (C) Apical meristem (D) Stem (E) Trichomes AP Biology - Problem Drill 17: Plant Structure Question No. 1 of 10 1. What are hair-like outgrowths that protect and absorb nutrients? Question #01 (A) Buds (B) Lateral meristem (C) Apical meristem (D)

More information

All about plants: Overview of Plants

All about plants: Overview of Plants All about plants: Overview of Plants Plants (also called autotrophs or producers) trap energy from the sun by photosynthesis & store it in organic compounds; contain chlorophyll inside of chloroplasts;

More information

Investigation 11 Transpiration

Investigation 11 Transpiration Introduction What factors, including environmental variables, affect the rate of transpiration in plants? Background Cells and organisms must exchange matter with the environment to grow, reproduce, and

More information

Transport in Plant (IGCSE Biology Syllabus )

Transport in Plant (IGCSE Biology Syllabus ) Transport in Plant (IGCSE Biology Syllabus 2016-2018) Plants have transport systems to move food, water and minerals around. These systems use continuous tubes called xylem and phloem: - Xylem vessels

More information

Roots anchor plants and absorb mineral nutrients from soil.

Roots anchor plants and absorb mineral nutrients from soil. Thu 3/30 Activities Learning Target Describe the forms and functions of plant roots and stems. (21.3) Describe the structures that are common to most leaves. (21.4) Identify the adaptations that allow

More information

UNIT 3: Cell Energy What is energy? energy is a property of objects which can be transferred to other objects or converted into different forms.

UNIT 3: Cell Energy What is energy? energy is a property of objects which can be transferred to other objects or converted into different forms. UNIT 3: Cell Energy What is energy? energy is a property of objects which can be transferred to other objects or converted into different forms. Energy can be found in a number of different forms. 1 Law

More information

LEAF STRUCTURE & FUNCTION

LEAF STRUCTURE & FUNCTION Name Class Date LEAF STRUCTURE & FUNCTION Plants are incredible organisms! They can make all their own food from the simple inputs of: sunlight carbon dioxide water minerals This biological wizardry is

More information

From smallest to largest plants

From smallest to largest plants Plant anatomy From smallest to largest plants What is plant anatomy? ANATOMY: study of the structure of organisms looking at cells, tissues How can water move from the ground all the way to the top of

More information

BOTANY LAB #1 MITOSIS AND PLANT TISSUES

BOTANY LAB #1 MITOSIS AND PLANT TISSUES Mitosis and cytokinesis in plants BOTANY LAB #1 MITOSIS AND PLANT TISSUES In plants the formation of new cells takes place in specialized regions of meristematic tissue. Meristematic tissues contain immature,

More information

Examining Photosynthesis

Examining Photosynthesis Lesson C3 3 Examining Photosynthesis Unit C. Plant and Soil Science Problem Area 3. Seed Germination, Growth, and Development Lesson 3. Examining Photosynthesis New Mexico Content Standard: Pathway Strand:

More information

The Vascular Plant Body

The Vascular Plant Body The Vascular Plant Body Like animals, plants are made up of specialized cells that are organized into tissues, which are themselves organized into systems of organs. The various parts of plants are adapted

More information

Simple Leaf Compound Leaf

Simple Leaf Compound Leaf Leaves Outline Overview Leaf Arrangements and Types Internal Structures of Leaves Stomata Mesophyll and Veins Specialized Leaves Autumnal Changes in Color Abscission Relevance of Leaves Overview Some of

More information

LEARNING OUTCOMES CCEA GCSE BIOLOGY: UNIT 2.1: Osmosis and Plant transport

LEARNING OUTCOMES CCEA GCSE BIOLOGY: UNIT 2.1: Osmosis and Plant transport NAME 0 LEARNING OUTCOMES CCEA GCSE BIOLOGY: 2.1.1-2.1.9 UNIT 2.1: Osmosis and Plant transport LEARNING OUTCOMES PUPIL SELF-EVALUATION Pupils should be able to: Good Average Requires Attention 1 Carry out

More information

Anatomy of dicotyledonous plants

Anatomy of dicotyledonous plants Anatomy of dicotyledonous plants Differences between Monocotyledons and Dicotyledons All plants are classified as producing seeds or not producing seeds. Those that produce seeds are divided into flowering

More information

Year 7 - Cells Summary Notes

Year 7 - Cells Summary Notes Year 7 - Cells Summary Notes Life Processes All living things do all seven of the life processes. Things that are not living may do some but do not do all seven of the life processes. These are: Movement

More information

CELL LAB OBJECTIVES INTRODUCTION: CELL UNIT. After completing this lab you should be able to:

CELL LAB OBJECTIVES INTRODUCTION: CELL UNIT. After completing this lab you should be able to: AP BIOLOGY CELL UNIT ACTIVITY #3 NAME DATE HOUR CELL LAB OBJECTIVES After completing this lab you should be able to: 1. Compare and contrast prokaryotic and eukaryotic cells, 2. Prepare wet mount slides

More information

2a. General: Describe 3 specialised uses for plants. Plants can be used as: i. raw materials ii. foods iii. medicines

2a. General: Describe 3 specialised uses for plants. Plants can be used as: i. raw materials ii. foods iii. medicines 1a. General: Give examples of advantages of there being a wide variety of plants. Greater number of characteristics for breeding. Bigger choice for use as raw materials, foods and medicines. Provide different

More information

BROWARD COUNTY ELEMENTARY SCIENCE BENCHMARK PLAN. SC.F The student knows that living things are different but share similar structures.

BROWARD COUNTY ELEMENTARY SCIENCE BENCHMARK PLAN. SC.F The student knows that living things are different but share similar structures. activities 38&39 Stomata and Transpiration (Sessions I and II) BROWARD COUNTY ELEMENTARY SCIENCE BENCHMARK PLAN Grade 5 Quarter 4 Activities 38 & 39 SC.F.1.2.3 The student knows that living things are

More information

Cell parts. nucleus cytoplasm cell surface membrane. cell wall vacuole chloroplast

Cell parts. nucleus cytoplasm cell surface membrane. cell wall vacuole chloroplast 7Ab/12 Cell parts nucleus cytoplasm cell surface membrane cell wall vacuole chloroplast found in plant cells only found in plant cells only found in plant cells only found in animal and plant cells found

More information

Observing Specialized Cells

Observing Specialized Cells Name_ Class Date Chapter 10 Cell Growth and Division Observing Specialized Cells Introduction The cell is the basic unit of structure and function in all living things. All of the processes necessary for

More information

Plants. Tissues, Organs, and Systems

Plants. Tissues, Organs, and Systems Plants Tissues, Organs, and Systems Meristematic cells Specialized cells that are responsible for producing specialized cells, they produce three types of tissue in the body of a plant. Meristematic Cells

More information

PREFACE O-LEVEL TOPICAL SCIENCE (BIOLOGY)

PREFACE O-LEVEL TOPICAL SCIENCE (BIOLOGY) PREFACE O-LEVEL TOPICAL SCIENCE (BIOLOGY) provides a thorough revision for students taking the GCE O-Level Science (Biology) Examination. Past examination questions have been carefully classified into

More information

Vocab Check. How many words were familiar to you? Botany Pre-Test

Vocab Check. How many words were familiar to you? Botany Pre-Test Vocab Check How many words were familiar to you? Botany Pre-Test Homework Chapter 4 Section 1 in textbook Read and complete questions on socrative.com same room number/set up PELOQUINSCIENCE Learning Targets

More information

PLANT TISSUES 12 MARCH 2014

PLANT TISSUES 12 MARCH 2014 PLANT TISSUES 12 MARCH 2014 Lesson Description In this lesson we: Identify the different types of plant tissue Be able to relate the different structures with the different functions Plant Tissue Summary

More information

Biology 2 Chapter 21 Review

Biology 2 Chapter 21 Review Biology 2 Chapter 21 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is not a tissue system of vascular plants? a. vascular

More information

Basic Structure of a Cell

Basic Structure of a Cell Basic Structure of a Cell Introduction to Cells Cells are the basic units of organisms Cells can only be observed under microscope Basic types of cells: Animal Cell Plant Cell Bacterial Cell 1 2 Number

More information

Germinating sunflowers, turgor and nutation. From:

Germinating sunflowers, turgor and nutation. From: Germinating sunflowers, turgor and nutation From: http://sunflower.bio.indiana.edu/~rhangart/plantmotion Nutation is Sunflower due to unequal Germination rates of growth in that continuous is dependent

More information

Chapter C3: Multicellular Organisms Plants

Chapter C3: Multicellular Organisms Plants Chapter C3: Multicellular Organisms Plants Multicellular Organisms Multicellular organisms have specialized cells of many different types that allow them to grow to a larger size than single-celled organisms.

More information

PLANT STRUCTURE: PARTS (ORGANS) Roots Leaves Stems

PLANT STRUCTURE: PARTS (ORGANS) Roots Leaves Stems PLANT STRUCTURE: PARTS (ORGANS) Roots Leaves Stems ROOTS El Hiquieron. Strangulating Plant Ficusjimenezii The trees you see growing on the wall are the Higueron. The Higueronsare plants that can grow in

More information

What factors, including environmental variables, affect the rate of transpiration in plants?

What factors, including environmental variables, affect the rate of transpiration in plants? Big Idea 4 Interactions INVESTIGATION 11 TRANSPIRATION* What factors, including environmental variables, affect the rate of transpiration in plants? BACKGROUND Cells and organisms must exchange matter

More information

Bio Ch 6 Photosynthesis Notes

Bio Ch 6 Photosynthesis Notes Bio Ch 6 Photosynthesis Notes I. Photosynthesis Basics A. What is photosynthesis? 1. Photosynthesis is a chemical reaction in which light energy is converted to chemical energy in glucose. 2. It is the

More information

in angiosperms 10/29/08 Roots take up water via roots Large surface area is needed Roots branch and have root hairs Cortex structure also helps uptake

in angiosperms 10/29/08 Roots take up water via roots Large surface area is needed Roots branch and have root hairs Cortex structure also helps uptake in angiosperms A. Root System Roots take up water via roots Large surface area is needed Roots branch and have root hairs Cortex structure also helps uptake 1 B. Minerals Nitrogen (NO 3-,NH 4+ ) Potassium

More information

The Science of Plants in Agriculture Pl.Sci 102. Getting to Know Plants

The Science of Plants in Agriculture Pl.Sci 102. Getting to Know Plants The Science of Plants in Agriculture Pl.Sci 102 Getting to Know Plants Growth and Development of Plants Growth and Development of Plants Why it s important to have knowledge about plant development. What

More information

active transport active transport support

active transport active transport support 1 Which row matches the cell membrane and cell wall of a palisade cell to their functions? cell membrane active transport active transport support support cell wall active transport support active transport

More information

IGCSE Double Award Extended Coordinated Science

IGCSE Double Award Extended Coordinated Science IGCSE Double Award Extended Coordinated Science Biology 4.2 - Plant Nutrition Photosynthesis You need to know the definition of photosynthesis as: the fundamental process by which plants manufacture carbohydrates

More information

Transport, Storage and Gas Exchange in Flowering Plants

Transport, Storage and Gas Exchange in Flowering Plants Sixth Year Biology Transport, Storage and Gas Exchange in Flowering Plants Miss Rochford In this topic: Uptake and transport of: Water and minerals Carbon dioxide Gas exchange Transport of photosynthesis

More information

Plants and Photosynthesis. Chapters 6 and 31

Plants and Photosynthesis. Chapters 6 and 31 Plants and Photosynthesis Chapters 6 and 31 Unit 11, Lecture 1 Topics: Introduction to Plants The Shoot System: The Flower Covers information from: Chapter 31 (PG 598 619) Terms to Describe Plants Eukaryotic

More information

(Sessions I and II)* BROWARD COUNTY ELEMENTARY SCIENCE BENCHMARK PLAN FOR PERSONAL USE

(Sessions I and II)* BROWARD COUNTY ELEMENTARY SCIENCE BENCHMARK PLAN FOR PERSONAL USE activities 19&20 What Do Plants Need? (Sessions I and II)* BROWARD COUNTY ELEMENTARY SCIENCE BENCHMARK PLAN Grade 1 Quarter 2 Activities 19 & 20 SC.A.1.1.1 The student knows that objects can be described,

More information

Shoot System. Root System. below-ground organs (roots) Dermal Tissue. Ground Tissue. Vascular Tissue. above-ground organs (leaves, stems, flowers)

Shoot System. Root System. below-ground organs (roots) Dermal Tissue. Ground Tissue. Vascular Tissue. above-ground organs (leaves, stems, flowers) Shoot System above-ground organs (leaves, stems, flowers) Root System below-ground organs (roots) Dermal Tissue type of plant tissue that is the outer covering of the plant and serves as a protective barrier

More information

Cells: 3 Star. Which row in the chart below best explains the movement of some molecules between the model cell and the solution in the beaker?

Cells: 3 Star. Which row in the chart below best explains the movement of some molecules between the model cell and the solution in the beaker? ells: 3 Star 1. ase your answer(s) to the following question(s) on the diagram below and on your knowledge of biology. The diagram represents a model cell setup. The locations of three different substances

More information

Plant Structure. Objectives At the end of this sub section students should be able to:

Plant Structure. Objectives At the end of this sub section students should be able to: Name: 3.2 Organisation and the Vascular Structures 3.2.1 Flowering plant structure and root structure Objectives At the end of this sub section students should be able to: 1. Label a diagram of the external

More information

Chapter 15 PLANT STRUCTURES AND TAXONOMY

Chapter 15 PLANT STRUCTURES AND TAXONOMY Chapter 15 PLANT STRUCTURES AND TAXONOMY Chapter 15: Parts of a plant Manufactures food by photosynthesis Attracts insects for pollination Contains seeds Supports branches and transports food and water

More information

Recommended Resources: The following resources may be useful in teaching this lesson:

Recommended Resources: The following resources may be useful in teaching this lesson: Unit A: Basic Principles of Plant Science with a Focus on Field Crops Lesson 4: Understanding Leaf Anatomy and Morphology Student Learning Objectives: Instruction in this lesson should result in students

More information

Photosynthesis. Water is one of the raw materials needed for photosynthesis When water is in short supply the rate of photosynthesis is limited

Photosynthesis. Water is one of the raw materials needed for photosynthesis When water is in short supply the rate of photosynthesis is limited Photosynthesis Water is one of the raw materials needed for photosynthesis When water is in short supply the rate of photosynthesis is limited Support Water is needed to ensure plant cells remain turgid

More information

PHOTOSYNTHESIS GR 11 LIFE SCIENCES

PHOTOSYNTHESIS GR 11 LIFE SCIENCES PHOTOSYNTHESIS GR 11 LIFE SCIENCES Definition: Photosynthesis is the process where the energy of the sunlight is used by green plants (and some animals) to bond molecules together to form carbohydrates

More information

b. Leaf: 7. Where are most of the plants carbohydrates made? 8. Where are carbohydrates stored for future use?

b. Leaf: 7. Where are most of the plants carbohydrates made? 8. Where are carbohydrates stored for future use? Plant Structures 1. Circle the three main parts of the plant to the left. 2. What does each part below do for the plant? a. Stem: b. Leaf: c. Root: 3. Where does most photosynthesis occur? 4. Where are

More information

Read through Section 2.1 starting on page 57 and read/answer the questions below

Read through Section 2.1 starting on page 57 and read/answer the questions below SNC 2DI Plant Cells, Tissues, and Organs SOLUTIONS Read through Section 2.1 starting on page 57 and read/answer the questions below Tree planters help to speed the process of regrowth in a forest that

More information

2 sentences. Why your first answer was wrong Why your new answer is correct

2 sentences. Why your first answer was wrong Why your new answer is correct 2 sentences Why your first answer was wrong Why your new answer is correct Which biochemical process is outlined in the diagram? A. Anaerobic Respiration B. Aerobic Respiration C. Photosynthesis D. Transpiration

More information

Plant Bodies as Systems

Plant Bodies as Systems Plant Bodies as Systems Objectives: Explain the organization of Plants Identify and describe the different body systems in a plant Evaluate how the survival needs of plants are met by systems working together

More information

Directed Reading A. Section: Structures of Seed Plants. is called a. shoots. c. phloem. b. xylem. d. leaves. is called ROOTS. size.

Directed Reading A. Section: Structures of Seed Plants. is called a. shoots. c. phloem. b. xylem. d. leaves. is called ROOTS. size. Skills Worksheet Directed Reading A Section: Structures of Seed Plants 1. Vascular tissue that transports water and minerals through a plant is called a. shoots. c. phloem. b. xylem. d. leaves. 2. Vascular

More information

Ch Plants.Biology.Landis

Ch Plants.Biology.Landis Nom de plume Chapt2 Chapter 22 - Plant Diversity Section 22 1 Introduction to Plants (pages 551 555) This section explains what a plant is and describes what plants need to survive. It also explains how

More information

TRANSPIRATION. An important regulator of transpiration is the stomatal complex composed of the opening or

TRANSPIRATION. An important regulator of transpiration is the stomatal complex composed of the opening or BIOL 1134 1 TRANSPIRATION LEARNING OBJECTIVES After completing this exercise, students should be able to: Describe the process of and principles behind transpiration. Describe how stomata, guard cells,

More information