Quantitative Genetics I: Traits controlled my many loci. Quantitative Genetics: Traits controlled my many loci

Size: px
Start display at page:

Download "Quantitative Genetics I: Traits controlled my many loci. Quantitative Genetics: Traits controlled my many loci"

Transcription

1 Quantitative Genetics: Traits controlled my many loci So far in our discussions, we have focused on understanding how selection works on a small number of loci (1 or 2). However in many cases, evolutionary biologists ask questions about traits or phenotypes (for example ) Many factors may affect a trait, including the action of alleles at one or more loci, and the environment in which an individual exists. Quantitative genetics provides the framework for understanding how evolutionary forces act on complex traits. 1 Quantitative Genetics I: Traits controlled my many loci Learning Objectives: 1. To describe how segregation at multiple loci can produce a pattern of quantitative variation in a trait. 2. To define the breeding value () and relate it to the average effects of alleles. 3. To define and differentiate broad and narrow sense heritability.. To describe the components of trait (phenotypic) variation and describe how and why additive genetic variation is the key component of variation relevant to narrow sense heritability and the response to selection. Readings: Chapter in Freeman 2 Quantitative genetics vs. population genetics Sir Ronald Fisher (10-12): Linking quantitative traits variation and Mendelian genetics In 11, Fisher showed that a large number of Mendelian factors (genes) influencing a trait would cause a nearly continuous distribution of trait values. Therefore, mendelian genetics can lead to an approximately normal distribution 3

2 Wheat kernel colour variation Wheat kernel colour variation This figure shows measured phenotypes in a population of F 2 plants from parents that differ in kernel colour. We can see that more than two or three phenotypes are seen in the F 2. This pattern is explained by the action of three loci. With three loci, each with two alleles, six phenotypic classes are obtained, and the distribution of phenotypes begins to look like a normal curve. Population genetics Quantitative genetics What are the conditions that will lead to a shift in the mean value of a trait under selection?

3 Breeder s equation Human Height: n example of a quantitative trait The first big question in quantitative genetics: Breeder s equation: R = h2s 10 Building a Quantitative Genetics Model: lessons from agriculture How much phenotypic variation among individuals is due to the presence and interaction of different alleles, and how much is due to differences in the environment? nswers to this question will determine the degree to which traits can respond to selection. In quantitative genetics, the phenotypic value (P) of an individual (e.g. height) is attributed to the genotype of the individual and to its environment: P = G + E The genotypic value (G) reflects the influence of every gene carried by the individual on the phenotypic value. The environmental deviation (E) is a measure of the influence of the environment of the phenotypic value of an individual. We can see how these components are estimated in an example from crop yield in wheat

4 verage Yield of three wheat strains over a ten year period (bushels/acre) verage Yield of three wheat strains over a ten year period (bushels/acre) Year Mean Roughrider Seward gassiz Year Mean Roughrider Seward gassiz Environmental values (E) = = -3.1 Genetic values (G) 13 1 Using Genetic values in breeding: The Breeding Value Using Genetic values in breeding: The Breeding Value Mean yield of population (0 bushels/acre) Expected genetic value of offspring (0 bushels/acre) Genetic value of a parent (0 bushels/acre) The genetic value of a genotype reflects the sum total effect of all alleles at the loci that affect the trait of interest. Given that a parent in a sexual species passes half of its alleles to the offspring, what is the expected genetic value of the offspring? (assume a randomly chosen mate) 1 Mean yield of population (0 bushels/acre) ctual genetic value of offspring ( bushels/acre) Genetic value of a parent (0 bushels/acre) In reality, the yield of the offspring may differ from that predicted on the basis of the genetic value of the parent. Why? - Dominance (interactions among alleles at a locus) - Epistasis (interactions among alleles at different loci) 1

5 Using Genetic values in breeding: The Breeding Value Mean yield of population (0 bushels/acre) ctual genetic value of offspring ( bushels/acre) d Breeding Value () of the parent genotype ( bushels/acre) The breeding value of a genotype () is obtained by adding twice the deviation of the mean (d) of the offspring from the population mean. d 1 Breeding Value Example 1 To increase milk yield, dairy farmers estimate the breeding value of bulls from the average dairy production of each bull s daughters. When a particular bull is mated to several cows, his daughters produce an average of liters of milk per day, in a herd with an average production of liters. In terms of dairy production,...what is the breeding value () of the bull?(12)...what is the phenotypic value of the bull? (!!) 1 Breeding Value Example 2 Effects of Dominance Now say that a particular cow produces liters of milk per day, compared to a herd average of liters per day. When mated to different bulls, this cow s daughters produce an average of 0 liters of milk per day. In terms of dairy production,...what is the breeding value () of the cow? ()...what is the phenotypic value of the cow? () What contributes to this difference (assuming no environmental effects)? If alleles at some loci affect traits differently depending on the rest of the genotype (Interactions) Dominance (D) (interactions at the same locus) Epistasis (I) (interactions at different loci) 1 Dominance relationships among alleles at a locus affect the way in which a trait is transmitted to the offspring. parent that is homozygous (e.g. BB) at a locus that affects a trait cannot transmit this condition to its offspring. If B is recessive to b, a high fitness BB parent mated to a low fitness bb parent produces only Bb (low fitness) offspring. Such dominance effects have an impact on trait expression of the offspring from any cross. 20

6 Effects of Gene Interactions /Epistasis Similarly, good interaction among the alleles at different loci are not faithfully transmitted, as illustrated in these card hands. Even though Mom and Dad have good combinations, they may not combine well in the offspring. Mom! $! # Dad $ verage llele Effect Because of dominance and epistasis, a given allele may not always have the same effect of the phenotype. The average effect of an allele accounts for the difference in the effect of an allele paired with any other alleles /genes currently found within the population (e.g., accounting for the chance that it is found in a heterozygote or homozygote, in any particular genetic background). The breeding value of an individual () represents the average effects of all of his/her alleles. Offspring Expanding the basic quantitative genetics equation We earlier described the relationship, P = G + E, Which describe the factors that determine an individual s phenotype, but we now understand that the component G can be further broken down into: G= + D + I, to describe the components of Genetic effects on the phenotype attributed to dditive genetic effects (as measured by he Breeding value), Dominance effects and Interaction effects (Epistasis). Our description of the Breeding value () showed that the phenotype of an individual s offspring is mainly determined by the 23 breeding value of its parents. From individuals to populations: patterns of phenotypic variation With an understanding of factors that determine the phenotype of an individual, we can move back up to the level of the population to develop our understanding of how to estimate the genetic component of quantitative trait variation. Q: How much of the phenotypic variation that we observe is due to genetic variation? How much of this genetic variation contributes to the response to selection? 2

7 From individuals to populations: patterns of phenotypic variation From individuals to populations: patterns of phenotypic variation The phenotypic variance (V P ) measures the extent to which individuals vary in phenotype for a particular trait. The phenotypic variance within a population may be due to genetic and/or environmental differences among individuals: V P = V G + V E (Ignoring interactions between genes & environment) 2 V P = V G + V E The genetic variance (V G ) can be further broken down into additive, dominance and interaction components, analogous to those used to describe an individual phenotype: V G = V + V D + V I The additive genetic variance (V ) equals the variance in breeding values within a population and measures the degree to which offspring resemble their parents. 2 Calculating phenotypic and additive genetic variances Variance: _ V x =! i (X i X) (n 1) Cow mean yield Example: Milk yield in cows V P = (-) 2 + (-) 2 + n-1 = 2. 2 Calculating phenotypic and additive genetic variances Variance: _ V x =! i (X i X) (n 1) Cow mean yield Example: Milk yield in cows Offspring Yield = (offspringmean) X 2 + mean = 3 = 3 2

8 Calculating Phenotypic and dditive Genetic Variance Variance: _ V x =! i (X i X) (n 1) Cow mean yield Example: Milk yield in cows Offspring Yield V P = 2. V = Calculating Phenotypic and dditive Genetic Variance Knowledge of the phenotypic variance and additive genetic variance allows us to predict how similar we expect the phenotypes of parents and offspring to be. It will also allow us to predict the magnitude of the response to selection when individuals with different phenotypic means have different probabilities of survival or reproduction. V P = 2. V = 20. In the previous example, nearly half of the phenotypic variance was the result of additive genetic variance. 30 Narrow-Sense Heritability h 2 = V / V P Broad-Sense Heritability H 2 = V G / V P Narrow sense heritability describes the proportion of phenotypic variance due to additive genetic variance among individuals, or the extent to which variation in phenotype is caused by genes transmitted from parents. h 2 = V / (V + V D + V I + V E ) Heritability can be low due to: Conversely, h 2 will be 1 only if there is no variation due to dominance, epistasis, or environmental effects. When h 2 = 1, P = G =. 31 Broad sense heritability describes the proportion of phenotypic variance due to total genetic variance among individuals. H 2 = V G / V P Broad-sense heritability will be 1 if all of the phenotypic variation within a population is due to genotypic differences among individuals (V G = V P ). Broad-sense heritability will be 0 if all of the phenotypic variation is caused by environmental differences. 32

9 Important points about heritability 1. When we use the term heritability, we are almost always referring to narrow sense heritability. 2. Estimates of heritability are not transferable. They are specific to the population and the environment in which they are estimated. 3. Heritability estimates are for populations, not individuals. Heritability does not indicate the degree to which a trait is genetically based. Rather, it measures the proportion of the phenotypic variance that is the result of genetic factors. 33

Life Cycles, Meiosis and Genetic Variability24/02/2015 2:26 PM

Life Cycles, Meiosis and Genetic Variability24/02/2015 2:26 PM Life Cycles, Meiosis and Genetic Variability iclicker: 1. A chromosome just before mitosis contains two double stranded DNA molecules. 2. This replicated chromosome contains DNA from only one of your parents

More information

Lecture WS Evolutionary Genetics Part I 1

Lecture WS Evolutionary Genetics Part I 1 Quantitative genetics Quantitative genetics is the study of the inheritance of quantitative/continuous phenotypic traits, like human height and body size, grain colour in winter wheat or beak depth in

More information

Genetics and Natural Selection

Genetics and Natural Selection Genetics and Natural Selection Darwin did not have an understanding of the mechanisms of inheritance and thus did not understand how natural selection would alter the patterns of inheritance in a population.

More information

Quantitative characters II: heritability

Quantitative characters II: heritability Quantitative characters II: heritability The variance of a trait (x) is the average squared deviation of x from its mean: V P = (1/n)Σ(x-m x ) 2 This total phenotypic variance can be partitioned into components:

More information

7.2: Natural Selection and Artificial Selection pg

7.2: Natural Selection and Artificial Selection pg 7.2: Natural Selection and Artificial Selection pg. 305-311 Key Terms: natural selection, selective pressure, fitness, artificial selection, biotechnology, and monoculture. Natural Selection is the process

More information

Chapter 7 The Genetic Model for Quantitative Traits

Chapter 7 The Genetic Model for Quantitative Traits Chapter 7 The Genetic Model for Quantitative Traits I. The Basic Model II. Breeding Value III. Gene Combination Value IV. Producing Ability Chapter 7 The Genetic Model for Quantitative Traits Learning

More information

Lecture 3. Introduction on Quantitative Genetics: I. Fisher s Variance Decomposition

Lecture 3. Introduction on Quantitative Genetics: I. Fisher s Variance Decomposition Lecture 3 Introduction on Quantitative Genetics: I Fisher s Variance Decomposition Bruce Walsh. Aug 004. Royal Veterinary and Agricultural University, Denmark Contribution of a Locus to the Phenotypic

More information

1. they are influenced by many genetic loci. 2. they exhibit variation due to both genetic and environmental effects.

1. they are influenced by many genetic loci. 2. they exhibit variation due to both genetic and environmental effects. October 23, 2009 Bioe 109 Fall 2009 Lecture 13 Selection on quantitative traits Selection on quantitative traits - From Darwin's time onward, it has been widely recognized that natural populations harbor

More information

Mechanisms of Evolution

Mechanisms of Evolution Mechanisms of Evolution 36-149 The Tree of Life Christopher R. Genovese Department of Statistics 132H Baker Hall x8-7836 http://www.stat.cmu.edu/ ~ genovese/. Plan 1. Two More Generations 2. The Hardy-Weinberg

More information

Quantitative characters - exercises

Quantitative characters - exercises Quantitative characters - exercises 1. a) Calculate the genetic covariance between half sibs, expressed in the ij notation (Cockerham's notation), when up to loci are considered. b) Calculate the genetic

More information

Evolution of phenotypic traits

Evolution of phenotypic traits Quantitative genetics Evolution of phenotypic traits Very few phenotypic traits are controlled by one locus, as in our previous discussion of genetics and evolution Quantitative genetics considers characters

More information

Variance Components: Phenotypic, Environmental and Genetic

Variance Components: Phenotypic, Environmental and Genetic Variance Components: Phenotypic, Environmental and Genetic You should keep in mind that the Simplified Model for Polygenic Traits presented above is very simplified. In many cases, polygenic or quantitative

More information

Evolutionary quantitative genetics and one-locus population genetics

Evolutionary quantitative genetics and one-locus population genetics Evolutionary quantitative genetics and one-locus population genetics READING: Hedrick pp. 57 63, 587 596 Most evolutionary problems involve questions about phenotypic means Goal: determine how selection

More information

Partitioning Genetic Variance

Partitioning Genetic Variance PSYC 510: Partitioning Genetic Variance (09/17/03) 1 Partitioning Genetic Variance Here, mathematical models are developed for the computation of different types of genetic variance. Several substantive

More information

What is Natural Selection? Natural & Artificial Selection. Answer: Answer: What are Directional, Stabilizing, Disruptive Natural Selection?

What is Natural Selection? Natural & Artificial Selection. Answer: Answer: What are Directional, Stabilizing, Disruptive Natural Selection? What is Natural Selection? Natural & Artificial Selection Practice Quiz What are Directional, Stabilizing, Disruptive Natural Selection? When an environment selects for a trait in organisms. Who came up

More information

Just to review Genetics and Cells? How do Genetics and Cells Relate? The cell s NUCLEUS contains all the genetic information.

Just to review Genetics and Cells? How do Genetics and Cells Relate? The cell s NUCLEUS contains all the genetic information. Just to review Genetics and Cells? How do Genetics and Cells Relate? The cell s NUCLEUS contains all the genetic information. It s called: DNA A. Describe what Gregor Mendel discovered in his experiments

More information

Outline for today s lecture (Ch. 14, Part I)

Outline for today s lecture (Ch. 14, Part I) Outline for today s lecture (Ch. 14, Part I) Ploidy vs. DNA content The basis of heredity ca. 1850s Mendel s Experiments and Theory Law of Segregation Law of Independent Assortment Introduction to Probability

More information

Lecture 2: Introduction to Quantitative Genetics

Lecture 2: Introduction to Quantitative Genetics Lecture 2: Introduction to Quantitative Genetics Bruce Walsh lecture notes Introduction to Quantitative Genetics SISG, Seattle 16 18 July 2018 1 Basic model of Quantitative Genetics Phenotypic value --

More information

Natural Selection results in increase in one (or more) genotypes relative to other genotypes.

Natural Selection results in increase in one (or more) genotypes relative to other genotypes. Natural Selection results in increase in one (or more) genotypes relative to other genotypes. Fitness - The fitness of a genotype is the average per capita lifetime contribution of individuals of that

More information

Introduction to Quantitative Genetics. Introduction to Quantitative Genetics

Introduction to Quantitative Genetics. Introduction to Quantitative Genetics Introduction to Quantitative Genetics Historical Background Quantitative genetics is the study of continuous or quantitative traits and their underlying mechanisms. The main principals of quantitative

More information

Quantitative Trait Variation

Quantitative Trait Variation Quantitative Trait Variation 1 Variation in phenotype In addition to understanding genetic variation within at-risk systems, phenotype variation is also important. reproductive fitness traits related to

More information

Breeding Values and Inbreeding. Breeding Values and Inbreeding

Breeding Values and Inbreeding. Breeding Values and Inbreeding Breeding Values and Inbreeding Genotypic Values For the bi-allelic single locus case, we previously defined the mean genotypic (or equivalently the mean phenotypic values) to be a if genotype is A 2 A

More information

Lecture 2. Basic Population and Quantitative Genetics

Lecture 2. Basic Population and Quantitative Genetics Lecture Basic Population and Quantitative Genetics Bruce Walsh. Aug 003. Nordic Summer Course Allele and Genotype Frequencies The frequency p i for allele A i is just the frequency of A i A i homozygotes

More information

19. Genetic Drift. The biological context. There are four basic consequences of genetic drift:

19. Genetic Drift. The biological context. There are four basic consequences of genetic drift: 9. Genetic Drift Genetic drift is the alteration of gene frequencies due to sampling variation from one generation to the next. It operates to some degree in all finite populations, but can be significant

More information

Appendix A Evolutionary and Genetics Principles

Appendix A Evolutionary and Genetics Principles Appendix A Evolutionary and Genetics Principles A.1 Genetics As a start, we need to distinguish between learning, which we take to mean behavioral adaptation by an individual, and evolution, which refers

More information

Introduction to Genetics

Introduction to Genetics Introduction to Genetics We ve all heard of it, but What is genetics? Genetics: the study of gene structure and action and the patterns of inheritance of traits from parent to offspring. Ancient ideas

More information

Chapter 2: Extensions to Mendel: Complexities in Relating Genotype to Phenotype.

Chapter 2: Extensions to Mendel: Complexities in Relating Genotype to Phenotype. Chapter 2: Extensions to Mendel: Complexities in Relating Genotype to Phenotype. please read pages 38-47; 49-55;57-63. Slide 1 of Chapter 2 1 Extension sot Mendelian Behavior of Genes Single gene inheritance

More information

Chapter 4 Lesson 1 Heredity Notes

Chapter 4 Lesson 1 Heredity Notes Chapter 4 Lesson 1 Heredity Notes Phases of Meiosis I Prophase I Nuclear membrane breaks apart and chromosomes condense. 3.1 Sexual Reproduction and Meiosis Metaphase I Sister chromatids line up along

More information

The Wright Fisher Controversy. Charles Goodnight Department of Biology University of Vermont

The Wright Fisher Controversy. Charles Goodnight Department of Biology University of Vermont The Wright Fisher Controversy Charles Goodnight Department of Biology University of Vermont Outline Evolution and the Reductionist Approach Adding complexity to Evolution Implications Williams Principle

More information

Chapter 17: Population Genetics and Speciation

Chapter 17: Population Genetics and Speciation Chapter 17: Population Genetics and Speciation Section 1: Genetic Variation Population Genetics: Normal Distribution: a line graph showing the general trends in a set of data of which most values are near

More information

Biometrical Genetics. Lindon Eaves, VIPBG Richmond. Boulder CO, 2012

Biometrical Genetics. Lindon Eaves, VIPBG Richmond. Boulder CO, 2012 Biometrical Genetics Lindon Eaves, VIPBG Richmond Boulder CO, 2012 Biometrical Genetics How do genes contribute to statistics (e.g. means, variances,skewness, kurtosis)? Some Literature: Jinks JL, Fulker

More information

10. How many chromosomes are in human gametes (reproductive cells)? 23

10. How many chromosomes are in human gametes (reproductive cells)? 23 Name: Key Block: Define the following terms: 1. Dominant Trait-characteristics that are expressed if present in the genotype 2. Recessive Trait-characteristics that are masked by dominant traits unless

More information

Evolutionary Genetics Midterm 2008

Evolutionary Genetics Midterm 2008 Student # Signature The Rules: (1) Before you start, make sure you ve got all six pages of the exam, and write your name legibly on each page. P1: /10 P2: /10 P3: /12 P4: /18 P5: /23 P6: /12 TOT: /85 (2)

More information

Unit 2 Lesson 4 - Heredity. 7 th Grade Cells and Heredity (Mod A) Unit 2 Lesson 4 - Heredity

Unit 2 Lesson 4 - Heredity. 7 th Grade Cells and Heredity (Mod A) Unit 2 Lesson 4 - Heredity Unit 2 Lesson 4 - Heredity 7 th Grade Cells and Heredity (Mod A) Unit 2 Lesson 4 - Heredity Give Peas a Chance What is heredity? Traits, such as hair color, result from the information stored in genetic

More information

Mutation, Selection, Gene Flow, Genetic Drift, and Nonrandom Mating Results in Evolution

Mutation, Selection, Gene Flow, Genetic Drift, and Nonrandom Mating Results in Evolution Mutation, Selection, Gene Flow, Genetic Drift, and Nonrandom Mating Results in Evolution 15.2 Intro In biology, evolution refers specifically to changes in the genetic makeup of populations over time.

More information

BIOL EVOLUTION OF QUANTITATIVE CHARACTERS

BIOL EVOLUTION OF QUANTITATIVE CHARACTERS 1 BIOL2007 - EVOLUTION OF QUANTITATIVE CHARACTERS How do evolutionary biologists measure variation in a typical quantitative character? Let s use beak size in birds as a typical example. Phenotypic variation

More information

Quantitative characters

Quantitative characters Quantitative characters Joe Felsenstein GENOME 453, Autumn 015 Quantitative characters p.1/38 A random mating population with two genes having alleles each, at equal frequencies, symmetrically affecting

More information

genome a specific characteristic that varies from one individual to another gene the passing of traits from one generation to the next

genome a specific characteristic that varies from one individual to another gene the passing of traits from one generation to the next genetics the study of heredity heredity sequence of DNA that codes for a protein and thus determines a trait genome a specific characteristic that varies from one individual to another gene trait the passing

More information

Introduction to Genetics

Introduction to Genetics Introduction to Genetics We ve all heard of it, but What is genetics? Genetics: the study of gene structure and action and the patterns of inheritance of traits from parent to offspring. Ancient ideas

More information

Quantitative characters

Quantitative characters Quantitative characters Joe Felsenstein GENOME 453, Autumn 013 Quantitative characters p.1/38 A random mating population with two genes having alleles each, at equal frequencies, symmetrically affecting

More information

Quantitative Genetics & Evolutionary Genetics

Quantitative Genetics & Evolutionary Genetics Quantitative Genetics & Evolutionary Genetics (CHAPTER 24 & 26- Brooker Text) May 14, 2007 BIO 184 Dr. Tom Peavy Quantitative genetics (the study of traits that can be described numerically) is important

More information

Lecture 6: Introduction to Quantitative genetics. Bruce Walsh lecture notes Liege May 2011 course version 25 May 2011

Lecture 6: Introduction to Quantitative genetics. Bruce Walsh lecture notes Liege May 2011 course version 25 May 2011 Lecture 6: Introduction to Quantitative genetics Bruce Walsh lecture notes Liege May 2011 course version 25 May 2011 Quantitative Genetics The analysis of traits whose variation is determined by both a

More information

1. The diagram below shows two processes (A and B) involved in sexual reproduction in plants and animals.

1. The diagram below shows two processes (A and B) involved in sexual reproduction in plants and animals. 1. The diagram below shows two processes (A and B) involved in sexual reproduction in plants and animals. Which statement best explains how these processes often produce offspring that have traits not

More information

1 Errors in mitosis and meiosis can result in chromosomal abnormalities.

1 Errors in mitosis and meiosis can result in chromosomal abnormalities. Slide 1 / 21 1 Errors in mitosis and meiosis can result in chromosomal abnormalities. a. Identify and describe a common chromosomal mutation. Slide 2 / 21 Errors in mitosis and meiosis can result in chromosomal

More information

Family resemblance can be striking!

Family resemblance can be striking! Family resemblance can be striking! 1 Chapter 14. Mendel & Genetics 2 Gregor Mendel! Modern genetics began in mid-1800s in an abbey garden, where a monk named Gregor Mendel documented inheritance in peas

More information

The concept of breeding value. Gene251/351 Lecture 5

The concept of breeding value. Gene251/351 Lecture 5 The concept of breeding value Gene251/351 Lecture 5 Key terms Estimated breeding value (EB) Heritability Contemporary groups Reading: No prescribed reading from Simm s book. Revision: Quantitative traits

More information

Meiosis and Mendel. Chapter 6

Meiosis and Mendel. Chapter 6 Meiosis and Mendel Chapter 6 6.1 CHROMOSOMES AND MEIOSIS Key Concept Gametes have half the number of chromosomes that body cells have. Body Cells vs. Gametes You have body cells and gametes body cells

More information

Processes of Evolution

Processes of Evolution 15 Processes of Evolution Forces of Evolution Concept 15.4 Selection Can Be Stabilizing, Directional, or Disruptive Natural selection can act on quantitative traits in three ways: Stabilizing selection

More information

Observing Patterns in Inherited Traits

Observing Patterns in Inherited Traits Observing Patterns in Inherited Traits Chapter 10 Before you go on Review the answers to the following questions to test your understanding of previous material. 1. Most organisms are diploid. What does

More information

Genetics (patterns of inheritance)

Genetics (patterns of inheritance) MENDELIAN GENETICS branch of biology that studies how genetic characteristics are inherited MENDELIAN GENETICS Gregory Mendel, an Augustinian monk (1822-1884), was the first who systematically studied

More information

Lecture 2. Fisher s Variance Decomposition

Lecture 2. Fisher s Variance Decomposition Lecture Fisher s Variance Decomposition Bruce Walsh. June 008. Summer Institute on Statistical Genetics, Seattle Covariances and Regressions Quantitative genetics requires measures of variation and association.

More information

Population Genetics & Evolution

Population Genetics & Evolution The Theory of Evolution Mechanisms of Evolution Notes Pt. 4 Population Genetics & Evolution IMPORTANT TO REMEMBER: Populations, not individuals, evolve. Population = a group of individuals of the same

More information

List the five conditions that can disturb genetic equilibrium in a population.(10)

List the five conditions that can disturb genetic equilibrium in a population.(10) List the five conditions that can disturb genetic equilibrium in a population.(10) The five conditions are non-random mating, small population size, immigration or emigration, mutations, and natural selection.

More information

Heinrich Grausgruber Department of Crop Sciences Division of Plant Breeding Konrad-Lorenz-Str Tulln

Heinrich Grausgruber Department of Crop Sciences Division of Plant Breeding Konrad-Lorenz-Str Tulln 957.321 Sources: Nespolo (2003); Le Rouzic et al. (2007) Heinrich Grausgruber Department of Crop Sciences Division of Plant Breeding Konrad-Lorenz-Str. 24 3430 Tulln Zuchtmethodik & Quantitative Genetik

More information

6.6 Meiosis and Genetic Variation. KEY CONCEPT Independent assortment and crossing over during meiosis result in genetic diversity.

6.6 Meiosis and Genetic Variation. KEY CONCEPT Independent assortment and crossing over during meiosis result in genetic diversity. 6.6 Meiosis and Genetic Variation KEY CONCEPT Independent assortment and crossing over during meiosis result in genetic diversity. 6.6 Meiosis and Genetic Variation! Sexual reproduction creates unique

More information

Biometrical Genetics

Biometrical Genetics Biometrical Genetics 2016 International Workshop on Statistical Genetic Methods for Human Complex Traits Boulder, CO. Lindon Eaves, VIPBG, Richmond VA. March 2016 Biometrical Genetics How do genes contribute

More information

Full file at CHAPTER 2 Genetics

Full file at   CHAPTER 2 Genetics CHAPTER 2 Genetics MULTIPLE CHOICE 1. Chromosomes are a. small linear bodies. b. contained in cells. c. replicated during cell division. 2. A cross between true-breeding plants bearing yellow seeds produces

More information

... x. Variance NORMAL DISTRIBUTIONS OF PHENOTYPES. Mice. Fruit Flies CHARACTERIZING A NORMAL DISTRIBUTION MEAN VARIANCE

... x. Variance NORMAL DISTRIBUTIONS OF PHENOTYPES. Mice. Fruit Flies CHARACTERIZING A NORMAL DISTRIBUTION MEAN VARIANCE NORMAL DISTRIBUTIONS OF PHENOTYPES Mice Fruit Flies In:Introduction to Quantitative Genetics Falconer & Mackay 1996 CHARACTERIZING A NORMAL DISTRIBUTION MEAN VARIANCE Mean and variance are two quantities

More information

Mendelian Genetics. Introduction to the principles of Mendelian Genetics

Mendelian Genetics. Introduction to the principles of Mendelian Genetics + Mendelian Genetics Introduction to the principles of Mendelian Genetics + What is Genetics? n It is the study of patterns of inheritance and variations in organisms. n Genes control each trait of a living

More information

Meiosis -> Inheritance. How do the events of Meiosis predict patterns of heritable variation?

Meiosis -> Inheritance. How do the events of Meiosis predict patterns of heritable variation? Meiosis -> Inheritance How do the events of Meiosis predict patterns of heritable variation? Mendel s peas 1. Genes determine appearance (phenotype) 2. Genes vary and they are inherited 3. Their behavior

More information

Unit 6 Reading Guide: PART I Biology Part I Due: Monday/Tuesday, February 5 th /6 th

Unit 6 Reading Guide: PART I Biology Part I Due: Monday/Tuesday, February 5 th /6 th Name: Date: Block: Chapter 6 Meiosis and Mendel Section 6.1 Chromosomes and Meiosis 1. How do gametes differ from somatic cells? Unit 6 Reading Guide: PART I Biology Part I Due: Monday/Tuesday, February

More information

Lecture 2: Genetic Association Testing with Quantitative Traits. Summer Institute in Statistical Genetics 2017

Lecture 2: Genetic Association Testing with Quantitative Traits. Summer Institute in Statistical Genetics 2017 Lecture 2: Genetic Association Testing with Quantitative Traits Instructors: Timothy Thornton and Michael Wu Summer Institute in Statistical Genetics 2017 1 / 29 Introduction to Quantitative Trait Mapping

More information

Chapter 10 Sexual Reproduction and Genetics

Chapter 10 Sexual Reproduction and Genetics Sexual Reproduction and Genetics Section 1: Meiosis Section 2: Mendelian Genetics Section 3: Gene Linkage and Polyploidy Click on a lesson name to select. Chromosomes and Chromosome Number! Human body

More information

Solutions to Problem Set 4

Solutions to Problem Set 4 Question 1 Solutions to 7.014 Problem Set 4 Because you have not read much scientific literature, you decide to study the genetics of garden peas. You have two pure breeding pea strains. One that is tall

More information

CRP 305 CROP GENETICS AND BREEDING

CRP 305 CROP GENETICS AND BREEDING CRP 305 CROP GENETICS AND BREEDING NATIONAL OPEN UNIVERSITY OF NIGERIA 1 COURSE CODE: CRP 305 COURSE TITLE: CROPS GENETICS AND BREEDING COURSE DEVELOPER: COURSE WRITER: PROFESSOR LATEEF LEKAN BELLO DEPARTMENT

More information

Lecture 4: Allelic Effects and Genetic Variances. Bruce Walsh lecture notes Tucson Winter Institute 7-9 Jan 2013

Lecture 4: Allelic Effects and Genetic Variances. Bruce Walsh lecture notes Tucson Winter Institute 7-9 Jan 2013 Lecture 4: Allelic Effects and Genetic Variances Bruce Walsh lecture notes Tucson Winter Institute 7-9 Jan 2013 1 Basic model of Quantitative Genetics Phenotypic value -- we will occasionally also use

More information

HEREDITY: Objective: I can describe what heredity is because I can identify traits and characteristics

HEREDITY: Objective: I can describe what heredity is because I can identify traits and characteristics Mendel and Heredity HEREDITY: SC.7.L.16.1 Understand and explain that every organism requires a set of instructions that specifies its traits, that this hereditary information. Objective: I can describe

More information

Essential Questions. Meiosis. Copyright McGraw-Hill Education

Essential Questions. Meiosis. Copyright McGraw-Hill Education Essential Questions How does the reduction in chromosome number occur during meiosis? What are the stages of meiosis? What is the importance of meiosis in providing genetic variation? Meiosis Vocabulary

More information

Quantitative Genetics

Quantitative Genetics Bruce Walsh, University of Arizona, Tucson, Arizona, USA Almost any trait that can be defined shows variation, both within and between populations. Quantitative genetics is concerned with the analysis

More information

Directed Reading B. Section: Traits and Inheritance A GREAT IDEA

Directed Reading B. Section: Traits and Inheritance A GREAT IDEA Skills Worksheet Directed Reading B Section: Traits and Inheritance A GREAT IDEA 1. One set of instructions for an inherited trait is a(n) a. allele. c. genotype. d. gene. 2. How many sets of the same

More information

Natural Selection. Population Dynamics. The Origins of Genetic Variation. The Origins of Genetic Variation. Intergenerational Mutation Rate

Natural Selection. Population Dynamics. The Origins of Genetic Variation. The Origins of Genetic Variation. Intergenerational Mutation Rate Natural Selection Population Dynamics Humans, Sickle-cell Disease, and Malaria How does a population of humans become resistant to malaria? Overproduction Environmental pressure/competition Pre-existing

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance The Chromosomal Basis of Inheritance Mitosis and meiosis were first described in the late 800s. The chromosome theory of inheritance states: Mendelian genes have specific loci (positions) on chromosomes.

More information

Solutions to Even-Numbered Exercises to accompany An Introduction to Population Genetics: Theory and Applications Rasmus Nielsen Montgomery Slatkin

Solutions to Even-Numbered Exercises to accompany An Introduction to Population Genetics: Theory and Applications Rasmus Nielsen Montgomery Slatkin Solutions to Even-Numbered Exercises to accompany An Introduction to Population Genetics: Theory and Applications Rasmus Nielsen Montgomery Slatkin CHAPTER 1 1.2 The expected homozygosity, given allele

More information

Advance Organizer. Topic: Mendelian Genetics and Meiosis

Advance Organizer. Topic: Mendelian Genetics and Meiosis Name: Row Unit 8 - Chapter 11 - Mendelian Genetics and Meiosis Advance Organizer Topic: Mendelian Genetics and Meiosis 1. Objectives (What should I be able to do?) a. Summarize the outcomes of Gregor Mendel's

More information

Chapter 5. Heredity. Table of Contents. Section 1 Mendel and His Peas. Section 2 Traits and Inheritance. Section 3 Meiosis

Chapter 5. Heredity. Table of Contents. Section 1 Mendel and His Peas. Section 2 Traits and Inheritance. Section 3 Meiosis Heredity Table of Contents Section 1 Mendel and His Peas Section 2 Traits and Inheritance Section 3 Meiosis Section 1 Mendel and His Peas Objectives Explain the relationship between traits and heredity.

More information

heritable diversity feb ! gene 8840 biol 8990

heritable diversity feb ! gene 8840 biol 8990 heritable diversity feb 25 2015! gene 8840 biol 8990 D. Gordon E. Robertson - photo from Wikipedia HERITABILITY DEPENDS ON CONTEXT heritability: how well does parent predict offspring phenotype? how much

More information

Partitioning the Genetic Variance

Partitioning the Genetic Variance Partitioning the Genetic Variance 1 / 18 Partitioning the Genetic Variance In lecture 2, we showed how to partition genotypic values G into their expected values based on additivity (G A ) and deviations

More information

Evolution and the Genetics of Structured populations. Charles Goodnight Department of Biology University of Vermont

Evolution and the Genetics of Structured populations. Charles Goodnight Department of Biology University of Vermont Evolution and the Genetics of Structured populations Charles Goodnight Department of Biology University of Vermont Outline What is Evolution Evolution and the Reductionist Approach Fisher/Wright Controversy

More information

Study of similarities and differences in body plans of major groups Puzzling patterns:

Study of similarities and differences in body plans of major groups Puzzling patterns: Processes of Evolution Evolutionary Theories Widely used to interpret the past and present, and even to predict the future Reveal connections between the geological record, fossil record, and organismal

More information

Name: Period: EOC Review Part F Outline

Name: Period: EOC Review Part F Outline Name: Period: EOC Review Part F Outline Mitosis and Meiosis SC.912.L.16.17 Compare and contrast mitosis and meiosis and relate to the processes of sexual and asexual reproduction and their consequences

More information

Evolutionary Theory. Sinauer Associates, Inc. Publishers Sunderland, Massachusetts U.S.A.

Evolutionary Theory. Sinauer Associates, Inc. Publishers Sunderland, Massachusetts U.S.A. Evolutionary Theory Mathematical and Conceptual Foundations Sean H. Rice Sinauer Associates, Inc. Publishers Sunderland, Massachusetts U.S.A. Contents Preface ix Introduction 1 CHAPTER 1 Selection on One

More information

UNIT 8 BIOLOGY: Meiosis and Heredity Page 148

UNIT 8 BIOLOGY: Meiosis and Heredity Page 148 UNIT 8 BIOLOGY: Meiosis and Heredity Page 148 CP: CHAPTER 6, Sections 1-6; CHAPTER 7, Sections 1-4; HN: CHAPTER 11, Section 1-5 Standard B-4: The student will demonstrate an understanding of the molecular

More information

Segregation versus mitotic recombination APPENDIX

Segregation versus mitotic recombination APPENDIX APPENDIX Waiting time until the first successful mutation The first time lag, T 1, is the waiting time until the first successful mutant appears, creating an Aa individual within a population composed

More information

Ch 11.Introduction to Genetics.Biology.Landis

Ch 11.Introduction to Genetics.Biology.Landis Nom Section 11 1 The Work of Gregor Mendel (pages 263 266) This section describes how Gregor Mendel studied the inheritance of traits in garden peas and what his conclusions were. Introduction (page 263)

More information

Homework Assignment, Evolutionary Systems Biology, Spring Homework Part I: Phylogenetics:

Homework Assignment, Evolutionary Systems Biology, Spring Homework Part I: Phylogenetics: Homework Assignment, Evolutionary Systems Biology, Spring 2009. Homework Part I: Phylogenetics: Introduction. The objective of this assignment is to understand the basics of phylogenetic relationships

More information

UNIT 3: GENETICS 1. Inheritance and Reproduction Genetics inheritance Heredity parent to offspring chemical code genes specific order traits allele

UNIT 3: GENETICS 1. Inheritance and Reproduction Genetics inheritance Heredity parent to offspring chemical code genes specific order traits allele UNIT 3: GENETICS 1. Inheritance and Reproduction Genetics the study of the inheritance of biological traits Heredity- the passing of traits from parent to offspring = Inheritance - heredity is controlled

More information

Biology. Revisiting Booklet. 6. Inheritance, Variation and Evolution. Name:

Biology. Revisiting Booklet. 6. Inheritance, Variation and Evolution. Name: Biology 6. Inheritance, Variation and Evolution Revisiting Booklet Name: Reproduction Name the process by which body cells divide:... What kind of cells are produced this way? Name the process by which

More information

AP Biology Essential Knowledge Cards BIG IDEA 1

AP Biology Essential Knowledge Cards BIG IDEA 1 AP Biology Essential Knowledge Cards BIG IDEA 1 Essential knowledge 1.A.1: Natural selection is a major mechanism of evolution. Essential knowledge 1.A.4: Biological evolution is supported by scientific

More information

KEY: Chapter 9 Genetics of Animal Breeding.

KEY: Chapter 9 Genetics of Animal Breeding. KEY: Chapter 9 Genetics of Animal Breeding. Answer each question using the reading assigned to you. You can access this information by clicking on the following URL: https://drive.google.com/a/meeker.k12.co.us/file/d/0b1yf08xgyhnad08xugxsnfvba28/edit?usp=sh

More information

Reinforcement Unit 3 Resource Book. Meiosis and Mendel KEY CONCEPT Gametes have half the number of chromosomes that body cells have.

Reinforcement Unit 3 Resource Book. Meiosis and Mendel KEY CONCEPT Gametes have half the number of chromosomes that body cells have. 6.1 CHROMOSOMES AND MEIOSIS KEY CONCEPT Gametes have half the number of chromosomes that body cells have. Your body is made of two basic cell types. One basic type are somatic cells, also called body cells,

More information

Q Expected Coverage Achievement Merit Excellence. Punnett square completed with correct gametes and F2.

Q Expected Coverage Achievement Merit Excellence. Punnett square completed with correct gametes and F2. NCEA Level 2 Biology (91157) 2018 page 1 of 6 Assessment Schedule 2018 Biology: Demonstrate understanding of genetic variation and change (91157) Evidence Q Expected Coverage Achievement Merit Excellence

More information

Biological Evolution

Biological Evolution Biological Evolution What is Evolution Evolution is descent with modification Microevolution = changes in gene (allele) frequency in a population from one generation to the next Macroevolution = descent

More information

MULTIPLE CHOICE- Select the best answer and write its letter in the space provided.

MULTIPLE CHOICE- Select the best answer and write its letter in the space provided. Form 1 Key Biol 1400 Quiz 4 (25 pts) RUE-FALSE: If you support the statement circle for true; if you reject the statement circle F for false. F F 1. A bacterial plasmid made of prokaryotic DNA can NO attach

More information

The Evolution of Gene Dominance through the. Baldwin Effect

The Evolution of Gene Dominance through the. Baldwin Effect The Evolution of Gene Dominance through the Baldwin Effect Larry Bull Computer Science Research Centre Department of Computer Science & Creative Technologies University of the West of England, Bristol

More information

Chapter 11 INTRODUCTION TO GENETICS

Chapter 11 INTRODUCTION TO GENETICS Chapter 11 INTRODUCTION TO GENETICS 11-1 The Work of Gregor Mendel I. Gregor Mendel A. Studied pea plants 1. Reproduce sexually (have two sex cells = gametes) 2. Uniting of male and female gametes = Fertilization

More information

Biology 11 UNIT 1: EVOLUTION LESSON 2: HOW EVOLUTION?? (MICRO-EVOLUTION AND POPULATIONS)

Biology 11 UNIT 1: EVOLUTION LESSON 2: HOW EVOLUTION?? (MICRO-EVOLUTION AND POPULATIONS) Biology 11 UNIT 1: EVOLUTION LESSON 2: HOW EVOLUTION?? (MICRO-EVOLUTION AND POPULATIONS) Objectives: By the end of the lesson you should be able to: Describe the 2 types of evolution Describe the 5 ways

More information

Unit 3 - Molecular Biology & Genetics - Review Packet

Unit 3 - Molecular Biology & Genetics - Review Packet Name Date Hour Unit 3 - Molecular Biology & Genetics - Review Packet True / False Questions - Indicate True or False for the following statements. 1. Eye color, hair color and the shape of your ears can

More information

Genetical theory of natural selection

Genetical theory of natural selection Reminders Genetical theory of natural selection Chapter 12 Natural selection evolution Natural selection evolution by natural selection Natural selection can have no effect unless phenotypes differ in

More information

REVISION: GENETICS & EVOLUTION 20 MARCH 2013

REVISION: GENETICS & EVOLUTION 20 MARCH 2013 REVISION: GENETICS & EVOLUTION 20 MARCH 2013 Lesson Description In this lesson, we revise: The principles of Genetics including monohybrid crosses Sex linked traits and how to use a pedigree chart The

More information

Lesson 4: Understanding Genetics

Lesson 4: Understanding Genetics Lesson 4: Understanding Genetics 1 Terms Alleles Chromosome Co dominance Crossover Deoxyribonucleic acid DNA Dominant Genetic code Genome Genotype Heredity Heritability Heritability estimate Heterozygous

More information