Copyright notice. Multiple sequence alignment. Multiple sequence alignment: outline. Multiple sequence alignment: today s goals

Size: px
Start display at page:

Download "Copyright notice. Multiple sequence alignment. Multiple sequence alignment: outline. Multiple sequence alignment: today s goals"

Transcription

1 Copyright notice Multiple sequence alignment Monday, December 8, 2008 Many of the images in this powerpoint presentation are from Bioinformatics and Functional Genomics by J Pevsner (ISBN ). Copyright 2003 by Wiley. These images and materials may not be used without permission from the publisher. Introduction to Bioinformatics ME: J. Pevsner pevsner@kennedykrieger.org Visit Additional credit: some of these slides were made by Sarah Wheelan (Johns Hopkins Bloomberg School of Public Health) from the Intro to Bioinformatics course. Multiple sequence alignment: today s goals to define what a multiple sequence alignment is and how it is generated; to describe profile HMMs to introduce databases of multiple sequence alignments to introduce ways you can make your own multiple sequence alignments to show how a multiple sequence alignment provides the basis for phylogenetic trees Page 319 Multiple sequence alignment: outline Multiple sequence alignment: definition ClustalW a collection of three or more protein (or nucleic acid) sequences that are partially or completely aligned homologous residues are aligned in columns across the length of the sequences residues are homologous in an evolutionary sense residues are homologous in a structural sense Page 320 Note how the region of a conserved histidine ( ) varies depending on which algorithm is used

2 Praline MUSCLE Probcons TCoffee Multiple sequence alignment: properties not necessarily one correct alignment of a protein family protein sequences evolve......the corresponding three-dimensional structures of proteins also evolve may be impossible to identify amino acid residues that align properly (structurally) throughout a multiple sequence alignment for two proteins sharing 30% amino acid identity, about 50% of the individual amino acids are superposable in the two structures Page 320 Multiple sequence alignment: features some aligned residues, such as cysteines that form disulfide bridges, may be highly conserved there may be conserved motifs such as a transmembrane domain there may be conserved secondary structure features there may be regions with consistent patterns of insertions or deletions (indels) Page 320

3 Multiple sequence alignment: uses MSA is more sensitive than pairwise alignment to detect homologs BLAST output can take the form of a MSA, and can reveal conserved residues or motifs Population data can be analyzed in a MSA (PopSet) A single query can be searched against a database of MSAs (e.g. PFAM) Regulatory regions of genes may have consensus sequences identifiable by MSA Page 321 Multiple sequence alignment: outline Multiple sequence alignment: methods : dynamic programming Instead of the 2-D dynamic programming matrix in the Needleman-Wunsch technique, think about a 3-D, 4-D or higher order matrix. Multiple sequence alignment: outline give optimal alignments but are not feasible in time or space for more than ~10 sequences. Still an extremely active field. Multiple sequence alignment: methods Progressive methods: use a guide tree (a little like a phylogenetic tree but NOT a phylogenetic tree) to determine how to combine pairwise alignments one by one to create a multiple alignment. Making multiple alignments using trees was a very popular subject in the 80s. Fitch and Yasunobu (1974) may have first proposed the idea, but Hogeweg and Hesper (1984) and many others worked on the topic before Feng and Doolittle (1987) they made one important contribution that got their names attached to this alignment method. Examples: CLUSTALW, MUSCLE Multiple sequence alignment: methods Example of MSA using ClustalW: two data sets Five distantly related lipocalins (human to E. coli) Five closely related RBPs When you do this, obtain the sequences of interest in the FASTA format! (You can save them in a Word document) Page 321

4 The input for ClustalW: a group of sequences (DNA or protein) in the FASTA format Get sequences from Entrez Protein (or HomoloGene) You can display sequences from Entrez Protein in the fasta format When you get a DNA sequence from Entrez Nucleotide, you can click CDS to select only the coding sequence. This is very useful for phylogeny studies. HomoloGene: an NCBI resource to obtain multiple related sequences Use ClustalW to do a progressive MSA [1] Enter a query at NCBI such as globin [2] Click on HomoloGene (left side) [3] Choose a HomoloGene family, and view in the fasta format ac.uk/clustalw/ Fig Page 321

5 Feng-Doolittle MSA occurs in 3 stages Progressive MSA stage 1 of 3: generate global pairwise alignments [1] Do a set of global pairwise alignments (Needleman and Wunsch s dynamic programming algorithm) [2] Create a guide tree five distantly related lipocalins [3] Progressively align the sequences best score Page 321 Fig Page 323 Progressive MSA stage 1 of 3: generate global pairwise alignments Number of pairwise alignments needed Start of Pairwise alignments Aligning... Sequences (1:2) Aligned. Score: 84 Sequences (1:3) Aligned. Score: 84 Sequences (1:4) Aligned. Score: 91 Sequences (1:5) Aligned. Score: 92 Sequences (2:3) Aligned. Score: 99 Sequences (2:4) Aligned. Score: 86 Sequences (2:5) Aligned. Score: 85 Sequences (3:4) Aligned. Score: 85 Sequences (3:5) Aligned. Score: 84 Sequences (4:5) Aligned. Score: 96 five closely related lipocalins best score Fig Page 325 For n sequences, (n-1)(n) / 2 For 5 sequences, (4)(5) / 2 = 10 Page 322 Feng-Doolittle stage 2: guide tree Convert similarity scores to distance scores Progressive MSA stage 2 of 3: generate a guide tree calculated from the distance matrix A tree shows the distance between objects Use UPGMA (defined in the phylogeny lecture) ClustalW provides a syntax to describe the tree A guide tree is not a phylogenetic tree Page 323 Fig Page 323

6 Progressive MSA stage 2 of 3: generate guide tree Feng-Doolittle stage 3: progressive alignment ( ( gi ref NP_ : , ( gi sp Q00724 RETB_MOUS: , gi sp P04916 RETB_RAT: ) : ) : , gi pir A39486: , gi sp P18902 RETB_BOVIN: ); Make a MSA based on the order in the guide tree Start with the two most closely related sequences Then add the next closest sequence Continue until all sequences are added to the MSA five closely related lipocalins Rule: once a gap, always a gap. Fig Page 325 Page 324 Progressive MSA stage 3 of 3: progressively align the sequences following the branch order of the tree Progressive MSA stage 3 of 3: CLUSTALX output Fig Page 324 Note that you can download CLUSTALX locally, rather than using a web-based program! Clustal W alignment of 5 closely related lipocalins CLUSTAL W (1.82) multiple sequence alignment gi pir A39486 MEWVWALVLLAALGSAQAERDCRVSSFRVKENFDKARFSGTWYAMAKKDP 50 gi sp P18902 RETB_BOVIN ERDCRVSSFRVKENFDKARFAGTWYAMAKKDP 32 gi ref NP_ MKWVWALLLLAAW--AAAERDCRVSSFRVKENFDKARFSGTWYAMAKKDP 48 gi sp Q00724 RETB_MOUS MEWVWALVLLAALGGGSAERDCRVSSFRVKENFDKARFSGLWYAIAKKDP 50 gi sp P04916 RETB_RAT MEWVWALVLLAALGGGSAERDCRVSSFRVKENFDKARFSGLWYAIAKKDP 50 ********************:* ***:***** gi pir A39486 EGLFLQDNIVAEFSVDENGHMSATAKGRVRLLNNWDVCADMVGTFTDTED 100 gi sp P18902 RETB_BOVIN EGLFLQDNIVAEFSVDENGHMSATAKGRVRLLNNWDVCADMVGTFTDTED 82 gi ref NP_ EGLFLQDNIVAEFSVDETGQMSATAKGRVRLLNNWDVCADMVGTFTDTED 98 gi sp Q00724 RETB_MOUS EGLFLQDNIIAEFSVDEKGHMSATAKGRVRLLSNWEVCADMVGTFTDTED 100 gi sp P04916 RETB_RAT EGLFLQDNIIAEFSVDEKGHMSATAKGRVRLLSNWEVCADMVGTFTDTED 100 *********:*******.*:************.**:************** gi pir A39486 PAKFKMKYWGVASFLQKGNDDHWIIDTDYDTYAAQYSCRLQNLDGTCADS 150 gi sp P18902 RETB_BOVIN PAKFKMKYWGVASFLQKGNDDHWIIDTDYETFAVQYSCRLLNLDGTCADS 132 gi ref NP_ PAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAVQYSCRLLNLDGTCADS 148 gi sp Q00724 RETB_MOUS PAKFKMKYWGVASFLQRGNDDHWIIDTDYDTFALQYSCRLQNLDGTCADS 150 gi sp P04916 RETB_RAT PAKFKMKYWGVASFLQRGNDDHWIIDTDYDTFALQYSCRLQNLDGTCADS 150 ****************:*******:****:*:* ****** ********* * asterisks indicate identity in a column Fig Page 326 Progressive MSA stage 3 of 3: progressively align the sequences following the branch order of the tree: Order matters THE LAST FAT CAT THE FAST CAT THE VERY FAST CAT THE FAT CAT THE LAST FAT THE FAST CAT -- THE LAST FA-T THE FAST CA-T -- THE VERY FAST Adapted from C. Notredame, Pharmacogenomics 2002 THE LAST FA-T THE FAST CA-T -- THE VERY FAST THE ---- FA-T

7 Progressive MSA stage 3 of 3: progressively align the sequences following the branch order of the tree: Order matters THE FAT CAT THE FAST CAT THE VERY FAST CAT THE LAST FAT CAT Why once a gap, always a gap? There are many possible ways to make a MSA Where gaps are added is a critical question Gaps are often added to the first two (closest) sequences THE FA-T THE FAST THE ---- FA-T THE ---- FAST THE VERY FAST Adapted from C. Notredame, Pharmacogenomics 2002 THE ---- FA-T THE ---- FAST THE VERY FAST THE LAST FA-T To change the initial gap choices later on would be to give more weight to distantly related sequences To maintain the initial gap choices is to trust that those gaps are most believable Page 324 Additional features of ClustalW improve its ability to generate accurate MSAs Individual weights are assigned to sequences; very closely related sequences are given less weight, while distantly related sequences are given more weight Scoring matrices are varied dependent on the presence of conserved or divergent sequences, e.g.: PAM20 PAM60 PAM120 PAM % id 60-80% id 40-60% id 0-40% id Residue-specific gap penalties are applied

8 Multiple sequence alignment: outline Multiple sequence alignment: methods Iterative methods: compute a sub-optimal solution and keep modifying that intelligently using dynamic programming or other methods until the solution converges. Examples: IterAlign, Praline, MAFFT MUSCLE: next-generation progressive MSA [1] Build a draft progressive alignment Determine pairwise similarity through k-mer counting (not by alignment) Compute distance (triangular distance) matrix Construct tree using UPGMA Construct draft progressive alignment following tree MUSCLE: next-generation progressive MSA [2] Improve the progressive alignment Compute pairwise identity through current MSA Construct new tree with Kimura distance measures Compare new and old trees: if improved, repeat this step, if not improved, then we re done MUSCLE: next-generation progressive MSA [3] Refinement of the MSA Split tree in half by deleting one edge Make profiles of each half of the tree Re-align the profiles Accept/reject the new alignment

9 MUSCLE output (formatted with SeaView) Praline output for the same alignment: pure iterative approach SeaView is a graphical multiple sequence alignment editor available at Boxes highlight a region that is difficult to align Iterative approaches: MAFFT Iterative approaches: MAFFT Uses Fast Fourier Transform to speed up profile alignment Uses fast two-stage method for building alignments using k-mer frequencies Offers many different scoring and aligning techniques One of the more accurate programs available Available as standalone or web interface Many output formats, including interactive phylogenetic trees Has about 1000 advanced settings!

10 Multiple sequence alignment: outline Multiple sequence alignment: methods Consistency-based algorithms: generally use a database of both local high-scoring alignments and long-range global alignments to create a final alignment These are very powerful, very fast, and very accurate methods Examples: T-COFFEE, Prrp, DiAlign, ProbCons ProbCons consistency-based approach Combines iterative and progressive approaches with a unique probabilistic model. Uses Hidden Markov Models (more in a minute) to calculate probability matrices for matching residues, uses this to construct a guide tree Progressive alignment hierarchically along guide tree Post-processing and iterative refinement (a little like MUSCLE) 2e Fig ProbCons consistency-based approach ProbCons consistency-based approach Sequence x Sequence y Sequence z x i y j z k If x i aligns with z k and z k aligns with y j then x i should align with y j ProbCons incorporates evidence from multiple sequences to guide the creation of a pairwise alignment.

11 ProbCons output for the same alignment: consistency iteration helps Multiple sequence alignment: outline APDB ClustalW output Make an MSA MSA w. structural data Compare MSA methods Make an RNA MSA Combine MSA methods Consistency-based Structure-based Back translate protein MSA Multiple sequence alignment: outline Multiple sequence alignment: methods How do we know which program to use? There are benchmarking multiple alignment datasets that have been aligned painstakingly by hand, by structural similarity, or by extremely time- and memory-intensive automated exact algorithms. Some programs have interfaces that are more userfriendly than others. And most programs are excellent so it depends on your preference. If your proteins have 3D structures, use these to help you judge your alignments. For example, try Expresso at

12 Strategy for assessment of alternative multiple sequence alignment algorithms [1] Create or obtain a database of protein sequences for which the 3D structure is known. Thus we can define true homologs using structural criteria. BaliBase: comparison of multiple sequence alignment algorithms [2] Try making multiple sequence alignments with many different sets of proteins (very related, very distant, few gaps, many gaps, insertions, outliers). [3] Compare the answers. Page 346 Fig Page 349 Multiple sequence alignment: methods Benchmarking tests suggest that ProbCons, a consistency-based/progressive algorithm, performs the best on the BAliBASE set, although MUSCLE, a progressive alignment package, is an extremely fast and accurate program. ClustalW is the most popular program. It has a nice interface (especially with ClustalX) and is easy to use. Multiple sequence alignment: outline Multiple sequence alignment to profile HMMs Simple Hidden Markov Model Hidden Markov models (HMMs) are states that describe the probability of having a particular amino acid residue at arranged in a column of a multiple sequence alignment HMMs are probabilistic models 0.15 S P(dog goes out in rain) = 0.1 P(dog goes out in sun) = 0.85 HMMs may give more sensitive alignments than traditional techniques such as progressive alignment 0.2 R Observation: YNNNYYNNNYN (Y=goes out, N=doesn t go out) What is underlying reality (the hidden state chain)? Page 325

13 An HMM is constructed from a MSA Example: five lipocalins GTWYA (hs RBP) GLWYA (mus RBP) GRWYE (apod) GTWYE (E Coli) GEWFS (MUP4) GTWYA GLWYA GRWYE GTWYE GEWFS Position Prob p(g) 1.0 p(t) 0.4 p(l) 0.2 p(r) 0.2 p(e) p(w) 1.0 p(y) 0.8 p(f) 0.2 p(a) 0.4 p(s) 0.2 Fig Page 327 Fig Page 327 GTWYA GLWYA GRWYE GTWYE GEWFS Prob p(g) 1.0 p(t) 0.4 p(l) 0.2 p(r) 0.2 p(e) p(w) 1.0 p(y) 0.8 p(f) 0.2 p(a) 0.4 p(s) 0.2 P(GEWYE) = (1.0)(0.2)(1.0)(0.8)(0.4) = log odds score = ln(1.0) + ln(0.2) + ln(1.0) + ln(0.8) + ln(0.4) = Fig Page 327 GTWYA GLWYA GRWYE GTWYE GEWFS G:1.0 P(GEWYE) = (1.0)(0.2)(1.0)(0.8)(0.5) = 0.08 log odds score = ln(1.0) + ln(0.2) + ln(1.0) + ln(0.8) + ln(0.5) = T:0.4 A:0.5 L:0.2 Y:0.8 E:0.5 R:0.2 W:1.0 F:0.2 S:1.0 E:0.2 Structure of a hidden Markov model (HMM) Structure of a hidden Markov model (HMM) p 4 p 2 I x p 1 M p 3 p 5 p 6 I y p 7 Fig Page 328

14 Structure of a hidden Markov model (HMM) delete state insert state main state HMMER: build a hidden Markov model Determining effective sequence number... done. [4] Weighting sequences heuristically... done. Constructing model architecture... done. Converting counts to probabilities... done. Setting model name, etc.... done. [x] Constructed a profile HMM (length 230) Average score: bits Minimum score: bits Maximum score: bits Std. deviation: bits Fig Page 328 Fig Page 329 HMMER: calibrate a hidden Markov model HMM file: lipocalins.hmm Length distribution mean: 325 Length distribution s.d.: 200 Number of samples: 5000 random seed: histogram(s) saved to: [not saved] POSIX threads: HMMER: search an HMM against GenBank Scores for complete sequences (score includes all domains): Sequence Description Score E-value N gi ref XP_ (XM_129259) ret e [Mus] gi sp P04916 RETB_RAT Plasma retinol e gi ref XP_ [Homo] (XM_005907) sim e gi ref NP_ (NM_006744) ret e gi sp P02753 RETB_HUMAN Plasma retinol e gi ref NP_ [Salmonella] (NC_003197) out e-90 1 gi ref NP_ : domain 1 of 1, from 1 to 195: score 454.6, E = 1.7e-131 *->mkwvmkllllaalagvfgaaerdafsvgkcrvpspprgfrvkenfdv mkwv++llllaa + +aaerd Crv+s frvkenfd+ MKWVWALLLLAA--W--AAAERD------CRVSS----FRVKENFDK gi HMM : x mu : lambda : max : Fig Page 329 erylgtwyeiakkdprferglllqdkitaeysleehgsmsataegrirvl +r++gtwy++akkdp E GL+lqd+I+Ae+S++E+G+Msata+Gr+r+L gi ARFSGTWYAMAKKDP--E-GLFLQDNIVAEFSVDETGQMSATAKGRVRLL 80 enkelcadkvgtvtqiegeasevfltadpaklklkyagvasflqpgfddy +N+++cAD+vGT+t++E dpak+k+ky+gvasflq+g+dd+ gi NNWDVCADMVGTFTDTE DPAKFKMKYWGVASFLQKGNDDH 120 Fig Page 330 HMMER: search an HMM against GenBank match to a bacterial lipocalin gi ref NP_ : domain 1 of 1, from 1 to 177: score 318.2, E = 1.9e-90 *->mkwvmkllllaalagvfgaaerdafsvgkcrvpspprgfrvkenfdv M+LL+ +A a ++ Af+v++C++p+PP+G++V++NFD+ gi MRLLPVVA------AVTA-AFLVVACSSPTPPKGVTVVNNFDA 36 erylgtwyeiakkdprferglllqdkitaeysleehgsmsataegrirvl +rylgtwyeia+ D+rFErGL + +ta+ysl++ +G+i+V+ KRYLGTWYEIARLDHRFERGL---EQVTATYSLRD DGGINVI gi enkelcadkvgtvtqiegeasevfltadpaklklkyagvasflqpgfddy Nk++++D EG+a ++t+ P +++lk+ Sf++p++++y -NKGYNPDR-EMWQKTEGKA---YFTGSPNRAALKV----SFFGPFYGGY gi HMMER: search an HMM against GenBank Scores for complete sequences (score includes all domains): Sequence Description Score E-value N gi sp P27485 RETB_PIG Plasma retinol e gi pir A39486 plasma retinol e gi ref XP_ (XM_129259) ret e gi sp P04916 RETB_RAT Plasma retinol e gi ref XP_ (XM_005907) sim e gi sp P02753 RETB_HUMAN Plasma retinol e gi ref NP_ (NM_006744) ret e gi ref NP_ : domain 1 of 1, from 1 to 199: score 600.2, E = 2.6e-175 *->mewvwalvllaalggasaerdcrvssfrvkenfdkarfsgtwyaiak m+wvwal+llaa+ a+aerdcrvssfrvkenfdkarfsgtwya+ak gi MKWVWALLLLAAW--AAAERDCRVSSFRVKENFDKARFSGTWYAMAK 45 KDPEGLFLqDnivAEFsvDEkGhmsAtAKGRvRLLnnWdvCADmvGtFtD KDPEGLFLqDnivAEFsvDE+G+msAtAKGRvRLLnnWdvCADmvGtFtD gi KDPEGLFLQDNIVAEFSVDETGQMSATAKGRVRLLNNWDVCADMVGTFTD 95 tedpakfkmkywgvasflqkgnddhwiidtdydtfavqyscrllnldgtc tedpakfkmkywgvasflqkgnddhwi+dtdydt+avqyscrllnldgtc gi TEDPAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAVQYSCRLLNLDGTC 145 Fig Page 330 Fig Page 330

15 Multiple sequence alignment: outline Two kinds of multiple sequence alignment resources [1] Databases of multiple sequence alignments Text-based or query-based searches: CDD, Pfam (profile HMMs), PROSITE [2] Multiple sequence alignment by manual input Muscle, ClustalW, ClustalX Page 329 Databases of multiple sequence alignments PFAM (protein family) database: BLOCKS CDD Pfam SMART DOMO (Gapped MSA) INTERPRO iproclass MetaFAM PRINTS PRODOM (PSI-BLAST) PROSITE These Use HMMs Fig Page 331 PFAM (protein family) text search result PFAM HMM for lipocalins 20 amino acids position Fig Page 334

16 PFAM HMM for lipocalins: GXW motif PFAM GCG MSF format 20 amino acids G W Fig Page 335 Pfam (protein family) database PFAM JalView viewer Fig Page 336 PFAM JalView viewer PFAM JalView viewer: principal components analysis (PCA) Fig Page 336 Fig Page 337

17 Fig Page 337 SMART: Simple Modular Architecture Research Tool (emphasis on cell signaling) Page 338 SMART: lipocalin result Databases of multiple sequence alignments Fig Page 338 BLOCKS CDD Pfam SMART DOMO (Gapped MSA) INTERPRO iproclass MetaFAM PRINTS PRODOM (PSI-BLAST) PROSITE Conserved Domain Database (CDD) at NCBI = PFAM + SMART CDD: Conserved domain database CDD: Conserved domain database [1] Go to NCBI Structure [2] Click CDD [3] Enter a text query, or a protein sequence

18 CDD uses RPS-BLAST: reverse position-specific CDD = PFAM + SMART Purpose: to find conserved domains in the query sequence Query = your favorite protein Database = set of many position-specific scoring matrices (PSSMs), i.e. a set of MSAs CDD is related to PSI-BLAST, but distinct CDD searches against profiles generated from pre-selected alignments Fig Page 339 Page 333 Multiple sequence alignment: outline MEGA version 4: Molecular Evolutionary Genetics Analysis Download from MEGA version 4: Molecular Evolutionary Genetics Analysis MEGA version 4: Molecular Evolutionary Genetics Analysis 1 2 Two ways to create a multiple sequence alignment 1. Open the Alignment Explorer, paste in a FASTA MSA 2. Select a DNA query, do a BLAST search Once your sequences are in MEGA, you can run ClustalW then make trees and do phylogenetic analyses

19 [1] Open the Alignment Explorer [4] Find, select, and copy a multiple sequence alignment (e.g. from Pfam; choose FASTA with dashes for gaps) [2] Select Create a new alignment [3] Click yes (for DNA) or no (for protein) [5] Paste it into MEGA [6] If needed, run ClustalW to align the sequences [7] Save (Ctrl+S) as.mas then exit and save as.meg Multiple sequence alignment: outline Multiple sequence alignment of genomic DNA There are typically few sequences (up to several dozen, each having up to millions of base pairs. Adding more species improves accuracy. Alignment of divergent sequences often reveals islands of conservation (providing anchors for alignment). Chromosomes are subject to inversions, duplications, deletions, and translocations (often involving millions of base pairs). E.g. human chromosome 2 is derived from the fusion of two acrocentric chromosomes. There are no benchmark datasets available.

20 Multiple sequence alignment: outline Goal of the phylogeny lecture Introduction Introduction to evolution and phylogeny Nomenclature of trees Four stages of molecular phylogeny: [1] selecting sequences [2] multiple sequence alignment [3] tree-building [4] tree evaluation Practical approaches to making trees Charles Darwin s 1859 book (On the Origin of Species By Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life) introduced the theory of evolution. To Darwin, the struggle for existence induces a natural selection. Offspring are dissimilar from their parents (that is, variability exists), and individuals that are more fit for a given environment are selected for. In this way, over long periods of time, species evolve. Groups of organisms change over time so that descendants differ structurally and functionally from their ancestors. Page 357

21 Introduction Introduction Darwin did not understand the mechanisms by which hereditary changes occur. In the 1920s and 1930s, a synthesis occurred between Darwinism and Mendel s principles of inheritance. The basic processes of evolution are [1] mutation, and also [2] genetic recombination as two sources of variability; [3] chromosomal organization (and its variation); [4] natural selection [5] reproductive isolation, which constrains the effects of selection on populations At the molecular level, evolution is a process of mutation with selection. Molecular evolution is the study of changes in genes and proteins throughout different branches of the tree of life. Phylogeny is the inference of evolutionary relationships. Traditionally, phylogeny relied on the comparison of morphological features between organisms. Today, molecular sequence data are also used for phylogenetic analyses. (See Stebbins, 1966) Page 357 Page 358 Historical background Studies of molecular evolution began with the first sequencing of proteins, beginning in the 1950s. In 1953 Frederick Sanger and colleagues determined the primary amino acid sequence of insulin. Mature insulin consists of an A chain and B chain heterodimer connected by disulphide bridges (The accession number of human insulin is NP_000198) Page 358 The signal peptide and C peptide are cleaved, and their sequences display fewer functional constraints. Fig Page 359 Fig Page 359 Note the sequence divergence in the disulfide loop region of the A chain Fig Page 359

22 Historical background: insulin By the 1950s, it became clear that amino acid substitutions occur nonrandomly. For example, Sanger and colleagues noted that most amino acid changes in the insulin A chain are restricted to a disulfide loop region. Such differences are called neutral changes (Kimura, 1968; Jukes and Cantor, 1969). Subsequent studies at the DNA level showed that rate of nucleotide (and of amino acid) substitution is about sixto ten-fold higher in the C peptide, relative to the A and B chains. 1 x x x 10-9 Page 358 Number of nucleotide substitutions/site/year Fig Page 359 Historical background: insulin Guinea pig and coypu insulin have undergone an extremely rapid rate of evolutionary change Surprisingly, insulin from the guinea pig (and from the related coypu) evolve seven times faster than insulin from other species. Why? The answer is that guinea pig and coypu insulin do not bind two zinc ions, while insulin molecules from most other species do. There was a relaxation on the structural constraints of these molecules, and so the genes diverged rapidly. Page 360 Arrows indicate positions at which guinea pig insulin (A chain and B chain) differs from both human and mouse Fig Page 359 Historical background Molecular clock hypothesis Oxytocin Vasopressin CYIQNCPLG CYFQNCPRG In the 1960s, sequence data were accumulated for small, abundant proteins such as globins, cytochromes c, and fibrinopeptides. Some proteins appeared to evolve slowly, while others evolved rapidly. In the 1950s, other labs sequenced oxytocin and vasopressin. These peptides differ at only two amino acid residues, but they have distinctly different functions. It became clear that there are significant structural and functional consequences to changes in primary amino acid sequence. Fig Page 360 Linus Pauling, Emanuel Margoliash and others proposed the hypothesis of a molecular clock: For every given protein, the rate of molecular evolution is approximately constant in all evolutionary lineages Page 360

23 Molecular clock hypothesis As an example, Richard Dickerson (1971) plotted data from three protein families: cytochrome c, hemoglobin, and fibrinopeptides. The x-axis shows the divergence times of the species, estimated from paleontological data. The y-axis shows m, the corrected number of amino acid changes per 100 residues. n is the observed number of amino acid changes per 100 residues, and it is corrected to m to account for changes that occur but are not observed. N 100 corrected amino acid changes per 100 residues (m) Dickerson (1971) = 1 e-(m/100) Fig Page 360 Millions of years since divergence Page 361 Molecular clock hypothesis: conclusions Dickerson drew the following conclusions: For each protein, the data lie on a straight line. Thus, the rate of amino acid substitution has remained constant for each protein. The average rate of change differs for each protein. The time for a 1% change to occur between two lines of evolution is 20 MY (cytochrome c), 5.8 MY (hemoglobin), and 1.1 MY (fibrinopeptides). The observed variations in rate of change reflect functional constraints imposed by natural selection. Page 361

Multiple sequence alignment

Multiple sequence alignment Multiple sequence alignment Multiple sequence alignment: today s goals to define what a multiple sequence alignment is and how it is generated; to describe profile HMMs to introduce databases of multiple

More information

Multiple sequence alignment

Multiple sequence alignment Multiple sequence alignment Wednesday, October 11, 2006 Sarah Wheelan swheelan@jhmi.edu Copyright notice Many of the images in this powerpoint presentation are from Bioinformatics and Functional Genomics

More information

"Nothing in biology makes sense except in the light of evolution Theodosius Dobzhansky

Nothing in biology makes sense except in the light of evolution Theodosius Dobzhansky MOLECULAR PHYLOGENY "Nothing in biology makes sense except in the light of evolution Theodosius Dobzhansky EVOLUTION - theory that groups of organisms change over time so that descendeants differ structurally

More information

THEORY. Based on sequence Length According to the length of sequence being compared it is of following two types

THEORY. Based on sequence Length According to the length of sequence being compared it is of following two types Exp 11- THEORY Sequence Alignment is a process of aligning two sequences to achieve maximum levels of identity between them. This help to derive functional, structural and evolutionary relationships between

More information

Introduction to Bioinformatics Online Course: IBT

Introduction to Bioinformatics Online Course: IBT Introduction to Bioinformatics Online Course: IBT Multiple Sequence Alignment Building Multiple Sequence Alignment Lec1 Building a Multiple Sequence Alignment Learning Outcomes 1- Understanding Why multiple

More information

Copyright 2000 N. AYDIN. All rights reserved. 1

Copyright 2000 N. AYDIN. All rights reserved. 1 Introduction to Bioinformatics Prof. Dr. Nizamettin AYDIN naydin@yildiz.edu.tr Multiple Sequence Alignment Outline Multiple sequence alignment introduction to msa methods of msa progressive global alignment

More information

5. MULTIPLE SEQUENCE ALIGNMENT BIOINFORMATICS COURSE MTAT

5. MULTIPLE SEQUENCE ALIGNMENT BIOINFORMATICS COURSE MTAT 5. MULTIPLE SEQUENCE ALIGNMENT BIOINFORMATICS COURSE MTAT.03.239 03.10.2012 ALIGNMENT Alignment is the task of locating equivalent regions of two or more sequences to maximize their similarity. Homology:

More information

Week 10: Homology Modelling (II) - HHpred

Week 10: Homology Modelling (II) - HHpred Week 10: Homology Modelling (II) - HHpred Course: Tools for Structural Biology Fabian Glaser BKU - Technion 1 2 Identify and align related structures by sequence methods is not an easy task All comparative

More information

Chapter 5. Proteomics and the analysis of protein sequence Ⅱ

Chapter 5. Proteomics and the analysis of protein sequence Ⅱ Proteomics Chapter 5. Proteomics and the analysis of protein sequence Ⅱ 1 Pairwise similarity searching (1) Figure 5.5: manual alignment One of the amino acids in the top sequence has no equivalent and

More information

CONCEPT OF SEQUENCE COMPARISON. Natapol Pornputtapong 18 January 2018

CONCEPT OF SEQUENCE COMPARISON. Natapol Pornputtapong 18 January 2018 CONCEPT OF SEQUENCE COMPARISON Natapol Pornputtapong 18 January 2018 SEQUENCE ANALYSIS - A ROSETTA STONE OF LIFE Sequence analysis is the process of subjecting a DNA, RNA or peptide sequence to any of

More information

InDel 3-5. InDel 8-9. InDel 3-5. InDel 8-9. InDel InDel 8-9

InDel 3-5. InDel 8-9. InDel 3-5. InDel 8-9. InDel InDel 8-9 Lecture 5 Alignment I. Introduction. For sequence data, the process of generating an alignment establishes positional homologies; that is, alignment provides the identification of homologous phylogenetic

More information

BIOINFORMATICS: An Introduction

BIOINFORMATICS: An Introduction BIOINFORMATICS: An Introduction What is Bioinformatics? The term was first coined in 1988 by Dr. Hwa Lim The original definition was : a collective term for data compilation, organisation, analysis and

More information

Sequence Analysis '17- lecture 8. Multiple sequence alignment

Sequence Analysis '17- lecture 8. Multiple sequence alignment Sequence Analysis '17- lecture 8 Multiple sequence alignment Ex5 explanation How many random database search scores have e-values 10? (Answer: 10!) Why? e-value of x = m*p(s x), where m is the database

More information

Genomics and bioinformatics summary. Finding genes -- computer searches

Genomics and bioinformatics summary. Finding genes -- computer searches Genomics and bioinformatics summary 1. Gene finding: computer searches, cdnas, ESTs, 2. Microarrays 3. Use BLAST to find homologous sequences 4. Multiple sequence alignments (MSAs) 5. Trees quantify sequence

More information

Statistical Machine Learning Methods for Bioinformatics II. Hidden Markov Model for Biological Sequences

Statistical Machine Learning Methods for Bioinformatics II. Hidden Markov Model for Biological Sequences Statistical Machine Learning Methods for Bioinformatics II. Hidden Markov Model for Biological Sequences Jianlin Cheng, PhD Department of Computer Science University of Missouri 2008 Free for Academic

More information

Algorithms in Bioinformatics FOUR Pairwise Sequence Alignment. Pairwise Sequence Alignment. Convention: DNA Sequences 5. Sequence Alignment

Algorithms in Bioinformatics FOUR Pairwise Sequence Alignment. Pairwise Sequence Alignment. Convention: DNA Sequences 5. Sequence Alignment Algorithms in Bioinformatics FOUR Sami Khuri Department of Computer Science San José State University Pairwise Sequence Alignment Homology Similarity Global string alignment Local string alignment Dot

More information

Large-Scale Genomic Surveys

Large-Scale Genomic Surveys Bioinformatics Subtopics Fold Recognition Secondary Structure Prediction Docking & Drug Design Protein Geometry Protein Flexibility Homology Modeling Sequence Alignment Structure Classification Gene Prediction

More information

Protein Bioinformatics. Rickard Sandberg Dept. of Cell and Molecular Biology Karolinska Institutet sandberg.cmb.ki.

Protein Bioinformatics. Rickard Sandberg Dept. of Cell and Molecular Biology Karolinska Institutet sandberg.cmb.ki. Protein Bioinformatics Rickard Sandberg Dept. of Cell and Molecular Biology Karolinska Institutet rickard.sandberg@ki.se sandberg.cmb.ki.se Outline Protein features motifs patterns profiles signals 2 Protein

More information

Using Bioinformatics to Study Evolutionary Relationships Instructions

Using Bioinformatics to Study Evolutionary Relationships Instructions 3 Using Bioinformatics to Study Evolutionary Relationships Instructions Student Researcher Background: Making and Using Multiple Sequence Alignments One of the primary tasks of genetic researchers is comparing

More information

Tools and Algorithms in Bioinformatics

Tools and Algorithms in Bioinformatics Tools and Algorithms in Bioinformatics GCBA815, Fall 2015 Week-4 BLAST Algorithm Continued Multiple Sequence Alignment Babu Guda, Ph.D. Department of Genetics, Cell Biology & Anatomy Bioinformatics and

More information

Sequence Alignment Techniques and Their Uses

Sequence Alignment Techniques and Their Uses Sequence Alignment Techniques and Their Uses Sarah Fiorentino Since rapid sequencing technology and whole genomes sequencing, the amount of sequence information has grown exponentially. With all of this

More information

08/21/2017 BLAST. Multiple Sequence Alignments: Clustal Omega

08/21/2017 BLAST. Multiple Sequence Alignments: Clustal Omega BLAST Multiple Sequence Alignments: Clustal Omega What does basic BLAST do (e.g. what is input sequence and how does BLAST look for matches?) Susan Parrish McDaniel College Multiple Sequence Alignments

More information

Introductory course on Multiple Sequence Alignment Part I: Theoretical foundations

Introductory course on Multiple Sequence Alignment Part I: Theoretical foundations Sequence Analysis and Structure Prediction Service Centro Nacional de Biotecnología CSIC 8-10 May, 2013 Introductory course on Multiple Sequence Alignment Part I: Theoretical foundations Course Notes Instructor:

More information

Statistical Machine Learning Methods for Biomedical Informatics II. Hidden Markov Model for Biological Sequences

Statistical Machine Learning Methods for Biomedical Informatics II. Hidden Markov Model for Biological Sequences Statistical Machine Learning Methods for Biomedical Informatics II. Hidden Markov Model for Biological Sequences Jianlin Cheng, PhD William and Nancy Thompson Missouri Distinguished Professor Department

More information

Emily Blanton Phylogeny Lab Report May 2009

Emily Blanton Phylogeny Lab Report May 2009 Introduction It is suggested through scientific research that all living organisms are connected- that we all share a common ancestor and that, through time, we have all evolved from the same starting

More information

Sara C. Madeira. Universidade da Beira Interior. (Thanks to Ana Teresa Freitas, IST for useful resources on this subject)

Sara C. Madeira. Universidade da Beira Interior. (Thanks to Ana Teresa Freitas, IST for useful resources on this subject) Bioinformática Sequence Alignment Pairwise Sequence Alignment Universidade da Beira Interior (Thanks to Ana Teresa Freitas, IST for useful resources on this subject) 1 16/3/29 & 23/3/29 27/4/29 Outline

More information

Ch. 9 Multiple Sequence Alignment (MSA)

Ch. 9 Multiple Sequence Alignment (MSA) Ch. 9 Multiple Sequence Alignment (MSA) - gather seqs. to make MSA - doing MSA with ClustalW - doing MSA with Tcoffee - comparing seqs. that cannot align Introduction - from pairwise alignment to MSA -

More information

Sequence Alignment: A General Overview. COMP Fall 2010 Luay Nakhleh, Rice University

Sequence Alignment: A General Overview. COMP Fall 2010 Luay Nakhleh, Rice University Sequence Alignment: A General Overview COMP 571 - Fall 2010 Luay Nakhleh, Rice University Life through Evolution All living organisms are related to each other through evolution This means: any pair of

More information

Overview Multiple Sequence Alignment

Overview Multiple Sequence Alignment Overview Multiple Sequence Alignment Inge Jonassen Bioinformatics group Dept. of Informatics, UoB Inge.Jonassen@ii.uib.no Definition/examples Use of alignments The alignment problem scoring alignments

More information

EVOLUTIONARY DISTANCES

EVOLUTIONARY DISTANCES EVOLUTIONARY DISTANCES FROM STRINGS TO TREES Luca Bortolussi 1 1 Dipartimento di Matematica ed Informatica Università degli studi di Trieste luca@dmi.units.it Trieste, 14 th November 2007 OUTLINE 1 STRINGS:

More information

Bio 1B Lecture Outline (please print and bring along) Fall, 2007

Bio 1B Lecture Outline (please print and bring along) Fall, 2007 Bio 1B Lecture Outline (please print and bring along) Fall, 2007 B.D. Mishler, Dept. of Integrative Biology 2-6810, bmishler@berkeley.edu Evolution lecture #5 -- Molecular genetics and molecular evolution

More information

Christian Sigrist. November 14 Protein Bioinformatics: Sequence-Structure-Function 2018 Basel

Christian Sigrist. November 14 Protein Bioinformatics: Sequence-Structure-Function 2018 Basel Christian Sigrist General Definition on Conserved Regions Conserved regions in proteins can be classified into 5 different groups: Domains: specific combination of secondary structures organized into a

More information

An Introduction to Sequence Similarity ( Homology ) Searching

An Introduction to Sequence Similarity ( Homology ) Searching An Introduction to Sequence Similarity ( Homology ) Searching Gary D. Stormo 1 UNIT 3.1 1 Washington University, School of Medicine, St. Louis, Missouri ABSTRACT Homologous sequences usually have the same,

More information

EBI web resources II: Ensembl and InterPro

EBI web resources II: Ensembl and InterPro EBI web resources II: Ensembl and InterPro Yanbin Yin http://www.ebi.ac.uk/training/online/course/ 1 Homework 3 Go to http://www.ebi.ac.uk/interpro/training.htmland finish the second online training course

More information

Single alignment: Substitution Matrix. 16 march 2017

Single alignment: Substitution Matrix. 16 march 2017 Single alignment: Substitution Matrix 16 march 2017 BLOSUM Matrix BLOSUM Matrix [2] (Blocks Amino Acid Substitution Matrices ) It is based on the amino acids substitutions observed in ~2000 conserved block

More information

EECS730: Introduction to Bioinformatics

EECS730: Introduction to Bioinformatics EECS730: Introduction to Bioinformatics Lecture 07: profile Hidden Markov Model http://bibiserv.techfak.uni-bielefeld.de/sadr2/databasesearch/hmmer/profilehmm.gif Slides adapted from Dr. Shaojie Zhang

More information

Similarity searching summary (2)

Similarity searching summary (2) Similarity searching / sequence alignment summary Biol4230 Thurs, February 22, 2016 Bill Pearson wrp@virginia.edu 4-2818 Pinn 6-057 What have we covered? Homology excess similiarity but no excess similarity

More information

Bioinformatics. Dept. of Computational Biology & Bioinformatics

Bioinformatics. Dept. of Computational Biology & Bioinformatics Bioinformatics Dept. of Computational Biology & Bioinformatics 3 Bioinformatics - play with sequences & structures Dept. of Computational Biology & Bioinformatics 4 ORGANIZATION OF LIFE ROLE OF BIOINFORMATICS

More information

Sequence analysis and comparison

Sequence analysis and comparison The aim with sequence identification: Sequence analysis and comparison Marjolein Thunnissen Lund September 2012 Is there any known protein sequence that is homologous to mine? Are there any other species

More information

Sequence Analysis 17: lecture 5. Substitution matrices Multiple sequence alignment

Sequence Analysis 17: lecture 5. Substitution matrices Multiple sequence alignment Sequence Analysis 17: lecture 5 Substitution matrices Multiple sequence alignment Substitution matrices Used to score aligned positions, usually of amino acids. Expressed as the log-likelihood ratio of

More information

Bioinformatics. Proteins II. - Pattern, Profile, & Structure Database Searching. Robert Latek, Ph.D. Bioinformatics, Biocomputing

Bioinformatics. Proteins II. - Pattern, Profile, & Structure Database Searching. Robert Latek, Ph.D. Bioinformatics, Biocomputing Bioinformatics Proteins II. - Pattern, Profile, & Structure Database Searching Robert Latek, Ph.D. Bioinformatics, Biocomputing WIBR Bioinformatics Course, Whitehead Institute, 2002 1 Proteins I.-III.

More information

Quantifying sequence similarity

Quantifying sequence similarity Quantifying sequence similarity Bas E. Dutilh Systems Biology: Bioinformatic Data Analysis Utrecht University, February 16 th 2016 After this lecture, you can define homology, similarity, and identity

More information

METHODS FOR DETERMINING PHYLOGENY. In Chapter 11, we discovered that classifying organisms into groups was, and still is, a difficult task.

METHODS FOR DETERMINING PHYLOGENY. In Chapter 11, we discovered that classifying organisms into groups was, and still is, a difficult task. Chapter 12 (Strikberger) Molecular Phylogenies and Evolution METHODS FOR DETERMINING PHYLOGENY In Chapter 11, we discovered that classifying organisms into groups was, and still is, a difficult task. Modern

More information

Multiple Alignment. Anders Gorm Pedersen Molecular Evolution Group Center for Biological Sequence Analysis

Multiple Alignment. Anders Gorm Pedersen Molecular Evolution Group Center for Biological Sequence Analysis Multiple Alignment Anders Gorm Pedersen Molecular Evolution Group Center for Biological Sequence Analysis gorm@cbs.dtu.dk Refresher: pairwise alignments 43.2% identity; Global alignment score: 374 10 20

More information

Comparing whole genomes

Comparing whole genomes BioNumerics Tutorial: Comparing whole genomes 1 Aim The Chromosome Comparison window in BioNumerics has been designed for large-scale comparison of sequences of unlimited length. In this tutorial you will

More information

3. SEQUENCE ANALYSIS BIOINFORMATICS COURSE MTAT

3. SEQUENCE ANALYSIS BIOINFORMATICS COURSE MTAT 3. SEQUENCE ANALYSIS BIOINFORMATICS COURSE MTAT.03.239 25.09.2012 SEQUENCE ANALYSIS IS IMPORTANT FOR... Prediction of function Gene finding the process of identifying the regions of genomic DNA that encode

More information

Bioinformatics Exercises

Bioinformatics Exercises Bioinformatics Exercises AP Biology Teachers Workshop Susan Cates, Ph.D. Evolution of Species Phylogenetic Trees show the relatedness of organisms Common Ancestor (Root of the tree) 1 Rooted vs. Unrooted

More information

Multiple Sequence Alignment: A Critical Comparison of Four Popular Programs

Multiple Sequence Alignment: A Critical Comparison of Four Popular Programs Multiple Sequence Alignment: A Critical Comparison of Four Popular Programs Shirley Sutton, Biochemistry 218 Final Project, March 14, 2008 Introduction For both the computational biologist and the research

More information

Alignment & BLAST. By: Hadi Mozafari KUMS

Alignment & BLAST. By: Hadi Mozafari KUMS Alignment & BLAST By: Hadi Mozafari KUMS SIMILARITY - ALIGNMENT Comparison of primary DNA or protein sequences to other primary or secondary sequences Expecting that the function of the similar sequence

More information

Dr. Amira A. AL-Hosary

Dr. Amira A. AL-Hosary Phylogenetic analysis Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut University-Egypt Phylogenetic Basics: Biological

More information

Introduction to Bioinformatics Introduction to Bioinformatics

Introduction to Bioinformatics Introduction to Bioinformatics Dr. rer. nat. Gong Jing Cancer Research Center Medicine School of Shandong University 2012.11.09 1 Chapter 4 Phylogenetic Tree 2 Phylogeny Evidence from morphological ( 形态学的 ), biochemical, and gene sequence

More information

EBI web resources II: Ensembl and InterPro. Yanbin Yin Spring 2013

EBI web resources II: Ensembl and InterPro. Yanbin Yin Spring 2013 EBI web resources II: Ensembl and InterPro Yanbin Yin Spring 2013 1 Outline Intro to genome annotation Protein family/domain databases InterPro, Pfam, Superfamily etc. Genome browser Ensembl Hands on Practice

More information

Research Proposal. Title: Multiple Sequence Alignment used to investigate the co-evolving positions in OxyR Protein family.

Research Proposal. Title: Multiple Sequence Alignment used to investigate the co-evolving positions in OxyR Protein family. Research Proposal Title: Multiple Sequence Alignment used to investigate the co-evolving positions in OxyR Protein family. Name: Minjal Pancholi Howard University Washington, DC. June 19, 2009 Research

More information

Biochemistry 324 Bioinformatics. Pairwise sequence alignment

Biochemistry 324 Bioinformatics. Pairwise sequence alignment Biochemistry 324 Bioinformatics Pairwise sequence alignment How do we compare genes/proteins? When we have sequenced a genome, we try and identify the function of unknown genes by finding a similar gene

More information

Bioinformatics tools for phylogeny and visualization. Yanbin Yin

Bioinformatics tools for phylogeny and visualization. Yanbin Yin Bioinformatics tools for phylogeny and visualization Yanbin Yin 1 Homework assignment 5 1. Take the MAFFT alignment http://cys.bios.niu.edu/yyin/teach/pbb/purdue.cellwall.list.lignin.f a.aln as input and

More information

Motifs, Profiles and Domains. Michael Tress Protein Design Group Centro Nacional de Biotecnología, CSIC

Motifs, Profiles and Domains. Michael Tress Protein Design Group Centro Nacional de Biotecnología, CSIC Motifs, Profiles and Domains Michael Tress Protein Design Group Centro Nacional de Biotecnología, CSIC Comparing Two Proteins Sequence Alignment Determining the pattern of evolution and identifying conserved

More information

Phylogenetic analyses. Kirsi Kostamo

Phylogenetic analyses. Kirsi Kostamo Phylogenetic analyses Kirsi Kostamo The aim: To construct a visual representation (a tree) to describe the assumed evolution occurring between and among different groups (individuals, populations, species,

More information

Chapter 11 Multiple sequence alignment

Chapter 11 Multiple sequence alignment Chapter 11 Multiple sequence alignment Burkhard Morgenstern 1. INTRODUCTION Sequence alignment is of crucial importance for all aspects of biological sequence analysis. Virtually all methods of nucleic

More information

Effects of Gap Open and Gap Extension Penalties

Effects of Gap Open and Gap Extension Penalties Brigham Young University BYU ScholarsArchive All Faculty Publications 200-10-01 Effects of Gap Open and Gap Extension Penalties Hyrum Carroll hyrumcarroll@gmail.com Mark J. Clement clement@cs.byu.edu See

More information

Constructing Evolutionary/Phylogenetic Trees

Constructing Evolutionary/Phylogenetic Trees Constructing Evolutionary/Phylogenetic Trees 2 broad categories: Distance-based methods Ultrametric Additive: UPGMA Transformed Distance Neighbor-Joining Character-based Maximum Parsimony Maximum Likelihood

More information

Homology and Information Gathering and Domain Annotation for Proteins

Homology and Information Gathering and Domain Annotation for Proteins Homology and Information Gathering and Domain Annotation for Proteins Outline Homology Information Gathering for Proteins Domain Annotation for Proteins Examples and exercises The concept of homology The

More information

BLAST. Varieties of BLAST

BLAST. Varieties of BLAST BLAST Basic Local Alignment Search Tool (1990) Altschul, Gish, Miller, Myers, & Lipman Uses short-cuts or heuristics to improve search speed Like speed-reading, does not examine every nucleotide of database

More information

MULTIPLE SEQUENCE ALIGNMENT FOR CONSTRUCTION OF PHYLOGENETIC TREE

MULTIPLE SEQUENCE ALIGNMENT FOR CONSTRUCTION OF PHYLOGENETIC TREE MULTIPLE SEQUENCE ALIGNMENT FOR CONSTRUCTION OF PHYLOGENETIC TREE Manmeet Kaur 1, Navneet Kaur Bawa 2 1 M-tech research scholar (CSE Dept) ACET, Manawala,Asr 2 Associate Professor (CSE Dept) ACET, Manawala,Asr

More information

Investigation 3: Comparing DNA Sequences to Understand Evolutionary Relationships with BLAST

Investigation 3: Comparing DNA Sequences to Understand Evolutionary Relationships with BLAST Investigation 3: Comparing DNA Sequences to Understand Evolutionary Relationships with BLAST Introduction Bioinformatics is a powerful tool which can be used to determine evolutionary relationships and

More information

Alignment principles and homology searching using (PSI-)BLAST. Jaap Heringa Centre for Integrative Bioinformatics VU (IBIVU)

Alignment principles and homology searching using (PSI-)BLAST. Jaap Heringa Centre for Integrative Bioinformatics VU (IBIVU) Alignment principles and homology searching using (PSI-)BLAST Jaap Heringa Centre for Integrative Bioinformatics VU (IBIVU) http://ibivu.cs.vu.nl Bioinformatics Nothing in Biology makes sense except in

More information

BIOINFORMATICS LAB AP BIOLOGY

BIOINFORMATICS LAB AP BIOLOGY BIOINFORMATICS LAB AP BIOLOGY Bioinformatics is the science of collecting and analyzing complex biological data. Bioinformatics combines computer science, statistics and biology to allow scientists to

More information

Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut

Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut University-Egypt Phylogenetic analysis Phylogenetic Basics: Biological

More information

Comparative genomics: Overview & Tools + MUMmer algorithm

Comparative genomics: Overview & Tools + MUMmer algorithm Comparative genomics: Overview & Tools + MUMmer algorithm Urmila Kulkarni-Kale Bioinformatics Centre University of Pune, Pune 411 007. urmila@bioinfo.ernet.in Genome sequence: Fact file 1995: The first

More information

Constructing Evolutionary/Phylogenetic Trees

Constructing Evolutionary/Phylogenetic Trees Constructing Evolutionary/Phylogenetic Trees 2 broad categories: istance-based methods Ultrametric Additive: UPGMA Transformed istance Neighbor-Joining Character-based Maximum Parsimony Maximum Likelihood

More information

Sequence Analysis and Databases 2: Sequences and Multiple Alignments

Sequence Analysis and Databases 2: Sequences and Multiple Alignments 1 Sequence Analysis and Databases 2: Sequences and Multiple Alignments Jose María González-Izarzugaza Martínez CNIO Spanish National Cancer Research Centre (jmgonzalez@cnio.es) 2 Sequence Comparisons:

More information

Phylogenies Scores for Exhaustive Maximum Likelihood and Parsimony Scores Searches

Phylogenies Scores for Exhaustive Maximum Likelihood and Parsimony Scores Searches Int. J. Bioinformatics Research and Applications, Vol. x, No. x, xxxx Phylogenies Scores for Exhaustive Maximum Likelihood and s Searches Hyrum D. Carroll, Perry G. Ridge, Mark J. Clement, Quinn O. Snell

More information

The PRALINE online server: optimising progressive multiple alignment on the web

The PRALINE online server: optimising progressive multiple alignment on the web Computational Biology and Chemistry 27 (2003) 511 519 Software Note The PRALINE online server: optimising progressive multiple alignment on the web V.A. Simossis a,b, J. Heringa a, a Bioinformatics Unit,

More information

Algorithms in Bioinformatics

Algorithms in Bioinformatics Algorithms in Bioinformatics Sami Khuri Department of omputer Science San José State University San José, alifornia, USA khuri@cs.sjsu.edu www.cs.sjsu.edu/faculty/khuri Pairwise Sequence Alignment Homology

More information

Protein function prediction based on sequence analysis

Protein function prediction based on sequence analysis Performing sequence searches Post-Blast analysis, Using profiles and pattern-matching Protein function prediction based on sequence analysis Slides from a lecture on MOL204 - Applied Bioinformatics 18-Oct-2005

More information

CISC 889 Bioinformatics (Spring 2004) Sequence pairwise alignment (I)

CISC 889 Bioinformatics (Spring 2004) Sequence pairwise alignment (I) CISC 889 Bioinformatics (Spring 2004) Sequence pairwise alignment (I) Contents Alignment algorithms Needleman-Wunsch (global alignment) Smith-Waterman (local alignment) Heuristic algorithms FASTA BLAST

More information

Phylogenetic Tree Reconstruction

Phylogenetic Tree Reconstruction I519 Introduction to Bioinformatics, 2011 Phylogenetic Tree Reconstruction Yuzhen Ye (yye@indiana.edu) School of Informatics & Computing, IUB Evolution theory Speciation Evolution of new organisms is driven

More information

Introduction to Comparative Protein Modeling. Chapter 4 Part I

Introduction to Comparative Protein Modeling. Chapter 4 Part I Introduction to Comparative Protein Modeling Chapter 4 Part I 1 Information on Proteins Each modeling study depends on the quality of the known experimental data. Basis of the model Search in the literature

More information

Pairwise sequence alignments

Pairwise sequence alignments Pairwise sequence alignments Volker Flegel VI, October 2003 Page 1 Outline Introduction Definitions Biological context of pairwise alignments Computing of pairwise alignments Some programs VI, October

More information

Understanding relationship between homologous sequences

Understanding relationship between homologous sequences Molecular Evolution Molecular Evolution How and when were genes and proteins created? How old is a gene? How can we calculate the age of a gene? How did the gene evolve to the present form? What selective

More information

Phylogenetics - Orthology, phylogenetic experimental design and phylogeny reconstruction. Lesser Tenrec (Echinops telfairi)

Phylogenetics - Orthology, phylogenetic experimental design and phylogeny reconstruction. Lesser Tenrec (Echinops telfairi) Phylogenetics - Orthology, phylogenetic experimental design and phylogeny reconstruction Lesser Tenrec (Echinops telfairi) Goals: 1. Use phylogenetic experimental design theory to select optimal taxa to

More information

Biology Tutorial. Aarti Balasubramani Anusha Bharadwaj Massa Shoura Stefan Giovan

Biology Tutorial. Aarti Balasubramani Anusha Bharadwaj Massa Shoura Stefan Giovan Biology Tutorial Aarti Balasubramani Anusha Bharadwaj Massa Shoura Stefan Giovan Viruses A T4 bacteriophage injecting DNA into a cell. Influenza A virus Electron micrograph of HIV. Cone-shaped cores are

More information

A profile-based protein sequence alignment algorithm for a domain clustering database

A profile-based protein sequence alignment algorithm for a domain clustering database A profile-based protein sequence alignment algorithm for a domain clustering database Lin Xu,2 Fa Zhang and Zhiyong Liu 3, Key Laboratory of Computer System and architecture, the Institute of Computing

More information

Gene function annotation

Gene function annotation Gene function annotation Paul D. Thomas, Ph.D. University of Southern California What is function annotation? The formal answer to the question: what does this gene do? The association between: a description

More information

Motivating the need for optimal sequence alignments...

Motivating the need for optimal sequence alignments... 1 Motivating the need for optimal sequence alignments... 2 3 Note that this actually combines two objectives of optimal sequence alignments: (i) use the score of the alignment o infer homology; (ii) use

More information

Sequence analysis and Genomics

Sequence analysis and Genomics Sequence analysis and Genomics October 12 th November 23 rd 2 PM 5 PM Prof. Peter Stadler Dr. Katja Nowick Katja: group leader TFome and Transcriptome Evolution Bioinformatics group Paul-Flechsig-Institute

More information

BMI/CS 776 Lecture #20 Alignment of whole genomes. Colin Dewey (with slides adapted from those by Mark Craven)

BMI/CS 776 Lecture #20 Alignment of whole genomes. Colin Dewey (with slides adapted from those by Mark Craven) BMI/CS 776 Lecture #20 Alignment of whole genomes Colin Dewey (with slides adapted from those by Mark Craven) 2007.03.29 1 Multiple whole genome alignment Input set of whole genome sequences genomes diverged

More information

Introduction to Bioinformatics

Introduction to Bioinformatics Introduction to Bioinformatics Jianlin Cheng, PhD Department of Computer Science Informatics Institute 2011 Topics Introduction Biological Sequence Alignment and Database Search Analysis of gene expression

More information

Syllabus of BIOINF 528 (2017 Fall, Bioinformatics Program)

Syllabus of BIOINF 528 (2017 Fall, Bioinformatics Program) Syllabus of BIOINF 528 (2017 Fall, Bioinformatics Program) Course Name: Structural Bioinformatics Course Description: Instructor: This course introduces fundamental concepts and methods for structural

More information

Some Problems from Enzyme Families

Some Problems from Enzyme Families Some Problems from Enzyme Families Greg Butler Department of Computer Science Concordia University, Montreal www.cs.concordia.ca/~faculty/gregb gregb@cs.concordia.ca Abstract I will discuss some problems

More information

Tiffany Samaroo MB&B 452a December 8, Take Home Final. Topic 1

Tiffany Samaroo MB&B 452a December 8, Take Home Final. Topic 1 Tiffany Samaroo MB&B 452a December 8, 2003 Take Home Final Topic 1 Prior to 1970, protein and DNA sequence alignment was limited to visual comparison. This was a very tedious process; even proteins with

More information

Amino Acid Structures from Klug & Cummings. 10/7/2003 CAP/CGS 5991: Lecture 7 1

Amino Acid Structures from Klug & Cummings. 10/7/2003 CAP/CGS 5991: Lecture 7 1 Amino Acid Structures from Klug & Cummings 10/7/2003 CAP/CGS 5991: Lecture 7 1 Amino Acid Structures from Klug & Cummings 10/7/2003 CAP/CGS 5991: Lecture 7 2 Amino Acid Structures from Klug & Cummings

More information

Similarity or Identity? When are molecules similar?

Similarity or Identity? When are molecules similar? Similarity or Identity? When are molecules similar? Mapping Identity A -> A T -> T G -> G C -> C or Leu -> Leu Pro -> Pro Arg -> Arg Phe -> Phe etc If we map similarity using identity, how similar are

More information

Practical considerations of working with sequencing data

Practical considerations of working with sequencing data Practical considerations of working with sequencing data File Types Fastq ->aligner -> reference(genome) coordinates Coordinate files SAM/BAM most complete, contains all of the info in fastq and more!

More information

BLAST Database Searching. BME 110: CompBio Tools Todd Lowe April 8, 2010

BLAST Database Searching. BME 110: CompBio Tools Todd Lowe April 8, 2010 BLAST Database Searching BME 110: CompBio Tools Todd Lowe April 8, 2010 Admin Reading: Read chapter 7, and the NCBI Blast Guide and tutorial http://www.ncbi.nlm.nih.gov/blast/why.shtml Read Chapter 8 for

More information

Homology. and. Information Gathering and Domain Annotation for Proteins

Homology. and. Information Gathering and Domain Annotation for Proteins Homology and Information Gathering and Domain Annotation for Proteins Outline WHAT IS HOMOLOGY? HOW TO GATHER KNOWN PROTEIN INFORMATION? HOW TO ANNOTATE PROTEIN DOMAINS? EXAMPLES AND EXERCISES Homology

More information

Sequence Alignments. Dynamic programming approaches, scoring, and significance. Lucy Skrabanek ICB, WMC January 31, 2013

Sequence Alignments. Dynamic programming approaches, scoring, and significance. Lucy Skrabanek ICB, WMC January 31, 2013 Sequence Alignments Dynamic programming approaches, scoring, and significance Lucy Skrabanek ICB, WMC January 31, 213 Sequence alignment Compare two (or more) sequences to: Find regions of conservation

More information

Phylogenetic Trees. How do the changes in gene sequences allow us to reconstruct the evolutionary relationships between related species?

Phylogenetic Trees. How do the changes in gene sequences allow us to reconstruct the evolutionary relationships between related species? Why? Phylogenetic Trees How do the changes in gene sequences allow us to reconstruct the evolutionary relationships between related species? The saying Don t judge a book by its cover. could be applied

More information

Probalign: Multiple sequence alignment using partition function posterior probabilities

Probalign: Multiple sequence alignment using partition function posterior probabilities Sequence Analysis Probalign: Multiple sequence alignment using partition function posterior probabilities Usman Roshan 1* and Dennis R. Livesay 2 1 Department of Computer Science, New Jersey Institute

More information

Open a Word document to record answers to any italicized questions. You will the final document to me at

Open a Word document to record answers to any italicized questions. You will  the final document to me at Molecular Evidence for Evolution Open a Word document to record answers to any italicized questions. You will email the final document to me at tchnsci@yahoo.com Pre Lab Activity: Genes code for amino

More information

Homology Modeling. Roberto Lins EPFL - summer semester 2005

Homology Modeling. Roberto Lins EPFL - summer semester 2005 Homology Modeling Roberto Lins EPFL - summer semester 2005 Disclaimer: course material is mainly taken from: P.E. Bourne & H Weissig, Structural Bioinformatics; C.A. Orengo, D.T. Jones & J.M. Thornton,

More information