STATISTICAL METHODS FOR STUDYING THE HEREDITY OF HAEMOPHILIA IN ANIMAL AND PLANT POPULATIONS

Size: px
Start display at page:

Download "STATISTICAL METHODS FOR STUDYING THE HEREDITY OF HAEMOPHILIA IN ANIMAL AND PLANT POPULATIONS"

Transcription

1 STATISTICAL METHODS FOR STUDYI THE HEREDITY OF HAEMOHILIA I AIMAL AD LAT OULATIOS C. AHEL M. BOLDEA Banat University of Agricultural Sciences and Veterinary Medicine from Timişoara A. COJOCARIU Ofelia SOFRA Tibiscus University from Timişoara Abstract The present paper proposes a mathematical model for the evolution of haemophilia, which is a hereditary disease transmitted through the X chromosome (one of the two sex-determining chromosomes. The evolutions of the probabilities of the next generations are given by the formulas in Table 5 and Table 0. This evolution was computer-simulated in order to verify the mathematical model. Key words: Haemophilia, chromosome, simulation, algorithm, mathematical model Introduction Random mating (panmixia is an idealized model that best assesses the reality in animal and plant populations. The probabilistic study of mating is also necessary for establishing how certain traits, flaws or diseases are passed on from one generation to another. In haemophilia, the affected genes are the ones that carry the feminine sexual chromosomes, the X chromosomes. In the case of, the disease manifests and is transmitted to offspring if the X chromosome in the group is affected. In the case of fe, the disease appears only if both X chromosomes are affected. If only one of the two X chromosomes is affected, the disease does not become apparent but the respective female is a carrier of the disease and can pass it on to her offspring. In the first case, both X chromosomes are affected, the disease is lethal for fe in their first months of life or even before birth, therefore sick fe will not have offspring. 7 Romanian Statistical Review - Supplement nr. / 05

2 Theoretical background If we mark by X the female chromosome affected, then the following variants are possible for the offspring (Table. The offspring resulting from all possible pairing Table - healthy female - female carrier - sick female - healthy male X Y - sick male We consider a population of fe and, where α is the percentage of sick and β is the percentage of female carriers. (Table. The distribution of male and female population Table umber of fe ( Female population Male population X Y X Y umber of ( Revista Română de Statistică - Supliment nr. / 05 7

3 The pairing is considered to happen one time and at random. The probabilities for each type of offspring,,,, and and each type of pairing are given in The offspring probability for each type of pairing Table Type of pairing Two variants will be analysed. X X X X X Y Variant A. We will consider that all pairs will give birth to two offspring, including the cases where one or both are fe with haemophilia (. Counting the number of for each of the five types of individuals for each of the four types of pairs, we obtain Table. The number of resulting was multiplied by, admitting that for each pair there will be two so that the population remains constant in the second generation. The respective probabilities are obtained by dividing the number of favourable cases to the number of possible cases. 7 Romanian Statistical Review - Supplement nr. / 05

4 Type pairing of o. of favourable offspring ( ( umber of offspring after pairing o. of favourable offspring possible female offspring ( ( o. of favourable offspring ( ( o. of favourable offspring X Y Table possible male offspring ( ( ( ( ( ( ( ( ( ( ( ( 5 TOTAL ( ( [( ] ( ( The corresponding probabilities are calculated with the following relations: ( ( ( ( ( ( ( ( Relations (, (, (, ( represent the probabilities in the second generation (the following generation, actually. In the third generation, the probabilities will be calculated according to the same algorithm as in the previous generation. In practice, these probabilities become percentages of realization. Thus, Table 5 is obtained, which presents the evolution of generations for the respective probabilities in variant A. Revista Română de Statistică - Supliment nr. / 05 75

5 Evolution of probabilities for the next generation, variant A Table 5 eneration fe Table 6 shows that, if in the first generation all are healthy, starting with the second generation there will be some affected by haemophilia and female carriers, as well. Evolution of probabilities if all are healthy in the first generation Table 6 eneration X X fe X Y Table 7 makes it clear that if in the initial generation ( all fe are healthy, then in the second generation ( there will be as many healthy fe as there were healthy in the first generation. The in the second generation will all be healthy. In the third generation we will have female carriers and sick. Evolution of probabilities if all are healthy in the first generation Table 7 eneration X X fe Romanian Statistical Review - Supplement nr. / 05

6 Table 8 presents what happens if in the first generation ( all are sick and all fe are carriers: in the second generation ( all fe are carriers and half of the are sick. Evolution of probabilities if all are sick and all fe are carriers in Table 8 be eneration fe X Y Variant B. We will consider that all pairs have two viable offspring, meaning that if a sick female is born (, she will die soon after, and the pair will have another descendant to replace her. In this case, Table becomes Table 9. Type pairing of umber of favourable umber of offspring umber of favourable possible female umber of favourable umber of favourable X Y Table 9 possible male ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 5 TOTAL ( ( The corresponding probabilities will be the following: ( ( ( (5 Revista Română de Statistică - Supliment nr. / 05 77

7 (6 (7 (8 Thus, we obtain Table 0 of the evolution of generations for the respective probabilities in Variant B. Evolution of probabilities for the next generation, Variant B Tabel nr.0 eneration X X fe X Y ( ( Variants A and B are idealized and are taken as work hypotheses. In real life, not all pairs behave as in either of the two variants, but instead some behave as in A and others as in B. ractical application The software application that simulates this process functions as follows: a population is introduced,000,000 fe of the two types and as well as,000,000 of the two types and X Y, distributed in given percentage: α, β, - α, - β. A randomising algorithm is applied in both populations, to make sure that the pairing is at random. For variant A: Table is determined, with the respective probabilities. For example, for the first pair in the table - (a healthy female and a healthy male, two possibilities are introduced for the offspring: or. Of these two, one is randomly chosen, for instance. Then it is written in a file that contains the of the respective generation. The same is done 78 Romanian Statistical Review - Supplement nr. / 05

8 to all pairs. After that, each total result is divided to the number of fe and to the number of, respectively, in order to obtain the respective percentages from, which are compared to the theoretical probabilities. For each pair, two offspring are chosen, so that the population remains constant in the next generation. In addition, if results for an extraction from Table 5, then it is not counted anywhere. For variant B, the procedure is the same as for variant A, with the following difference: if a random extraction of a descendant results in an, then the extraction is annulled and a new extraction is made, in order to have two viable offspring for each pair. Conclusions Tables and give a few examples in order to show the degree of concordance between the theoretical results and the simulated results. Theoretical results and results of the simulation, variant A Table eneration % % % Fe % % % theoretical practical theoretical practical theoretical practical Revista Română de Statistică - Supliment nr. / 05 79

9 Theoretical results and results of the simulation, variant B Table eneration % % fe % % % % theoretical practical theoretical practical theoretical practical Table and Table show that the theoretical results and the results given by the computer are equal. In conclusion, for haemophilia, the probability evolutions for the next generations are given by the formulae in Table 5 and Table 0. Haemophilia is a hereditary disease, which is transmitted through the X chromosome. The probability evolutions for the next generations are given by the formulae in Table 5 and Table 0. Computer simulation confirms these relations (Table and Table. Bibliography. Anghel, C., M. Boldea A ew Distribution Law in Statistics, Stochastic Analysis and Applications vol. ( - 6, Ed. ova Science ublishers, Inc., ew York, 00. Anghel, C., M. Boldea Simularea pe calculator a unui proces binomial şi poissonian, Revista Română de Statistică, nr. ( - 5, Bucureşti, 000;. Anghel, C., M. Boldea Simularea pe calculator în transmiterea unor boli ereditare, Lucrări ştiinţifice, Facultatea de Agricultură, vol. XI (59-6, Ed. Agroprint Timişoara, 999;. C. anfil enetica sexelor, Editura Dacia Cluj-apoca 98; 5. Chiş, Codruţa, M. Chiş, M. Boldea Calcularea frecvenţelor de echilibru într-o algebră genetică, Cercetări Ştiinţifice, Facultatea de Hortcultură, Seria a VIII a, Biotehnologie şi Biodiversitate, (9-56, Ed. Agroprint, Timişoara, 00; 6. L. Bain, M. Engelhardt Introduction to robability and Mathematical Statistics, Boston 99; 7. T. Crăciun, M. ătraşcu Mecanismele eredităţii, Editura Albatros Bucureşti Romanian Statistical Review - Supplement nr. / 05

Chapter 5. Heredity. Table of Contents. Section 1 Mendel and His Peas. Section 2 Traits and Inheritance. Section 3 Meiosis

Chapter 5. Heredity. Table of Contents. Section 1 Mendel and His Peas. Section 2 Traits and Inheritance. Section 3 Meiosis Heredity Table of Contents Section 1 Mendel and His Peas Section 2 Traits and Inheritance Section 3 Meiosis Section 1 Mendel and His Peas Objectives Explain the relationship between traits and heredity.

More information

Title: WS CH 18.1 (see p ) Unit: Heredity (7.4.1) 18.1 Reading Outline p Sexual Reproduction and Meiosis

Title: WS CH 18.1 (see p ) Unit: Heredity (7.4.1) 18.1 Reading Outline p Sexual Reproduction and Meiosis Title: WS CH 18.1 (see p.612-625) Unit: Heredity (7.4.1) 18.1 Reading Outline p. 612-625 NPD A. What is sexual reproduction? (p615) 1. _ produces an offspring when genetic materials from two different

More information

3U Evolution Notes. Natural Selection: What is Evolution? -The idea that gene distribution changes over time -A change in the frequency of an allele

3U Evolution Notes. Natural Selection: What is Evolution? -The idea that gene distribution changes over time -A change in the frequency of an allele 3U Evolution Notes What is Evolution? -The idea that gene distribution changes over time -A change in the frequency of an allele Let s look back to what we know: From genetics we can say that a gene is

More information

THE USE OF TIN SOFTWARE IN STATISTICAL HYPOTHESIS TESTING. CASE STUDY

THE USE OF TIN SOFTWARE IN STATISTICAL HYPOTHESIS TESTING. CASE STUDY THE USE OF TIN SOFTWARE IN STATISTICAL HYPOTHESIS TESTING. CASE STUDY R. Drienovsky 1, M. Drienovsky 2, M. Boldea 3 1 Student of Banat University of Agricultural Sciences and Veterinary Medicine Regele

More information

Lesson 1 Sexual Reproduction and Meiosis

Lesson 1 Sexual Reproduction and Meiosis Lesson 1 Name Date Class A. What is sexual reproduction? 1. produces an offspring when genetic materials from two different sex cells combine. a. The female sex cell, a(n), forms in an ovary. b. The male

More information

HEREDITY AND EVOLUTION

HEREDITY AND EVOLUTION HEREDITY AND EVOLUTION 1. What is a gene? Answer. Gene is the unit of inheritance. Gene is the part of a chromosome which controls the appearance of a set of hereditary characteristics. 2. What is meant

More information

Guided Notes Unit 6: Classical Genetics

Guided Notes Unit 6: Classical Genetics Name: Date: Block: Chapter 6: Meiosis and Mendel I. Concept 6.1: Chromosomes and Meiosis Guided Notes Unit 6: Classical Genetics a. Meiosis: i. (In animals, meiosis occurs in the sex organs the testes

More information

Using the Autoregressive Model for the Economic Forecast during the Period

Using the Autoregressive Model for the Economic Forecast during the Period Using the Autoregressive Model for the Economic Forecast during the Period 2014-2018 Prof. Constantin ANGHELACHE PhD. Bucharest University of Economic Studies, Artifex University of Bucharest Prof. Ioan

More information

CHAPTER 13 MEIOSIS AND SEXUAL LIFE CYCLES. Section A: An Introduction to Heredity

CHAPTER 13 MEIOSIS AND SEXUAL LIFE CYCLES. Section A: An Introduction to Heredity CHAPTER 13 MEIOSIS AND SEXUAL LIFE CYCLES Section A: An Introduction to Heredity 1. Offspring acquire genes from parents by inheriting chromosomes 2. Like begets like, more or less: a comparison of asexual

More information

Constructing a Pedigree

Constructing a Pedigree Constructing a Pedigree Use the appropriate symbols: Unaffected Male Unaffected Female Affected Male Affected Female Male carrier of trait Mating of Offspring 2. Label each generation down the left hand

More information

6-10 Sexual reproduction requires special cells (gametes) made by meiosis.

6-10 Sexual reproduction requires special cells (gametes) made by meiosis. Do Now Answer the following questions: For every cell undergoing mitosis, how many cells are created? For a cell with 6 chromosomes, how many chromosomes are in the daughter cells? Why are daughter cells

More information

Patterns of inheritance

Patterns of inheritance Patterns of inheritance Learning goals By the end of this material you would have learnt about: How traits and characteristics are passed on from one generation to another The different patterns of inheritance

More information

Utility of Graphic and Analytical Representation of Simple Correlation, Linear and Nonlinear in Hydro-climatic Data Analysis

Utility of Graphic and Analytical Representation of Simple Correlation, Linear and Nonlinear in Hydro-climatic Data Analysis Utility of Graphic and Analytical Representation of Simple Correlation, Linear and Nonlinear in Hydro-climatic Data Analysis Elena GRIGORE Ph.D. Assistant University of Bucharest, Meteorology-Hydrology

More information

Biology. Revisiting Booklet. 6. Inheritance, Variation and Evolution. Name:

Biology. Revisiting Booklet. 6. Inheritance, Variation and Evolution. Name: Biology 6. Inheritance, Variation and Evolution Revisiting Booklet Name: Reproduction Name the process by which body cells divide:... What kind of cells are produced this way? Name the process by which

More information

Directed Reading A. Section: Mendel and His Peas WHO WAS GREGOR MENDEL? UNRAVELING THE MYSTERY. plants. as the parent. fertilize another.

Directed Reading A. Section: Mendel and His Peas WHO WAS GREGOR MENDEL? UNRAVELING THE MYSTERY. plants. as the parent. fertilize another. Skills Worksheet Directed Reading A Section: Mendel and His Peas 1. What is heredity? 2. Give one example of something about yourself that has to do with heredity. WHO WAS GREGOR MENDEL? 3. Gregor Mendel

More information

Lecturer Marian SFETCU PhD. ARTIFEX University of Bucharest Andreea-Ioana MARINESCU, PhD. Student Bucharest University of Economic Studies

Lecturer Marian SFETCU PhD. ARTIFEX University of Bucharest Andreea-Ioana MARINESCU, PhD. Student Bucharest University of Economic Studies USING THE LINEAR REGRESSION MODEL IN ORDER TO ANALYSE THE CORRELATION BETWEEN THE GROSS DOMESTIC PRODUCT AND THE HOUSEHOLD EFFECTIVE INDIVIDUAL FINAL CONSUMPTION Lecturer Marian SFETCU PhD. ARTIFEX University

More information

= Sexual Reproduction. 2 Types of Reproduction. Key Terms Gonads- sex organs (testes, ovaries) Sexual Reproduction. What is Meiosis?

= Sexual Reproduction. 2 Types of Reproduction. Key Terms Gonads- sex organs (testes, ovaries) Sexual Reproduction. What is Meiosis? Sexual And Meiosis 2 Types of Asexual Sexual Sexual Increases survival for both plants and animals by passing genetic material within generations. Creates VARIETY in a species by the reassortment (mixing)

More information

Name: Period: EOC Review Part F Outline

Name: Period: EOC Review Part F Outline Name: Period: EOC Review Part F Outline Mitosis and Meiosis SC.912.L.16.17 Compare and contrast mitosis and meiosis and relate to the processes of sexual and asexual reproduction and their consequences

More information

Class Copy! Return to teacher at the end of class! Mendel's Genetics

Class Copy! Return to teacher at the end of class! Mendel's Genetics Class Copy! Return to teacher at the end of class! Mendel's Genetics For thousands of years farmers and herders have been selectively breeding their plants and animals to produce more useful hybrids. It

More information

Reproduction and Meiosis. Reproduction

Reproduction and Meiosis. Reproduction Chapter Introduction Lesson 1 Lesson 2 Chapter Wrap-Up Sexual Reproduction and Meiosis Asexual Reproduction Digital Vision Ltd./SuperStock Why do living things reproduce? What do you think? Before you

More information

9-1 The Work of Gregor

9-1 The Work of Gregor 9-1 The Work of Gregor 11-1 The Work of Gregor Mendel Mendel 1 of 32 11-1 The Work of Gregor Mendel Gregor Mendel s Peas Gregor Mendel s Peas Genetics is the scientific study of heredity. Gregor Mendel

More information

1. The process in which ( ) are produced. 2. Males produce cells and females produce cells through meiosis

1. The process in which ( ) are produced. 2. Males produce cells and females produce cells through meiosis Name: Aim 35: What is Meiosis? Date: I. What is Meiosis? What is Meiosis? Which organisms undergo Meiosis? Where does Meiosis occur? What does Meiosis produce? What is Meiosis also known as? 1. The process

More information

The concept of breeding value. Gene251/351 Lecture 5

The concept of breeding value. Gene251/351 Lecture 5 The concept of breeding value Gene251/351 Lecture 5 Key terms Estimated breeding value (EB) Heritability Contemporary groups Reading: No prescribed reading from Simm s book. Revision: Quantitative traits

More information

Natural Selection. Population Dynamics. The Origins of Genetic Variation. The Origins of Genetic Variation. Intergenerational Mutation Rate

Natural Selection. Population Dynamics. The Origins of Genetic Variation. The Origins of Genetic Variation. Intergenerational Mutation Rate Natural Selection Population Dynamics Humans, Sickle-cell Disease, and Malaria How does a population of humans become resistant to malaria? Overproduction Environmental pressure/competition Pre-existing

More information

MORPHOLOGICAL AND PRODUCTIVE CHARACTERISTICS OF TWO TSIGAIE ECOTYPES, USED AS GENETIC STOCK

MORPHOLOGICAL AND PRODUCTIVE CHARACTERISTICS OF TWO TSIGAIE ECOTYPES, USED AS GENETIC STOCK Lucrări ştiinţifice Zootehnie şi Biotehnologii, vol. 42 (2) (2009), Timişoara MORPHOLOGICAL AND PRODUCTIVE CHARACTERISTICS OF TWO TSIGAIE ECOTYPES, USED AS GENETIC STOCK CARACTERISTICI MORFO-PRODUCTIVE

More information

Chapter 13 Meiosis and Sexual Life Cycles

Chapter 13 Meiosis and Sexual Life Cycles Chapter 13 Meiosis and Sexual Life Cycles Question? Does Like really beget Like? The offspring will resemble the parents, but they may not be exactly like them. This chapter deals with reproduction of

More information

The Mechanisms of Evolution

The Mechanisms of Evolution The Mechanisms of Evolution Figure.1 Darwin and the Voyage of the Beagle (Part 1) 2/8/2006 Dr. Michod Intro Biology 182 (PP 3) 4 The Mechanisms of Evolution Charles Darwin s Theory of Evolution Genetic

More information

UNCERTAINTY AND SENSITIVITY IN STATISTICAL DATA

UNCERTAINTY AND SENSITIVITY IN STATISTICAL DATA UNCERTAINTY AND SENSITIVITY IN STATISTICAL DATA PhD Claudiu VAIDA-MUNTEAN Prof.univ.dr. Virgil VOINEAGU Conf. Univ. Dr Gabriela MUNTEANU Bucharest University of Economic Studies ABSTRACT Uncertainty and

More information

BUNGOMA JOINT INTER-SCHOOLS EVALUTION TEST (JISET) Kenya Certificate of Secondary Education 2012

BUNGOMA JOINT INTER-SCHOOLS EVALUTION TEST (JISET) Kenya Certificate of Secondary Education 2012 NAME:. INDEX...... SCHOOL:.. SIGNATURE DATE. 231/1 BIOLOGY PAPER 1 (Theory) JULY/AUGUST 2012 TIME: 2HOURS BUNGOMA JOINT INTER-SCHOOLS EVALUTION TEST (JISET) Kenya Certificate of Secondary Education 2012

More information

Lesson 4: Understanding Genetics

Lesson 4: Understanding Genetics Lesson 4: Understanding Genetics 1 Terms Alleles Chromosome Co dominance Crossover Deoxyribonucleic acid DNA Dominant Genetic code Genome Genotype Heredity Heritability Heritability estimate Heterozygous

More information

Biology 8 Learning Outcomes

Biology 8 Learning Outcomes Biology 8 Learning Outcomes CELLS (Bio 8-1) I can connect the names, diagrams, and functions of organelles in a cell I know the major differences between plant and animal cells I can explain cell theory

More information

An introduction to quantitative genetics

An introduction to quantitative genetics An introduction to quantitative genetics 1. What is the genetic architecture and molecular basis of phenotypic variation in natural populations? 2. Why is there phenotypic variation in natural populations?

More information

THE EFFECT OF MINERAL FERTILIZATION ON THE PIGMENT CONTENT IN MARIGOLD (CALLENDULA OFFICINALIS L.)

THE EFFECT OF MINERAL FERTILIZATION ON THE PIGMENT CONTENT IN MARIGOLD (CALLENDULA OFFICINALIS L.) Lucrări Ştiinţifice vol. 5, seria Agronomie THE EFFECT OF MINERAL FERTILIZATION ON THE PIGMENT CONTENT IN MARIGOLD (CALLENDULA OFFICINALIS L.) Alina Elena MARTA, Carmen Doina JITĂREANU, Marinela BĂDEANU,

More information

Chapter 10.2 Notes. Genes don t exist free in the nucleus but lined up on a. In the body cells of animals and most plants, chromosomes occur in

Chapter 10.2 Notes. Genes don t exist free in the nucleus but lined up on a. In the body cells of animals and most plants, chromosomes occur in Chapter 10.2 Notes NAME Honors Biology Organisms have tens of thousands of genes that determine individual traits Genes don t exist free in the nucleus but lined up on a Diploid and Haploid Cells In the

More information

11-1 The Work of Gregor Mendel. The Work of Gregor Mendel

11-1 The Work of Gregor Mendel. The Work of Gregor Mendel 11-1 The Work of Gregor Mendel The Work of Gregor Mendel Gregor Mendel s Peas! Gregor Mendel s Peas Genetics is the scientific study of heredity. " Gregor Mendel was an Austrian monk. His work was important

More information

NOTES CH 17 Evolution of. Populations

NOTES CH 17 Evolution of. Populations NOTES CH 17 Evolution of Vocabulary Fitness Genetic Drift Punctuated Equilibrium Gene flow Adaptive radiation Divergent evolution Convergent evolution Gradualism Populations 17.1 Genes & Variation Darwin

More information

Part 2- Biology Paper 2 Inheritance and Variation Knowledge Questions

Part 2- Biology Paper 2 Inheritance and Variation Knowledge Questions Part 2- Biology Paper 2 Inheritance and Variation Knowledge Questions AQA TRILOGY Biology (8464) from 2016 Topic T4.6 Inheritance, variation and evolution Topic Student Checklist R A G Describe features

More information

1. What is genetics and who was Gregor Mendel? 2. How are traits passed from one generation to the next?

1. What is genetics and who was Gregor Mendel? 2. How are traits passed from one generation to the next? Chapter 11 Heredity The fruits, vegetables, and grains you eat are grown on farms all over the world. Tomato seeds produce tomatoes, which in turn produce more seeds to grow more tomatoes. Each new crop

More information

Mitosis and Meiosis. 2. The distribution of chromosomes in one type of cell division is shown in the diagram below.

Mitosis and Meiosis. 2. The distribution of chromosomes in one type of cell division is shown in the diagram below. Name: Date: 1. Jack bought a small turtle. Three months later, the turtle had grown to twice its original size. Which of the following statements best describes why Jack s turtle got bigger? A. Parts of

More information

Darwin, Mendel, and Genetics

Darwin, Mendel, and Genetics Darwin, Mendel, and Genetics The age old questions Who am I? In particular, what traits define me? How (and why) did I get to be who I am, that is, how were these traits passed on to me? Pre-Science (and

More information

Unit 6 Reading Guide: PART I Biology Part I Due: Monday/Tuesday, February 5 th /6 th

Unit 6 Reading Guide: PART I Biology Part I Due: Monday/Tuesday, February 5 th /6 th Name: Date: Block: Chapter 6 Meiosis and Mendel Section 6.1 Chromosomes and Meiosis 1. How do gametes differ from somatic cells? Unit 6 Reading Guide: PART I Biology Part I Due: Monday/Tuesday, February

More information

The Cell Cycle. The Cell Cycle

The Cell Cycle. The Cell Cycle The Cell Cycle Cells divide by Mitosis or Meiosis. Mitosis allows the organism to replace cells that have died or aren't working, and is how living things grow. It makes an exact copy of the parent cell.

More information

Biology Kevin Dees. Chapter 13 Meiosis and Sexual Life Cycles

Biology Kevin Dees. Chapter 13 Meiosis and Sexual Life Cycles Chapter 13 Meiosis and Sexual Life Cycles Reproduction Characteristic of all living things Reproduction also involves the transmission of traits from one generation to the next; inheritance Heredity Latin

More information

Chapter 13 Meiosis and Sexual Life Cycles. Reproduction

Chapter 13 Meiosis and Sexual Life Cycles. Reproduction Chapter 13 Meiosis and Sexual Life Cycles Reproduction Characteristic of all living things Reproduction also involves the transmission of traits from one generation to the next; inheritance Heredity Latin

More information

X-Sheet 3 Cell Division: Mitosis and Meiosis

X-Sheet 3 Cell Division: Mitosis and Meiosis X-Sheet 3 Cell Division: Mitosis and Meiosis 13 Key Concepts In this session we will focus on summarising what you need to know about: Revise Mitosis (Grade 11), the process of meiosis, First Meiotic division,

More information

Ch. 13 Meiosis & Sexual Life Cycles

Ch. 13 Meiosis & Sexual Life Cycles Introduction Ch. 13 Meiosis & Sexual Life Cycles 2004-05 Living organisms are distinguished by their ability to reproduce their own kind. -Offspring resemble their parents more than they do less closely

More information

Overview. Overview: Variations on a Theme. Offspring acquire genes from parents by inheriting chromosomes. Inheritance of Genes

Overview. Overview: Variations on a Theme. Offspring acquire genes from parents by inheriting chromosomes. Inheritance of Genes Chapter 13 Meiosis and Sexual Life Cycles Overview I. Cell Types II. Meiosis I. Meiosis I II. Meiosis II III. Genetic Variation IV. Reproduction Overview: Variations on a Theme Figure 13.1 Living organisms

More information

Name Class Date. KEY CONCEPT Gametes have half the number of chromosomes that body cells have.

Name Class Date. KEY CONCEPT Gametes have half the number of chromosomes that body cells have. Section 1: Chromosomes and Meiosis KEY CONCEPT Gametes have half the number of chromosomes that body cells have. VOCABULARY somatic cell autosome fertilization gamete sex chromosome diploid homologous

More information

2. What is meiosis? The process of forming gametes (sperm and egg) 4. Where does meiosis take place? Ovaries- eggs and testicles- sperm

2. What is meiosis? The process of forming gametes (sperm and egg) 4. Where does meiosis take place? Ovaries- eggs and testicles- sperm Name KEY Period Biology Review Standard 3 Main Idea Explain the significance of meiosis and fertilization in genetic variation. How I can demonstrate what a smart. Person I am 1. What is fertilization?

More information

9 Genetic diversity and adaptation Support. AQA Biology. Genetic diversity and adaptation. Specification reference. Learning objectives.

9 Genetic diversity and adaptation Support. AQA Biology. Genetic diversity and adaptation. Specification reference. Learning objectives. Genetic diversity and adaptation Specification reference 3.4.3 3.4.4 Learning objectives After completing this worksheet you should be able to: understand how meiosis produces haploid gametes know how

More information

Teaching unit: Meiosis: The Steps to Creating Life

Teaching unit: Meiosis: The Steps to Creating Life Lesson Title: Meiosis Teacher s Name: I. Identification Course title: Biology/Life Science Teaching unit: Meiosis: The Steps to Creating Life CDE Standards Addressed: Biology/Life Sciences a. Students

More information

Chapter 13: Meiosis and Sexual Life Cycles Overview: Hereditary Similarity and Variation

Chapter 13: Meiosis and Sexual Life Cycles Overview: Hereditary Similarity and Variation Chapter 13: Meiosis and Sexual Life Cycles Overview: Hereditary Similarity and Variation Living organisms Are distinguished by their ability to reproduce their own kind Biology, 7 th Edition Neil Campbell

More information

Ladies and Gentlemen.. The King of Rock and Roll

Ladies and Gentlemen.. The King of Rock and Roll Ladies and Gentlemen.. The King of Rock and Roll Learning Objectives: The student is able to construct an explanation, using visual representations or narratives, as to how DNA in chromosomes is transmitted

More information

Ch. 4 - Population Ecology

Ch. 4 - Population Ecology Ch. 4 - Population Ecology Ecosystem all of the living organisms and nonliving components of the environment in an area together with their physical environment How are the following things related? mice,

More information

Chapter 11 INTRODUCTION TO GENETICS

Chapter 11 INTRODUCTION TO GENETICS Chapter 11 INTRODUCTION TO GENETICS 11-1 The Work of Gregor Mendel I. Gregor Mendel A. Studied pea plants 1. Reproduce sexually (have two sex cells = gametes) 2. Uniting of male and female gametes = Fertilization

More information

3/4/2015. Review. Phenotype

3/4/2015. Review. Phenotype Review Phenotype 1 Genes Crossing Over Frequency cn cinnabar eyes Cy curly wings L lobe eyes pr purple eyes sm smooth abdomen pr - L 9% Cy - L 33% sm - pr 19% cn - pr 2% Cy - sm 43% cn - sm 17% Polygenic

More information

UNIT 8 BIOLOGY: Meiosis and Heredity Page 148

UNIT 8 BIOLOGY: Meiosis and Heredity Page 148 UNIT 8 BIOLOGY: Meiosis and Heredity Page 148 CP: CHAPTER 6, Sections 1-6; CHAPTER 7, Sections 1-4; HN: CHAPTER 11, Section 1-5 Standard B-4: The student will demonstrate an understanding of the molecular

More information

Reproduction of Organisms

Reproduction of Organisms Reproduction of Organisms Sexual Reproduction and Meiosis What do you think? Read the three statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree

More information

Cell division and multiplication

Cell division and multiplication CELL DIVISION Cell division and multiplication As we already mentioned, the genetic information contained in the nucleus is hereditary Meaning it is passed on from cell to cell; from parent to child This

More information

What is a sex cell? How are sex cells made? How does meiosis help explain Mendel s results?

What is a sex cell? How are sex cells made? How does meiosis help explain Mendel s results? CHAPTER 6 3 Meiosis SECTION Heredity BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a sex cell? How are sex cells made? How does meiosis help explain

More information

STUDY OF YIELD POTENTIAL OF MAIZE SIMPLE HYBRIDS IN CYCLIC CROSS SYSTEM

STUDY OF YIELD POTENTIAL OF MAIZE SIMPLE HYBRIDS IN CYCLIC CROSS SYSTEM STUDY OF YIELD POTENTIAL OF MAIZE SIMPLE HYBRIDS IN CYCLIC CROSS SYSTEM Andreea ONA 1, I. HAȘ 1,2, Voichița HAȘ 2, Rodica POP 1 1 University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca,

More information

EVOLUTION ALGEBRA Hartl-Clark and Ayala-Kiger

EVOLUTION ALGEBRA Hartl-Clark and Ayala-Kiger EVOLUTION ALGEBRA Hartl-Clark and Ayala-Kiger Freshman Seminar University of California, Irvine Bernard Russo University of California, Irvine Winter 2015 Bernard Russo (UCI) EVOLUTION ALGEBRA 1 / 10 Hartl

More information

Meiosis -> Inheritance. How do the events of Meiosis predict patterns of heritable variation?

Meiosis -> Inheritance. How do the events of Meiosis predict patterns of heritable variation? Meiosis -> Inheritance How do the events of Meiosis predict patterns of heritable variation? Mendel s peas 1. Genes determine appearance (phenotype) 2. Genes vary and they are inherited 3. Their behavior

More information

Meiosis and Sexual Life Cycles

Meiosis and Sexual Life Cycles Chapter 13 Meiosis and Sexual Life Cycles Lecture Outline Overview: Variations on a Theme Living organisms are distinguished by their ability to reproduce their own kind. Offspring resemble their parents

More information

EXERCISES FOR CHAPTER 3. Exercise 3.2. Why is the random mating theorem so important?

EXERCISES FOR CHAPTER 3. Exercise 3.2. Why is the random mating theorem so important? Statistical Genetics Agronomy 65 W. E. Nyquist March 004 EXERCISES FOR CHAPTER 3 Exercise 3.. a. Define random mating. b. Discuss what random mating as defined in (a) above means in a single infinite population

More information

Chapter 13: Meiosis & Sexual Life Cycles

Chapter 13: Meiosis & Sexual Life Cycles Chapter 13: Meiosis & Sexual Life Cycles What you must know The difference between asexual and sexual reproduction. The role of meiosis and fertilization in sexually reproducing organisms. The importance

More information

Darwinian Selection. Chapter 7 Selection I 12/5/14. v evolution vs. natural selection? v evolution. v natural selection

Darwinian Selection. Chapter 7 Selection I 12/5/14. v evolution vs. natural selection? v evolution. v natural selection Chapter 7 Selection I Selection in Haploids Selection in Diploids Mutation-Selection Balance Darwinian Selection v evolution vs. natural selection? v evolution ² descent with modification ² change in allele

More information

Outline for today s lecture (Ch. 14, Part I)

Outline for today s lecture (Ch. 14, Part I) Outline for today s lecture (Ch. 14, Part I) Ploidy vs. DNA content The basis of heredity ca. 1850s Mendel s Experiments and Theory Law of Segregation Law of Independent Assortment Introduction to Probability

More information

Sexual Reproduction and Genetics

Sexual Reproduction and Genetics Sexual Reproduction and Genetics Mitosis is a form of asexual reproduction This means that it only requires 1 organism (ex. Skin cells dividing) For growth and repair in somatic (body) cells! Results

More information

1. The diagram below shows two processes (A and B) involved in sexual reproduction in plants and animals.

1. The diagram below shows two processes (A and B) involved in sexual reproduction in plants and animals. 1. The diagram below shows two processes (A and B) involved in sexual reproduction in plants and animals. Which statement best explains how these processes often produce offspring that have traits not

More information

REPRODUCTION. 7 th Grade Science Mr. Banks

REPRODUCTION. 7 th Grade Science Mr. Banks REPRODUCTION 7 th Grade Science Mr. Banks All living things reproduce. But what is the purpose of reproduction? All living things reproduce. But what is the purpose of reproduction? To continue the species.

More information

Lecture 14 Chapter 11 Biology 5865 Conservation Biology. Problems of Small Populations Population Viability Analysis

Lecture 14 Chapter 11 Biology 5865 Conservation Biology. Problems of Small Populations Population Viability Analysis Lecture 14 Chapter 11 Biology 5865 Conservation Biology Problems of Small Populations Population Viability Analysis Minimum Viable Population (MVP) Schaffer (1981) MVP- A minimum viable population for

More information

Announcements. Topics: To Do:

Announcements. Topics: To Do: Announcements Topics: In the Probability and Statistics module: - Sections 1 + 2: Introduction to Stochastic Models - Section 3: Basics of Probability Theory - Section 4: Conditional Probability; Law of

More information

Population Genetics & Evolution

Population Genetics & Evolution The Theory of Evolution Mechanisms of Evolution Notes Pt. 4 Population Genetics & Evolution IMPORTANT TO REMEMBER: Populations, not individuals, evolve. Population = a group of individuals of the same

More information

Homework Assignment, Evolutionary Systems Biology, Spring Homework Part I: Phylogenetics:

Homework Assignment, Evolutionary Systems Biology, Spring Homework Part I: Phylogenetics: Homework Assignment, Evolutionary Systems Biology, Spring 2009. Homework Part I: Phylogenetics: Introduction. The objective of this assignment is to understand the basics of phylogenetic relationships

More information

Unit 7 Genetics. Meiosis

Unit 7 Genetics. Meiosis NAME: 1 Unit 7 Genetics 1. Gregor Mendel- was responsible for our 2. What organism did Mendel study? 3. Mendel stated that physical traits were inherited as 4. Today we know that particles are actually

More information

1. Let A and B be two events such that P(A)=0.6 and P(B)=0.6. Which of the following MUST be true?

1. Let A and B be two events such that P(A)=0.6 and P(B)=0.6. Which of the following MUST be true? 1 UNIVERSITY OF MASSACHUSETTS Department of Biostatistics and Epidemiology BioEpi 540W - Introduction to Biostatistics Fall 2004 Exercises with Solutions Topic 2 Introduction to Probability Due: Monday

More information

Darwin s Theory of Natural Selection

Darwin s Theory of Natural Selection Darwin s Theory of Natural Selection Question: Has Life Ever Changed? In 1700 s, scientists examined fossils that showed how extinct species look very different than they do today. Scientists began to

More information

Introduction to Genetics. Why do biological relatives resemble one another?

Introduction to Genetics. Why do biological relatives resemble one another? Introduction to Genetics Why do biological relatives resemble one another? Heritage Hair color, eye color, height, and lots of other traits are passed down through families. How does that happen? REPRODUCTION

More information

6.6 Meiosis and Genetic Variation. KEY CONCEPT Independent assortment and crossing over during meiosis result in genetic diversity.

6.6 Meiosis and Genetic Variation. KEY CONCEPT Independent assortment and crossing over during meiosis result in genetic diversity. 6.6 Meiosis and Genetic Variation KEY CONCEPT Independent assortment and crossing over during meiosis result in genetic diversity. 6.6 Meiosis and Genetic Variation! Sexual reproduction creates unique

More information

Cell Division: the process of copying and dividing entire cells The cell grows, prepares for division, and then divides to form new daughter cells.

Cell Division: the process of copying and dividing entire cells The cell grows, prepares for division, and then divides to form new daughter cells. Mitosis & Meiosis SC.912.L.16.17 Compare and contrast mitosis and meiosis and relate to the processes of sexual and asexual reproduction and their consequences for genetic variation. 1. Students will describe

More information

Being a Biologist. Summary Sheets. Gleniffer High School

Being a Biologist. Summary Sheets. Gleniffer High School Being a Biologist Summary Sheets Gleniffer High School 0 DNA I have extracted DNA and understand its function. I can express an informed view of the risks and benefits of DNA profiling. SCN 3-14b Chromosomes

More information

Binary fission occurs in prokaryotes. parent cell. DNA duplicates. cell begins to divide. daughter cells

Binary fission occurs in prokaryotes. parent cell. DNA duplicates. cell begins to divide. daughter cells Chapter 11 Chapter 11 Some eukaryotes reproduce through mitosis. Binary fission is similar in function to mitosis. Asexual reproduction is the creation of offspring from a single parent. Binary fission

More information

Population Genetics I. Bio

Population Genetics I. Bio Population Genetics I. Bio5488-2018 Don Conrad dconrad@genetics.wustl.edu Why study population genetics? Functional Inference Demographic inference: History of mankind is written in our DNA. We can learn

More information

Meiosis and Sexual Life Cycles

Meiosis and Sexual Life Cycles Chapter 13 Meiosis and Sexual Life Cycles Lecture Outline Overview Living organisms are distinguished by their ability to reproduce their own kind. Offspring resemble their parents more than they do less

More information

REVISION: GENETICS & EVOLUTION 20 MARCH 2013

REVISION: GENETICS & EVOLUTION 20 MARCH 2013 REVISION: GENETICS & EVOLUTION 20 MARCH 2013 Lesson Description In this lesson, we revise: The principles of Genetics including monohybrid crosses Sex linked traits and how to use a pedigree chart The

More information

Mutation, Selection, Gene Flow, Genetic Drift, and Nonrandom Mating Results in Evolution

Mutation, Selection, Gene Flow, Genetic Drift, and Nonrandom Mating Results in Evolution Mutation, Selection, Gene Flow, Genetic Drift, and Nonrandom Mating Results in Evolution 15.2 Intro In biology, evolution refers specifically to changes in the genetic makeup of populations over time.

More information

Outline. Probability. Math 143. Department of Mathematics and Statistics Calvin College. Spring 2010

Outline. Probability. Math 143. Department of Mathematics and Statistics Calvin College. Spring 2010 Outline Math 143 Department of Mathematics and Statistics Calvin College Spring 2010 Outline Outline 1 Review Basics Random Variables Mean, Variance and Standard Deviation of Random Variables 2 More Review

More information

Reinforcement Unit 3 Resource Book. Meiosis and Mendel KEY CONCEPT Gametes have half the number of chromosomes that body cells have.

Reinforcement Unit 3 Resource Book. Meiosis and Mendel KEY CONCEPT Gametes have half the number of chromosomes that body cells have. 6.1 CHROMOSOMES AND MEIOSIS KEY CONCEPT Gametes have half the number of chromosomes that body cells have. Your body is made of two basic cell types. One basic type are somatic cells, also called body cells,

More information

Chapter 6. Probability

Chapter 6. Probability Chapter 6 robability Suppose two six-sided die is rolled and they both land on sixes. Or a coin is flipped and it lands on heads. Or record the color of the next 20 cars to pass an intersection. These

More information

1. Natural selection can only occur if there is variation among members of the same species. WHY?

1. Natural selection can only occur if there is variation among members of the same species. WHY? 1. Natural selection can only occur if there is variation among members of the same species. WHY? Variation in a population results from mutation and the recombination of alleles during meiosis and fertilization.

More information

1 Mendel and His Peas

1 Mendel and His Peas CHAPTER 3 1 Mendel and His Peas SECTION Heredity BEFORE YOU READ After you read this section, you should be able to answer these questions: What is heredity? How did Gregor Mendel study heredity? National

More information

Learning Objectives:

Learning Objectives: Review! Why is cell division important?! What are the different types of cell division?! What are these useful for?! What are the products?! What is a somatic cell?! What is a sex cell?! What is a haploid

More information

Heredity and Evolution

Heredity and Evolution Heredity and Variation Heredity and Evolution Living organisms have certain recognisable heritable features such as height, complexion, colour of hair and eyes, shape of nose and chin etc. These are called

More information

Guided Notes: Evolution. is the change in traits through generations over! Occurs in, NOT individual organisms

Guided Notes: Evolution. is the change in traits through generations over! Occurs in, NOT individual organisms Guided Notes: Evolution The Theory of Evolution is the change in traits through generations over! Occurs in, NOT individual organisms How Have Organisms Changed? At the time life emerged, the Earth was

More information

1. CHROMOSOMES AND MEIOSIS

1. CHROMOSOMES AND MEIOSIS Meiosis and Mendel Answer Key SECTION 1. CHROMOSOMES AND MEIOSIS 1. somatic/body cells; germ cells/gametes 2. in the reproductive organs; ovaries and testes 3. 46 4. mother 5. father 6. autosomes 7. X

More information

B) Describe the structures and functions of a Paramecium. Draw a Paramecium.

B) Describe the structures and functions of a Paramecium. Draw a Paramecium. Living Organisms & Genetics Final Exam Review Answers A) Describe the structures and functions of a Euglena. Draw a Euglena. Eyespot Helps the Euglena to detect light so it can move to a bright area to

More information

3. DISCRETE PROBABILITY DISTRIBUTIONS

3. DISCRETE PROBABILITY DISTRIBUTIONS 1 3. DISCRETE PROBABILITY DISTRIBUTIONS Probability distributions may be discrete or continuous. This week we examine two discrete distributions commonly used in biology: the binomial and Poisson distributions.

More information

AQA Biology A-level. ecosystems. Notes.

AQA Biology A-level. ecosystems. Notes. AQA Biology A-level Topic 7: Genetics, populations, evolution and ecosystems Notes Inheritance Keywords: There are a number of different key words that are required for this topic these are listed and

More information

Genetics (patterns of inheritance)

Genetics (patterns of inheritance) MENDELIAN GENETICS branch of biology that studies how genetic characteristics are inherited MENDELIAN GENETICS Gregory Mendel, an Augustinian monk (1822-1884), was the first who systematically studied

More information