Cell Division: the process of copying and dividing entire cells The cell grows, prepares for division, and then divides to form new daughter cells.
|
|
- Anis Miles
- 1 years ago
- Views:
Transcription
1 Mitosis & Meiosis SC.912.L Compare and contrast mitosis and meiosis and relate to the processes of sexual and asexual reproduction and their consequences for genetic variation.
2 1. Students will describe specific events occurring in each stage of the cell cycle and/or phases of mitosis, including cytokinesis. Cell Division: the process of copying and dividing entire cells The cell grows, prepares for division, and then divides to form new daughter cells. Unicellular organisms allows duplicate using asexual reproduction Multicellular organisms allows to grow, develop from single cell to multicellular, makes other cells to repair and replace worn out cells Three types: binary fission (bacteria and fungi), mitosis, and meiosis
3 1. Students will describe specific events occurring in each stage of the cell cycle and/or phases of mitosis, including cytokinesis. Cells divide through a process called the cell cycle which consists of interphase, mitosis, and cytokinesis. Note: majority of the cell cycle is Interphase, while a smaller portion is mitosis/cytoki nesis.
4 1. Students will describe specific events occurring in each stage of the cell cycle and/or phases of mitosis, including cytokinesis. Interphase: longest part of the cell cycle; growth, metabolism, and preparation for division occurs, duplicates chromosomes (DNA Replication)
5 1. Students will describe specific events occurring in each stage of the cell cycle and/or phases of mitosis, including cytokinesis. MITOSIS division of nucleus of the cell Prophase: duplicated chromosomes and spindle fibers appear Metaphase: duplicated chromosomes line up randomly in center of cell between spindle fibers Anaphase: duplicated chromosomes pulled to opposite ends of cell Telophase: nuclear membrane forms around chromosomes at each end of the cell; spindle fibers disappear; chromosomes disperse
6 1. Students will describe specific events occurring in each stage of the cell cycle and/or phases of mitosis, including cytokinesis. Cytokinesis: division of plasma membrane; two daughter cells result with exact genetic information In plants, a cell plate forms along the center and cuts the cell in half. In animals, a cleavage furrow develops to cut the cell in half.
7 1. Students will describe specific events occurring in each stage of the cell cycle and/or phases of mitosis, including cytokinesis. RESULTS OF MITOSIS: Two identical daughter cells Produces and occurs in somatic cells (body cells) Diploid = same number of chromosomes as original cell (humans = 46)
8 2. Students will explain how meiosis results in the formation of haploid gametes or spores. In meiosis, the cells will also start with interphase. There are TWO cell divisions instead of one, but the cell only does interphase ONCE prior to the first cell division. Meiosis is a reduction division process (chromosome numbers are divided in half) Each cell division consists of prophase, metaphase, anaphase, and telophase Occurs only in sex cells (gametes) and produces only gametes (egg and sperm)
9 2. Students will explain how meiosis results in the formation of haploid gametes or spores. First Division: Produces cells containing half # of double stranded chromosomes Prophase 1 crossing over occurs Metaphase 1 chromosomes line up in homologous pairs, independent assortment occurs Anaphase 1 chromosomes move towards each side Telophase 1 cells contain HALF of # of chromosomes
10 2. Students will explain how meiosis results in the formation of haploid gametes or spores. Crossing over: genes are essentially switching places on chromosomes in prophase I Independent assortment: the genes randomly move towards ends of cell in metaphase I THESE BOTH RESULT IN GENETIC VARIATION!
11 2. Students will explain how meiosis results in the formation of haploid gametes or spores. Second Division: Results in formation of four cells, each haploid (half the number of original chromosomes) (humans = 23)
12 2. Students will explain how meiosis results in the formation of haploid gametes or spores. RESULTS OF MEIOSIS: Four unique daughter cells Unique due to genetic variation such as crossing over and independent assortment Produces and occurs in gametes (sex cells) Haploid = half number of chromosomes as original cell (humans = 23) Sex cells combine during sexual reproduction to produce a diploid individual
13 3. Students will compare and contrast sexual and asexual reproduction. SEXUAL REPRODUCTION Pattern of reproduction that involves the production and fusion of haploid sex cells Haploid sperm from father fertilizes haploid egg from mother to make a diploid zygote
14 3. Students will compare and contrast sexual and asexual reproduction. ASEXUAL REPRODUCTION A single parent produces one or more identical offspring by dividing into two cells. Diploid cells are clones of parent cell.
15 DNA Replication SC.912.L.16.3 Describe the basic process of DNA replication and how it relates to the transmission and conservation of the genetic information.
16 1. Students will describe the process of DNA replication and its role in the conservation and transmission of genetic information. DNA Replication: DNA must replicate during the cell cycle (in both mitosis and meiosis) in order for genetic information to be passed on to daughter cells Semi-Conservative: the new daughter cells will have one strand of parent DNA and one strand of new DNA
17 2. Students will explain the basic process of transcription and/or translation and their roles in the expression of genes. DNA Replication occurs in two steps: 1. TRANSCRIPTION: DNA helicase unzips and unwinds the double helix; RNA primase inserts RNA into each strand as a place holder Base pairs must match! A U (because this is RNA) and C G! DNA polymerase then adds the appropriate matching nucleotide Again, base pairs must match! A T (because now we are adding DNA) and C G 2. DNA ligase links the two strands of DNA together and proofreads to be sure base pairs are matched correctly
18 2. Students will explain the basic process of transcription and/or translation and their roles in the expression of genes. Each strand of parent DNA makes TWO strands of daughter cell DNA!
19 2. Students will explain the basic process of transcription and/or translation and their roles in the expression of genes. Practice matching this strand of DNA to its parent strand of DNA:
20 2. Students will explain the basic process of transcription and/or translation and their roles in the expression of genes. Practice matching this strand of DNA to its parent strand of RNA: U U U
21 2. Students will explain the basic process of transcription and/or translation and their roles in the expression of genes. After DNA Replication has began, the process of Protein Synthesis simultaneously begins: Once the first stage of transcription has occurred (DNA base pairs matching with RNA base pairs), the RNA is then sent out of the nucleus and moves towards to ribosome through a process called TRANSLATION. Once in the ribosome, the RNA strand is converted to amino acids (building blocks of proteins) through the use of codons.
22 2. Students will explain the basic process of transcription and/or translation and their roles in the expression of genes. You must be able to read a codon table: AUG UCA CAA??? Met Ser - Gin
23 3. Students will describe gene and chromosomal mutations. Sometimes the process of DNA replication will become flawed, resulting in mutations. Mutations: changes in the genetic code Passed from one cell to new cells Transmitted to offspring if it occurs in sex cells Most will have no effect
24 3. Students will describe gene and chromosomal mutations. Gene Mutation: change in a single gene Chromosome Mutation: change in many genes Can be spontaneous or caused by environmental mutagens (radiation, chemicals, etc)
25 Mendel & Inheritance SC.912.L.16.1 Use Mendel s laws of segregation and independent assortment to analyze patterns of inheritance.
26 1. Students will use Mendel s laws of segregation and independent assortment to analyze patterns of inheritance. Mendel s Law of Segregation: gene pairs separate when gametes (sex cells) are formed; each gamete as only one allele of each gene pair Review: Heterozygous = the two alleles are different (hybrid) Aa or Bb Homozygous = the two alleles are the same (AA or aa)
27 1. Students will use Mendel s laws of segregation and independent assortment to analyze patterns of inheritance. Mendel s Law of Independent Assortment: different pairs of genes separate independently of each other when gametes are formed This means when chromosomes line up in homologous pairs during Metaphase I of meiosis that not ALL of moms chromosomes are on one side and not ALL of dads chromosomes are on one side THEY ARE INTERMIXED!
28 1. Students will use Mendel s laws of segregation and independent assortment to analyze patterns of inheritance. Dominant Traits: shown with capital letters; controlling trait Example: Brown hair over blonde hair; Huntington s disease Recessive Traits: shown with lowercase letters; hidden allele Examples: Cystic fibrosis and Tay Sach s can be a carrier OR must have two recessives for it be expressed
29 1. Students will use Mendel s laws of segregation and independent assortment to analyze patterns of inheritance. Inheritance can be predicted using a Punnett square Results show the probability of an offspring receiving that trait, and may be expressed in percent, ratios, or fractions Genotype probability (genetic makeup of the organism): TT 25%, ¼, or 1:4 Tt 50%, ½, or 2:4 (1:2) Tt 25%, ¼, or 1:4
30 1. Students will use Mendel s laws of segregation and independent assortment to analyze patterns of inheritance. Practice predicting Punnett square results. Express results for both genotype and phenotype (physical appearance of an organism)
31 1. Students will use Mendel s laws of segregation and independent assortment to analyze patterns of inheritance. Two Types of Crosses: Monohybrid: Contains four boxes; a cross between two heterozygous would produce a 1:2:1 genotype ratio and a 3:1 phenotype ratio Dihybrid: Contains sixteen boxes; a dihybrid cross involves two traits for each parent and a cross between two heterozygous parents would produce a 9:3:3:1 phenotype ratio
32 1. Students will use Mendel s laws of segregation and independent assortment to analyze patterns of inheritance. Dihybrid Cross:
33 2. Student s will identify, analyze, and/or predict inheritance patterns cause by various models of inheritance. Patterns of Inheritance: Sex Chromosomes: 23 pairs, XY = males, XX = females Sex-Linked Traits: traits linked with particular sexes, X-linked traits are inherited on X chromosome from mother (examples: hemophilia, color-blindness, baldness); more common in males since females have another X Multiple Alleles: presence of more than two alleles for a trait (eye color) Polygenic Trait: one trait controlled by many genes (hair color, skin color); genes may be on the same chromosome or different
34 2. Student s will identify, analyze, and/or predict inheritance patterns cause by various models of inheritance. Patterns of Inheritance (Continued): Codominance: phenotypes of both homozygous parents are produced in heterozygous offspring so both alleles are expressed (black + white chickens = checkered chicken; sickle cell anemia) Incomplete Dominance: phenotype of a heterozygote is a mix of the two homozygous parents; neither allele is dominant, but combine to display both traits (white flower + red flower = pink flower)
35 2. Student s will identify, analyze, and/or predict inheritance patterns cause by various models of inheritance. A pedigree may be used to show patterns of inheritance squares = males and circles = females shaded = affected, halfshaded = carrier
Cell Division: the process of copying and dividing entire cells The cell grows, prepares for division, and then divides to form new daughter cells.
Mitosis & Meiosis SC.912.L.16.17 Compare and contrast mitosis and meiosis and relate to the processes of sexual and asexual reproduction and their consequences for genetic variation. 1. Students will describe
Meiosis and Mendel. Chapter 6
Meiosis and Mendel Chapter 6 6.1 CHROMOSOMES AND MEIOSIS Key Concept Gametes have half the number of chromosomes that body cells have. Body Cells vs. Gametes You have body cells and gametes body cells
BENCHMARK 1 STUDY GUIDE SPRING 2017
BENCHMARK 1 STUDY GUIDE SPRING 2017 Name: There will be semester one content on this benchmark as well. Study your final exam review guide from last semester. New Semester Material: (Chapter 10 Cell Growth
Lesson Overview Meiosis
11.4 THINK ABOUT IT As geneticists in the early 1900s applied Mendel s laws, they wondered where genes might be located. They expected genes to be carried on structures inside the cell, but which structures?
Essential Questions. Meiosis. Copyright McGraw-Hill Education
Essential Questions How does the reduction in chromosome number occur during meiosis? What are the stages of meiosis? What is the importance of meiosis in providing genetic variation? Meiosis Vocabulary
is the scientific study of. Gregor Mendel was an Austrian monk. He is considered the of genetics. Mendel carried out his work with ordinary garden.
11-1 The 11-1 Work of Gregor Mendel The Work of Gregor Mendel is the scientific study of. Gregor Mendel was an Austrian monk. He is considered the of genetics. Mendel carried out his work with ordinary
Meiosis. Two distinct divisions, called meiosis I and meiosis II
Meiosis A process in which the number of chromosomes per cell is cut in half through the separation of homologous chromosomes to form gametes, or sex cells Two distinct divisions, called meiosis I and
CELL GROWTH AND DIVISION. Chapter 10
CELL GROWTH AND DIVISION Chapter 10 Cell division = The formation of 2 daughter cells from a single parent cell Increases ratio of surface area to volume for each cell Allows for more efficient exchange
11-4 Meiosis Meiosis. Slide 1 of 35. Copyright Pearson Prentice Hall
11-4 Meiosis 1 of 35 Each organism must inherit a single copy of every gene from each of its parents. Gametes are formed by a process that separates the two sets of genes so that each gamete ends up with
Guided Notes Unit 6: Classical Genetics
Name: Date: Block: Chapter 6: Meiosis and Mendel I. Concept 6.1: Chromosomes and Meiosis Guided Notes Unit 6: Classical Genetics a. Meiosis: i. (In animals, meiosis occurs in the sex organs the testes
Reinforcement Unit 3 Resource Book. Meiosis and Mendel KEY CONCEPT Gametes have half the number of chromosomes that body cells have.
6.1 CHROMOSOMES AND MEIOSIS KEY CONCEPT Gametes have half the number of chromosomes that body cells have. Your body is made of two basic cell types. One basic type are somatic cells, also called body cells,
Chapter 11 Meiosis and Sexual Reproduction
Chapter 11 Meiosis and Sexual S Section 1: S Gamete: Haploid reproductive cell that unites with another haploid reproductive cell to form a zygote. S Zygote: The cell that results from the fusion of gametes
THINK ABOUT IT. Lesson Overview. Meiosis. As geneticists in the early 1900s applied Mendel s laws, they wondered where genes might be located.
Notes THINK ABOUT IT As geneticists in the early 1900s applied Mendel s laws, they wondered where genes might be located. They expected genes to be carried on structures inside the cell, but which structures?
Mitosis and Genetics Study Guide Answer Key
Mitosis and Genetics Study Guide Answer Key 1. Which of the following is true of Interphase? a. It is part of Meiosis b. It occurs before Meiosis c. The cell does normal cell activities during interphase
Objective 3.01 (DNA, RNA and Protein Synthesis)
Objective 3.01 (DNA, RNA and Protein Synthesis) DNA Structure o Discovered by Watson and Crick o Double-stranded o Shape is a double helix (twisted ladder) o Made of chains of nucleotides: o Has four types
Unit 4 Review - Genetics. UNIT 4 Vocabulary topics: Cell Reproduction, Cell Cycle, Cell Division, Genetics
Unit 4 Review - Genetics Sexual vs. Asexual Reproduction Mendel s Laws of Heredity Patterns of Inheritance Meiosis and Genetic Variation Non-Mendelian Patterns of Inheritance Cell Reproduction/Cell Cycle/
Sexual Reproduction and Genetics
Chapter Test A CHAPTER 10 Sexual Reproduction and Genetics Part A: Multiple Choice In the space at the left, write the letter of the term, number, or phrase that best answers each question. 1. How many
Meiosis and Sexual Reproduction Chapter 11. Reproduction Section 1
Meiosis and Sexual Reproduction Chapter 11 Reproduction Section 1 Reproduction Key Idea: An individual formed by asexual reproduction is genetically identical to its parent. Asexual Reproduction In asexual
Genetics (patterns of inheritance)
MENDELIAN GENETICS branch of biology that studies how genetic characteristics are inherited MENDELIAN GENETICS Gregory Mendel, an Augustinian monk (1822-1884), was the first who systematically studied
Name Date Class. Meiosis I and Meiosis II
Concept Mapping Meiosis I and Meiosis II Complete the events chains about meiosis I and meiosis II. These terms may be used more than once: chromosomes, condense, cytokinesis, equator, line up, nuclei,
Science 9 Unit 2 pack: Reproduction
Science 9 Unit 2 pack: Reproduction Name Ch 4: The Nucleus Ch 5: Mitosis Ch 6: Meiosis Students will develop an understanding of the processes of cell division as they pertain to reproduction. 0 Section
Sexual Reproduction. The two parent cells needed for sexual reproduction are called gametes. They are formed during a process known as meiosis.
Sexual Reproduction Recall that asexual reproduction involves only one parent cell. This parent cell divides to produce two daughter cells that are genetically identical to the parent. Sexual reproduction,
Outline for today s lecture (Ch. 13)
Outline for today s lecture (Ch. 13) Sexual and asexual life cycles Meiosis Origins of Genetic Variation Independent assortment Crossing over ( recombination ) Heredity Transmission of traits between generations
Cell Reproduction Review
Name Date Period Cell Reproduction Review Explain what is occurring in each part of the cell cycle --- G 0, G1, S, G2, and M. 1 CELL DIVISION Label all parts of each cell in the cell cycle and explain
Unit 6 : Meiosis & Sexual Reproduction
Unit 6 : Meiosis & Sexual Reproduction 2006-2007 Cell division / Asexual reproduction Mitosis produce cells with same information identical daughter cells exact copies clones same number of chromosomes
EOC - Unit 4 Review - Genetics
EOC - Unit 4 Review - Genetics Part A: Benchmark Standard SC.912.L.16.1 Use Mendel s laws of segregation and independent assortment to analyze patterns of inheritance. Also Assesses SC.912.L.16.2 Discuss
Name Class Date. Pearson Education, Inc., publishing as Pearson Prentice Hall. 33
Chapter 11 Introduction to Genetics Chapter Vocabulary Review Matching On the lines provided, write the letter of the definition of each term. 1. genetics a. likelihood that something will happen 2. trait
MEIOSIS DR. A. TARAB DEPT. OF BIOCHEMISTRY HKMU
MEIOSIS DR. A. TARAB DEPT. OF BIOCHEMISTRY HKMU Meiosis is a special type of cell division necessary for sexual reproduction in eukaryotes such as animals, plants and fungi The number of sets of chromosomes
Bellwork. Many organisms reproduce via asexual and sexual reproduction. How would we look if we reproduced mitotically?
Bellwork Many organisms reproduce via asexual and sexual reproduction. How would we look if we reproduced mitotically? SC.912.L.16.17 Meiosis Functions in Sexual Reproduction Other Standards Addressed:
Sexual Reproduction and Genetics
10 Sexual Reproduction and Genetics section 1 Meiosis Before You Read Think about the traits that make people unique. Some people are tall, while others are short. People can have brown, blue, or green
Gametes are the reproductive cells - the egg or the sperm. Gametes.
Meiosis Meiosis is the type of cell division for that produces the cells ( ) which are also known as gametes. Two important characteristics of meiosis is that it reduces the number of chromosomes to half
Meiosis. The form of cell division by which gametes, with half the regular number of chromosomes, are produced.
MEIOSIS Meiosis The form of cell division by which gametes, with half the regular number of chromosomes, are produced. diploid (2n) haploid (n) (complete set of chromosomes) (half the regular number of
Anaphase, Telophase. Animal cells divide their cytoplasm by forming? Cleavage furrow. Bacteria, Paramecium, Amoeba, etc. reproduce by...
The 4 phases of mitosis Animal cells divide their cytoplasm by forming? Bacteria, Paramecium, Amoeba, etc. reproduce by... Cell which after division is identical to the original is called a Prophase, Metaphase,
Name Class Date. Term Definition How I m Going to Remember the Meaning
11.4 Meiosis Lesson Objectives Contrast the number of chromosomes in body cells and in gametes. Summarize the events of meiosis. Contrast meiosis and mitosis. Describe how alleles from different genes
Unit 5: Chapter 11 Test Review
Name: Date: Period: Unit 5: Chapter 11 Test Review 1. Vocabulary you should know. Recommendation (optional): make flashcards, or write the definition down. Make sure you understand the meanings of all
MEIOSIS CELL DIVISION Chapter
Section 6.1: Meiosis MEIOSIS CELL DIVISION Chapter 6.1 6.2 WHAT DETERMINES WHAT YOU LOOK LIKE? Meiosis Animation Meiosis creates 4 genetically different gametes (haploid) Mitosis creates 2 identical daughter
CH 13 Meiosis & Sexual Life Cycles
CH 13 Meiosis & Sexual Life Cycles AP Biology 2005-2006 Cell division / Asexual reproduction Mitosis produce cells with same information identical daughter cells exact copies clones same amount of DNA
Chapter 11: The Continuity of Life: Cellular Reproduction
Chapter 11: The Continuity of Life: Cellular Reproduction Chapter 11: Cellular Reproduction What is Cellular Reproduction? Answer: The division of a parent cell into two daughter cells Requirements of
Unit 2: Cellular Chemistry, Structure, and Physiology Module 5: Cellular Reproduction
Unit 2: Cellular Chemistry, Structure, and Physiology Module 5: Cellular Reproduction NC Essential Standard: 1.2.2 Analyze how cells grow and reproduce in terms of interphase, mitosis, and cytokinesis
Chapter 11: The Continuity of Life: Cellular Reproduction. What is Cellular Reproduction?
Chapter 11: The Continuity of Life: Cellular Reproduction What is Cellular Reproduction? Answer: The division of a parent cell into two daughter cells Requirements of Each Daughter Cell: 1) Necessary genomic
The Cell Cycle. The Cell Cycle
The Cell Cycle Cells divide by Mitosis or Meiosis. Mitosis allows the organism to replace cells that have died or aren't working, and is how living things grow. It makes an exact copy of the parent cell.
Mitosis & Meiosis. PPT Questions. 4. Why must each new cell get a complete copy of the original cell s DNA?
1. From where do new cells arise? Mitosis & Meiosis PPT Questions 2. Why does the body constantly make new cells? 3. Is cell division the same in all cells? Explain. 4. Why must each new cell get a complete
Sexual and Asexual Reproduction. Cell Reproduction TEST Friday, 11/13
Sexual and Asexual Reproduction Cell Reproduction TEST Friday, 11/13 How many chromosomes do humans have? What are Chromosomes? How many chromosomes came from your mom? How many chromosomes came from your
1. Contains the sugar ribose instead of deoxyribose. 2. Single-stranded instead of double stranded. 3. Contains uracil in place of thymine.
Protein Synthesis & Mutations RNA 1. Contains the sugar ribose instead of deoxyribose. 2. Single-stranded instead of double stranded. 3. Contains uracil in place of thymine. RNA Contains: 1. Adenine 2.
Natural Selection. Population Dynamics. The Origins of Genetic Variation. The Origins of Genetic Variation. Intergenerational Mutation Rate
Natural Selection Population Dynamics Humans, Sickle-cell Disease, and Malaria How does a population of humans become resistant to malaria? Overproduction Environmental pressure/competition Pre-existing
1. The process in which ( ) are produced. 2. Males produce cells and females produce cells through meiosis
Name: Aim 35: What is Meiosis? Date: I. What is Meiosis? What is Meiosis? Which organisms undergo Meiosis? Where does Meiosis occur? What does Meiosis produce? What is Meiosis also known as? 1. The process
GENERAL SAFETY: Follow your teacher s directions. Do not work in the laboratory without your teacher s supervision.
Name: Bio AP Lab: Cell Division B: Mitosis & Meiosis (Modified from AP Biology Investigative Labs) BACKGROUND: One of the characteristics of living things is the ability to replicate and pass on genetic
Introduction to Genetics
Introduction to Genetics We ve all heard of it, but What is genetics? Genetics: the study of gene structure and action and the patterns of inheritance of traits from parent to offspring. Ancient ideas
Name Class Date. KEY CONCEPT Gametes have half the number of chromosomes that body cells have.
Section 1: Chromosomes and Meiosis KEY CONCEPT Gametes have half the number of chromosomes that body cells have. VOCABULARY somatic cell autosome fertilization gamete sex chromosome diploid homologous
Biology Chapter 11: Introduction to Genetics
Biology Chapter 11: Introduction to Genetics Meiosis - The mechanism that halves the number of chromosomes in cells is a form of cell division called meiosis - Meiosis consists of two successive nuclear
KEY: Chapter 9 Genetics of Animal Breeding.
KEY: Chapter 9 Genetics of Animal Breeding. Answer each question using the reading assigned to you. You can access this information by clicking on the following URL: https://drive.google.com/a/meeker.k12.co.us/file/d/0b1yf08xgyhnad08xugxsnfvba28/edit?usp=sh
Chromosome duplication and distribution during cell division
CELL DIVISION AND HEREDITY Student Packet SUMMARY IN EUKARYOTES, HERITABLE INFORMATION IS PASSED TO THE NEXT GENERATION VIA PROCESSES THAT INCLUDE THE CELL CYCLE, MITOSIS /MEIOSIS AND FERTILIZATION Mitosis
THE CELL CYCLE & MITOSIS. Asexual Reproduction: Production of genetically identical offspring from a single parent.
THE CELL CYCLE & MITOSIS Asexual Reproduction: Production of genetically identical offspring from a single parent. Sexual Reproduction: The fusion of two separate parent cells that produce offspring with
The division of a unicellular organism reproduces an entire organism, increasing the population. Here s one amoeba dividing into 2.
1. Cell division functions in 3 things : reproduction, growth, and repair The division of a unicellular organism reproduces an entire organism, increasing the population. Here s one amoeba dividing into
Chapter 13. Meiosis & Sexual Reproduction. AP Biology
Chapter 13. Meiosis & Sexual Reproduction Cell division / Asexual reproduction Mitosis produce cells with same information identical daughter cells exact copies clones same amount of DNA same number of
Observing Patterns in Inherited Traits
Observing Patterns in Inherited Traits Chapter 10 Before you go on Review the answers to the following questions to test your understanding of previous material. 1. Most organisms are diploid. What does
Meiosis & Sexual Reproduction
Meiosis & Sexual Reproduction 2007-2008 Turn in warm ups to basket! Prepare for your test! Get out your mitosis/meiosis foldable After the test: New vocabulary! 2/23/17 Draw and label the parts of the
Meiosis and Sexual Life Cycles
CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 10 Meiosis and Sexual Life Cycles Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION
Meiosis and Sexual Life Cycles
Chapter 13 Meiosis and Sexual Life Cycles PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from
Unit 3 - Molecular Biology & Genetics - Review Packet
Name Date Hour Unit 3 - Molecular Biology & Genetics - Review Packet True / False Questions - Indicate True or False for the following statements. 1. Eye color, hair color and the shape of your ears can
Chapter 8. The Continuity of Life: How Cells Reproduce. Gregory Ahearn. Lectures by. Ammended by John Crocker. University of North Florida
Chapter 8 The Continuity of Life: How Cells Reproduce Lectures by Gregory Ahearn University of North Florida Ammended by John Crocker Copyright 2009 Pearson Education, Inc. Review Questions for Chapters
Meiosis & Sexual Reproduction
Meiosis & Sexual Reproduction 2007-2008 Cell division / Asexual reproduction Mitosis produce cells with same information identical daughter cells exact copies clones same amount of DNA same number of chromosomes
Meiosis and Sexual Life Cycles
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 13 Meiosis and Sexual Life Cycles
Name Date Class CHAPTER 10. Section 1: Meiosis
Name Date Class Study Guide CHAPTER 10 Section 1: Meiosis In your textbook, read about meiosis I and meiosis II. Label the diagrams below. Use these choices: anaphase I anaphase II interphase metaphase
Honors Biology Test Chapter 8 Mitosis and Meiosis
Honors Biology Test Chapter 8 Mitosis and Meiosis 1. In mitosis, if a parent cell has 16 chromosomes, each daughter cell will have how many chromosomes? a. 64 b. 32 c. 16 d. 8 e. 4 2. Chromatids that are
Sexual reproduction & Meiosis
Sexual reproduction & Meiosis Sexual Reproduction When two parents contribute DNA to the offspring The offspring are the result of fertilization the unification of two gametes (sperm & egg) Results in
biology Slide 1 of 35 End Show Copyright Pearson Prentice Hall
biology 1 of 35 Why do you look a little like your mom and your dad? Why do you look a little like your grandma but your brother or sister looks a little like your grandpa? How is the way you look and
Meiosis and Sexual Reproduction. Chapter 9
Meiosis and Sexual Reproduction Chapter 9 9.1 Genes and Alleles Genes Sequences of DNA that encode heritable traits Alleles Slightly different forms of the same gene Each specifies a different version
SEXUAL REPRODUCTION & MEIOSIS
SEXUAL REPRODUCTION & MEIOSIS Living organisms are distinguished by their ability to reproduce their own kind. Offspring resemble their parents more than they do less closely related individuals of the
CELL CYCLE, MITOSIS AND MEIOSIS NOTES
CELL CYCLE, MITOSIS AND MEIOSIS NOTES DNA - Genetic information is stored in the DNA strand in the form of genes. DNA stands for deoxyribose nucleic acid Genes located on the DNA strand 2 Types of DNA
Life Cycles, Meiosis and Genetic Variability24/02/2015 2:26 PM
Life Cycles, Meiosis and Genetic Variability iclicker: 1. A chromosome just before mitosis contains two double stranded DNA molecules. 2. This replicated chromosome contains DNA from only one of your parents
11/18/2016. Meiosis. Dr. Bertolotti. How is meiosis different from mitosis?
Meiosis Dr. Bertolotti How is meiosis different from mitosis? 1 3 Types of Cell Division 1. Binary fission- cell division in prokaryotes 2. Cell Cycle (with Mitosis)- cell division in eukaryotes to form
Biology, 7e (Campbell) Chapter 13: Meiosis and Sexual Life Cycles
Biology, 7e (Campbell) Chapter 13: Meiosis and Sexual Life Cycles Chapter Questions 1) What is a genome? A) the complete complement of an organism's genes B) a specific sequence of polypeptides within
Cell Cycle and Cell Division
Cell Cycle and Cell Division The Cell Cycle is the series of events that take place in the cell from one cell division to another. Cell Cycle includes: 1-Interphase 2-Mitosis 3-Cytokinesis Phases of the
This is DUE: Come prepared to share your findings with your group.
Biology 160 NAME: Reading Guide 11: Population Dynamics, Humans, Part I This is DUE: Come prepared to share your findings with your group. *As before, please turn in only the Critical Thinking questions
Genetics Notes. Chromosomes and DNA 11/15/2012. Structures that contain DNA, look like worms, can be seen during mitosis = chromosomes.
chromosomes Genetics Notes Chromosomes and Structures that contain, look like worms, can be seen during mitosis = chromosomes. Chromosomes: made of coiled around protiens. Accurate copying of chromosomes
Zoology Cell Division and Inheritance
Zoology Cell Division and Inheritance I. A Code for All Life A. Before Genetics - 1. If a very tall man married a short woman, you would expect their children to be intermediate, with average height. 2.
Chapter 13 Meiosis and Sexual Reproduction
Biology 110 Sec. 11 J. Greg Doheny Chapter 13 Meiosis and Sexual Reproduction Quiz Questions: 1. What word do you use to describe a chromosome or gene allele that we inherit from our Mother? From our Father?
Mitosis and. Meiosis. Presented by Kesler Science
Mitosis and Meiosis Presented by Kesler Science Essential Questions: 1. What are mitosis and meiosis? 2. What occurs at different phases in cell division? 3. How are mitosis and meiosis similar and different?
Meiosis. What is meiosis? How is it different from mitosis? Stages Genetic Variation
Meiosis What is meiosis? How is it different from mitosis? Stages Genetic Variation Reproduction Asexual reproduction resulting from mitosis (or a similar process) that involves only one parent; the offspring
Sexual Reproduction and Meiosis. Chapter 11
Sexual Reproduction and Meiosis Chapter 11 1 Sexual life cycle Made up of meiosis and fertilization Diploid cells Somatic cells of adults have 2 sets of chromosomes Haploid cells Gametes (egg and sperm)
CELL GROWTH & DIVISION. Preview (Honors)
CELL GROWTH & DIVISION Mitosis & Meiosis Preview (Honors) Read: Chapter 10-1 Page 256: Define ALL vocabulary Page 257: #1-10 & 14 Page 282: Define Section 11-4 vocabulary 1 Preview (Academic) Read: Chapter
Introduction to Mendelian Genetics. Packet #12
Introduction to Mendelian Genetics Packet #12 1 Friday, August 21, 2015 The Chromosome Theory of Inheritance The Chromosome Theory of Inheritance According to the chromosome theory of inheritance, the
Biology 1 Semester Review
Chapter 1 What is Science? 1 1 What Is Science? Key Concept The goal of science is to investigate and understand the natural world, to explain events in the natural world, and to use those explanations
Chapter 10.2 Notes. Genes don t exist free in the nucleus but lined up on a. In the body cells of animals and most plants, chromosomes occur in
Chapter 10.2 Notes NAME Honors Biology Organisms have tens of thousands of genes that determine individual traits Genes don t exist free in the nucleus but lined up on a Diploid and Haploid Cells In the
Meiosis & Sexual Life Cycle
Chapter 13. Meiosis & Sexual Life Cycle 1 Cell reproduction Mitosis produce cells with same information identical daughter cells exact copies (clones) same amount of DNA same number of chromosomes asexual
Section 11 1 The Work of Gregor Mendel
Chapter 11 Introduction to Genetics Section 11 1 The Work of Gregor Mendel (pages 263 266) What is the principle of dominance? What happens during segregation? Gregor Mendel s Peas (pages 263 264) 1. The
Advance Organizer. Topic: Mendelian Genetics and Meiosis
Name: Row Unit 8 - Chapter 11 - Mendelian Genetics and Meiosis Advance Organizer Topic: Mendelian Genetics and Meiosis 1. Objectives (What should I be able to do?) a. Summarize the outcomes of Gregor Mendel's
Meiosis. The sexy shuffling machine. LO: Describe the events of meiosis Explain how meiosis creates uniqueness Compare & contrast mitosis & meiosis
Meiosis The sexy shuffling machine LO: Describe the events of meiosis Explain how meiosis creates uniqueness Compare & contrast mitosis & meiosis http://www.youtube.com/watch?v=kvmb4js99ta Meiosis Intro
Homologous Chromosomes and Chromatids How many chromatids in a pair of duplicated homologous chromosomes? (instant math question) Meiosis
10.1 Meiosis Meiosis Section 10.1 ody ells & Gametes somatic = body do NOT pass on N to offspring 46 chromosomes (23 pairs) gametes = sex eggs (females) and sperm (males) pass on N to offspring 23 chromosomes,
Biology st lecture for test two/thursday
Biology 101 2 25 99 1 st lecture for test two/thursday DNA Structure and Replication We have 23 paternal chromosomes and 23 maternal chromosomes from dad and mom. The chromosomes are chosen randomly on
Interest Grabber. Analyzing Inheritance
Interest Grabber Section 11-1 Analyzing Inheritance Offspring resemble their parents. Offspring inherit genes for characteristics from their parents. To learn about inheritance, scientists have experimented
Meiosis and Life Cycles - 1
Meiosis and Life Cycles - 1 We have just finished looking at the process of mitosis, a process that produces cells genetically identical to the original cell. Mitosis ensures that each cell of an organism
What is a sex cell? How are sex cells made? How does meiosis help explain Mendel s results?
CHAPTER 6 3 Meiosis SECTION Heredity BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a sex cell? How are sex cells made? How does meiosis help explain
VOCABULARY somatic cell autosome fertilization gamete sex chromosome diploid homologous chromosome sexual reproduction meiosis
6.1 CHROMOSOMES AND MEIOSIS Study Guide KEY CONCEPT Gametes have half the number of chromosomes that body cells have. VOCABULARY somatic cell autosome fertilization gamete sex chromosome diploid homologous
Cell cycle, mitosis & meiosis. Chapter 6
Cell cycle, mitosis & meiosis Chapter 6 Why do cells divide? Asexual reproduction Growth Replacement / repair Cell division: The big picture Two steps Before cells can divide, DNA needs to replicate DNA
MEIOSIS LAB INTRODUCTION PART I: SIMULATION OF MEIOSIS EVOLUTION. Activity #9
AP BIOLOGY EVOLUTION Unit 1 Part 7 Chapter 13 Activity #9 NAME DATE PERIOD MEIOSIS LAB INTRODUCTION Meiosis involves two successive nuclear divisions that produce four haploid cells. Meiosis I is the reduction