Overview. Overview: Variations on a Theme. Offspring acquire genes from parents by inheriting chromosomes. Inheritance of Genes

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Overview. Overview: Variations on a Theme. Offspring acquire genes from parents by inheriting chromosomes. Inheritance of Genes"

Transcription

1 Chapter 13 Meiosis and Sexual Life Cycles Overview I. Cell Types II. Meiosis I. Meiosis I II. Meiosis II III. Genetic Variation IV. Reproduction Overview: Variations on a Theme Figure 13.1 Living organisms are distinguished by their ability to reproduce their own kind Genetics is the scientific study of heredity and variation Heredity is the transmission of traits from one generation to the next Variation is demonstrated by the differences in appearance that offspring show from parents and siblings Offspring acquire genes from parents by inheriting In a literal sense, children do not inherit particular physical traits from their parents It is genes that are actually inherited Inheritance of Genes Genes are the units of heredity, and are made up of segments of DNA Genes are passed to the next generation via reproductive cells called gametes (sperm and eggs) Each gene has a specific location called a locus on a certain chromosome Most DNA is packaged into 1

2 Comparison of Asexual and Sexual Reproduction Figure 13.2 In asexual reproduction, a single individual passes genes to its offspring without the fusion of gametes 0.5 mm A clone is a group of genetically identical individuals from the same parent In sexual reproduction, two parents give rise to offspring that have unique combinations of genes inherited from the two parents Bud (a) Hydra Parent (b) Redwoods Reproduction Fertilization Asexual reproduction: Parent cell divides into two daughter cells (similar to mitosis). The end result is a two daughter cells identical to parent cell Fertilization is the union between the sperm and the egg. Sexual reproduction: The union of two gametes (sex cells) to form a single zygote Eggs and Sperm are gametes Fertilized egg is zygote Zygote is different from gametes Cell Types Mitosis occurs in all the body s cells except the cells that are responsible for reproduction Gametes: are the cells that are responsible for reproduction All the rest of the body s cells are somatic cells 11 2

3 Gametes = reproductive cells Sperm and eggs are reproductive cells gametes Remember that we have 23 pairs of = 46 The cells that divide to produce gametes undergo meiosis If gametes (sperm and egg) combined with all these then the offspring will have 92 How do gametes overcome this problem? Before the gametes come together they need to reduce their number of in half. So instead of 23 pairs (46 ) they need to have 23 total. The answer to their problem is meiosis halving their number of Sets of Chromosomes in Human Cells Human somatic cells (any cell other than a gamete) have 23 pairs of A karyotype is an ordered display of the pairs of from a cell The two in each pair are called homologous, or homologs Chromosomes in a homologous pair are the same length and shape and carry genes controlling the same inherited characters Figure 13.3 APPLICATION TECHNIQUE Pair of homologous duplicated Centromere 5 m Sister chromatids Metaphase chromosome 3

4 Sex Chromosomes in Human Cells The sex, which determine the sex of the individual, are called X and Y Human females have a homologous pair of X (XX) Human males have one X and one Y chromosome The remaining 22 pairs of are called autosomes Sets of Chromosomes in Human Cells Each pair of homologous includes one chromosome from each parent The 46 in a human somatic cell are two sets of 23: one from the mother and one from the father A diploid cell (2n) has two sets of For humans, the diploid number is 46 (2n = 46) Terminology Diploid = Cells that contain two sets of. In humans, cells that have 46 or 23 pairs; all somatic cells are diploid (2n) Haploid = Cells that have one set of. In humans, cells that have 23 ; gametes are haploid (1n) Polyploidy = three sets of ; rare in animals, common in plants Meiosis is when a diploid cell divides to produce haploid reproductive cells Meiosis First the (DNA) are duplicated during Interphase Then there are two cell divisions Remember that mitosis had chromosome (DNA) duplication followed by one cell division DNA Replication DNA synthesis has occurred during interphase, each chromosome is replicated Remember that there are pairs, each chromosome has two chromatids just after DNA replication Each replicated chromosome consists of two identical sister chromatids 4

5 Figure n 6 Key Sister chromatids of one duplicated chromosome Maternal set of (n 3) Paternal set of (n 3) Centromere Meiosis The DNA has already replicated during interphase the have become duplicated In Meiosis the chromosome homologous pairs separate and the cell divides = 1 st cell division Then the chromatids separate and cell divide = 2 cd cell division Two nonsister chromatids in a homologous pair Pair of homologous (one from each set) The figures are going to show only one pair of but there are 23 pairs at the start Figure Interphase Figure Interphase Pair of homologous in diploid parent cell Pair of homologous in diploid parent cell Duplicated pair of homologous Chromosomes duplicate Duplicated pair of homologous Chromosomes duplicate Sister chromatids Diploid cell with duplicated Meiosis I Sister chromatids Diploid cell with duplicated 1 Homologous separate Haploid cells with duplicated Figure Interphase Meiosis I Meiosis II Pair of homologous in diploid parent cell Duplicated pair of homologous Sister chromatids 1 Chromosomes duplicate Homologous separate Haploid cells with duplicated 2 Sister chromatids separate Diploid cell with duplicated Remember Meiosis happens to form gametes the reproductive cells (sperm and eggs) The cells that produce the gametes start out diploid before meiosis, and will end up haploid There are two stages of Meiosis: Meiosis I and II Each Stage of Meiosis has Prophase, Metaphase, Anaphase, and Telophase Haploid cells with unduplicated 5

6 Meiosis Overview 1. DNA already replicated are duplicated (two chromatids), the cell is diploid (2n). This happened in Interphase. 2. Meiosis 1: homologous separate and the cell divides resulting in two haploid cells (1n) 3. Meiosis 2: The chromatids separate and then the cell divides resulting in four haploid cells (1n) BioFlix: Meiosis Homologous Chromosomes in Prophase I During Prophase I the homologous are attracted to each other and become associated with each other forming a tetrad. The process of homologous pairing up during prophase I is called synapsis. A tetrad contains two, both are duplicated so there are four chromatids. Crossing Over Prophase I: Duplicated homologous condense and intertwine this produces genetic variation Crossing over: genetic material is exchanged between the homologous The sites of crossing over are called chiasmata (singular, chiasma) Crossing Over Prophase I

7 Metaphase I Independent Assortment During Metaphase I homologous pairs of line up the at the center of the cell (the equator) The tetrads arrange themselves randomly this also gives genetic variation = independent assortment (alignment) 37 Metaphase I In metaphase I, tetrads line up at the metaphase plate, with one chromosome facing each pole Microtubules from one pole are attached to the kinetochore of one chromosome of each tetrad Microtubules from the other pole are attached to the kinetochore of the other chromosome Independent Assortment Anaphase I 42 7

8 Anaphase I Telophase I In anaphase I, pairs of homologous separate One chromosome moves toward each pole, guided by the spindle apparatus Sister chromatids remain attached at the centromere and move as one unit toward the pole 44 Telophase I and Cytokinesis In the beginning of telophase I, each half of the cell has a haploid set of ; each chromosome is duplicated, still consisting of two sister chromatids Cytokinesis usually occurs simultaneously, forming two haploid daughter cells End of Telophase I - Cytokinesis We now have two haploid cells (1n) which means there are 23 total in each cell The are still in the duplicated form two chromatids Note: not all species have cytokinesis after telophase I Interphase Interphase between Meiosis I and II is brief. The S phase does not take place Preparation for Meiosis II: centrosome replicates Meiosis II Prophase II: The 23 are already condensed. The Nuclear membrane dissolves. Metaphase II: Chromosomes line up at the equator Anaphase II: Chromatids separate Telophase II and cytokinesis: Cells separate Now there are four haploid cells: each has 23 (not in the duplicated state) 8

9 Figure 13.8b Prophase II Metaphase II Anaphase II Telophase II and Cytokinesis Prophase II During another round of cell division, the sister chromatids finally separate; four haploid daughter cells result, containing unduplicated. Sister chromatids separate Haploid daughter cells forming 50 Metaphase II Anaphase II Telophase II At the end of Meiosis I how many cells are there? 1. One 2. Two 3. Three 4. Four 25% 25% 25% 25% 53 One Two Three Four 9

10 At the end of Meiosis I are these cells haploid or diploid? At the end of Meiosis I, how many are there in each cell? 1. Haploid 2. Diploid Haploid Diploid At the end of Meiosis I, are the chomosomes in the duplicated state? At the end of Meiosis II how many cells are there? 1. Yes 2. No 1. One 2. Two 3. Three 4. Four 25% 25% 25% 25% Yes No One Two Three Four At the end of Meiosis II are these cells haploid or diploid? At the end of Meiosis II, how many are there in each cell? 1. Haploid 2. Diploid Haploid Diploid

11 At the end of Meiosis II, are the in the duplicated state? Three events are unique to meiosis, and all three occur in meiosis l 1. Yes 2. No Synapsis and crossing over in prophase I: Homologous physically connect and exchange genetic information At the metaphase plate, there are paired homologous (tetrads), instead of individual replicated At anaphase I, it is homologous, instead of sister chromatids, that separate Yes No Genetic diversity through meiosis Independent Assortment There are three places in this process that contribute to the genetic diversity of the offspring. Prophase I: The pairs of crossing over. Metaphase I: The way the line up on the equator is random = independent assortment 64 Figure Prophase I of meiosis Pair of homologs Nonsister chromatids held together during synapsis The number of combinations possible when assort independently into gametes is 2 n, where n is the haploid number For humans (n = 23), there are more than 8 million (2 23 ) possible combinations of 11

12 Figure Prophase I of meiosis Pair of homologs Nonsister chromatids held together during synapsis Figure Prophase I of meiosis Pair of homologs Nonsister chromatids held together during synapsis Chiasma Chiasma Centromere Centromere TEM TEM Anaphase I Figure Prophase I of meiosis Pair of homologs Nonsister chromatids held together during synapsis Figure 13.11a Chiasma Chiasma Centromere TEM Anaphase I Centromere Anaphase II TEM Random Fertilization Random fertilization adds to genetic variation because any sperm can fuse with any ovum (unfertilized egg) The fusion of two gametes (each with 8.4 million possible chromosome combinations from independent assortment) produces a zygote with any of about 70 trillion diploid combinations Animation: Genetic Variation Rightclick slide / select Play 12

13 Meoisis and Gender The gametes now contain 23, haploid, and are not in the duplicated form One of these will be a sex chromosome Eggs will contain a X chromosome Sperms will contain either a X or a Y chromosome X and Y are non-homologous Spermatogenesis In the male testes sperm are produced. One cell produces 4 sperm. Each sperm has 23, they are not in the duplicated form The sperm can have either an X or a Y sex chromosome The sperm have a small head and a long tail = flagellum for locomotion 13

14 The sperm need to contain the genetic material and deliver it to the egg. The heads contain the and lots of mitochondria to power the flagella About 400 million sperm are produced each day Egg Formation cont All of the cells that produce the eggs are made before the female mother is even born. So when a girl is born, her ovaries contain all the cells that produce her eggs Each month one of these cells will leave the ovary and go on to mature and produce the egg and polar bodies Egg Formation The ovaries in females produce eggs One cell will produce one egg and three non-functioning polar bodies The one egg gets most of the cytoplasm, leaving the other three cell not able to survive The one egg has 23, with a X sex chromosome The one egg is large enough to support the embryo Fertilization Fertilization is the union between the sperm and the egg. Results in a diploid zygote. 14

15 Review of Mitosis vs Meiosis Mitosis and Meiosis both start with a diploid cell (46, 23 pairs) Before both Mitosis and Meiosis the DNA replicates during interphase, forming duplicated, each containing two chromatids Mitosis occurs in somatic cells (cells other than those that produce the gametes), Meiosis produces gametes Mitosis During Mitosis: The chromatids are separated to produce two cells, each with 46, 23 pairs of non duplicated These cells are diploid (2n) cells There is no exchanging of genetic material Meiosis Two stages Meiosis I: the pairs of line up and the are separated, resulting in 2 cells, each with 23, in the duplicated state = haploid cells Meiosis II: The chromatids are separated producing two haploid cells that contain 23 non duplicated. One original cell produces four haploid cells Important concepts Know all the vocabulary presented in the lecture Know which cells undergo mitosis vs meiosis How is genetic diversity introduced into meiosis? What events contribute to genetic diversity and when (what stage of meiosis) do these events take place How is the gender of the offspring determined

16 Important Concepts How many functioning sperm are produced from one spermatocyte. What sex can a sperm have? How many functioning eggs are produced from one oocyte? What sex do eggs have? Important Concepts for Lab Exam For Meiosis: Know each stage, the order of the stages, and what happens in each stage. Know what the end result is of meiosis I and II Know what state the cell and the are in at the beginning and end of mitosis, meiosis I and at the end of meiosis II. For example: Are the cells haploid or diploid? Are the duplicated, or not duplicated? How many are there in the cell? Are they in pairs? 16

Meiosis and Sexual Life Cycles

Meiosis and Sexual Life Cycles CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 10 Meiosis and Sexual Life Cycles Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

Meiosis and Sexual Life Cycles

Meiosis and Sexual Life Cycles 13 Meiosis and Sexual Life Cycles Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Variations on a Theme Living

More information

Meiosis and Sexual Life Cycles

Meiosis and Sexual Life Cycles LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 13 Meiosis and Sexual Life Cycles

More information

Meiosis and Sexual Life Cycles

Meiosis and Sexual Life Cycles Chapter 13 Meiosis and Sexual Life Cycles PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

BIOLOGY. Meiosis and Sexual Life Cycles CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Meiosis and Sexual Life Cycles CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 13 Meiosis and Sexual Life Cycles Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Variations on a Theme Living

More information

Meiosis and Sexual Life Cycles

Meiosis and Sexual Life Cycles Chapter 13 Meiosis and Sexual Life Cycles PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Chapter 13: Meiosis and Sexual Life Cycles Overview: Hereditary Similarity and Variation

Chapter 13: Meiosis and Sexual Life Cycles Overview: Hereditary Similarity and Variation Chapter 13: Meiosis and Sexual Life Cycles Overview: Hereditary Similarity and Variation Living organisms Are distinguished by their ability to reproduce their own kind Biology, 7 th Edition Neil Campbell

More information

Cell Division THE MAJOR STEPS OF CELL DIVISION: 10/28/2013. When does DNA replicate? The first step of cell division is DNA replication:

Cell Division THE MAJOR STEPS OF CELL DIVISION: 10/28/2013. When does DNA replicate? The first step of cell division is DNA replication: Cell Division Biology 105 Laboratory 8 THE MAJOR STEPS OF CELL DIVISION: When does DNA replicate? The first step of cell division is DNA replication: This occurs just prior to cell division. Cells need

More information

Bio 105: Cell Division

Bio 105: Cell Division Cell Division Bio 105: Cell Division Starts with DNA Replication Laboratory 8 DNA Replication When does DNA replicate? Just prior to cell division Multicellular Organisms Grow Replace old cells Unicellular

More information

Meiosis and Sexual Life Cycles

Meiosis and Sexual Life Cycles Chapter 13 Meiosis and Sexual Life Cycles PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

You have body cells and gametes Body cells are known as somatic cells. Germ cells develop into gametes or sex cells. Germ cells are located in the

You have body cells and gametes Body cells are known as somatic cells. Germ cells develop into gametes or sex cells. Germ cells are located in the MEIOSIS You have body cells and gametes Body cells are known as somatic cells. Germ cells develop into gametes or sex cells. Germ cells are located in the ovaries and testes. Gametes are sex cells: egg

More information

For a species to survive, it must REPRODUCE! Ch 13 NOTES Meiosis. Genetics Terminology: Homologous chromosomes

For a species to survive, it must REPRODUCE! Ch 13 NOTES Meiosis. Genetics Terminology: Homologous chromosomes For a species to survive, it must REPRODUCE! Ch 13 NOTES Meiosis Genetics Terminology: Autosomes Somatic cell Gamete Karyotype Homologous chromosomes Meiosis Sex chromosomes Diploid Haploid Zygote Synapsis

More information

Meiosis. The form of cell division by which gametes, with half the regular number of chromosomes, are produced.

Meiosis. The form of cell division by which gametes, with half the regular number of chromosomes, are produced. MEIOSIS Meiosis The form of cell division by which gametes, with half the regular number of chromosomes, are produced. diploid (2n) haploid (n) (complete set of chromosomes) (half the regular number of

More information

SEXUAL REPRODUCTION & MEIOSIS

SEXUAL REPRODUCTION & MEIOSIS SEXUAL REPRODUCTION & MEIOSIS Living organisms are distinguished by their ability to reproduce their own kind. Offspring resemble their parents more than they do less closely related individuals of the

More information

Sexual Cell Reproduction Chapter 17

Sexual Cell Reproduction Chapter 17 Sexual Cell Reproduction Chapter 17 1 The Importance of Meiosis Meiosis is a two stage cell division in which the chromosome number of the parental cell is reduced by half. Meiosis is the process by which

More information

Ch. 13 Meiosis & Sexual Life Cycles

Ch. 13 Meiosis & Sexual Life Cycles Introduction Ch. 13 Meiosis & Sexual Life Cycles 2004-05 Living organisms are distinguished by their ability to reproduce their own kind. -Offspring resemble their parents more than they do less closely

More information

Heredity Variation Genetics Meiosis

Heredity Variation Genetics Meiosis Genetics Warm Up Exercise: -Using your previous knowledge of genetics, determine what maternal genotype would most likely yield offspring with such characteristics. -Use the genotype that you came up with

More information

Ladies and Gentlemen.. The King of Rock and Roll

Ladies and Gentlemen.. The King of Rock and Roll Ladies and Gentlemen.. The King of Rock and Roll Learning Objectives: The student is able to construct an explanation, using visual representations or narratives, as to how DNA in chromosomes is transmitted

More information

Lecture 12 - Meiosis

Lecture 12 - Meiosis Lecture 12 - Meiosis In this lecture Types of reproduction Alternation of generations Homologous chromosomes and alleles Meiosis mechanism Sources of genetic variation Meiosis and Mitosis Mitosis the production

More information

Meiosis and Sexual Life Cycles

Meiosis and Sexual Life Cycles Chapter 13 Meiosis and Sexual Life Cycles Lecture Outline Overview Living organisms are distinguished by their ability to reproduce their own kind. Offspring resemble their parents more than they do less

More information

Learning Objectives LO 3.7 The student can make predictions about natural phenomena occurring during the cell cycle. [See SP 6.4]

Learning Objectives LO 3.7 The student can make predictions about natural phenomena occurring during the cell cycle. [See SP 6.4] Big Ideas 3.A.2: In eukaryotes, heritable information is passed to the next generation via processes that include the cell cycle and mitosis or meiosis plus fertilization. CHAPTER 13 MEIOSIS AND SEXUAL

More information

Meiosis and Sexual Reproduction. Chapter 10. Halving the Chromosome Number. Homologous Pairs

Meiosis and Sexual Reproduction. Chapter 10. Halving the Chromosome Number. Homologous Pairs Meiosis and Sexual Reproduction Chapter 10 Outline Reduction in Chromosome Number Homologous Pairs Meiosis Overview Genetic Recombination Crossing-Over Independent Assortment Fertilization Meiosis I Meiosis

More information

Chapter 13: Meiosis & Sexual Life Cycles

Chapter 13: Meiosis & Sexual Life Cycles Chapter 13: Meiosis & Sexual Life Cycles What you must know The difference between asexual and sexual reproduction. The role of meiosis and fertilization in sexually reproducing organisms. The importance

More information

11-4 Meiosis. Chromosome Number

11-4 Meiosis. Chromosome Number 11-4 Meiosis Chromosome Number Sexual reproduction shuffles and recombines genes from two parents. During gametogenesis, genes are segregated and assorted (shuffled) into gemetes, and at fertilization,

More information

Heredity Variation Genetics Meiosis

Heredity Variation Genetics Meiosis Genetics Warm Up Exercise: -Using your previous knowledge of genetics, determine what maternal genotype would most likely yield offspring with such characteristics. -Use the genotype that you came up with

More information

Chapter 13 Meiosis and Sexual Life Cycles

Chapter 13 Meiosis and Sexual Life Cycles Chapter 13 Meiosis and Sexual Life Cycles Question? Does Like really beget Like? The offspring will resemble the parents, but they may not be exactly like them. This chapter deals with reproduction of

More information

LECTURE 10A: MEIO S S

LECTURE 10A: MEIO S S LECTURE 10A: MEIOSIS Meiosis Definition INTRODUCTION 1. Meiosis is the production of gametes, which is a reduction division which means a diploid gamete produces haploid gametes - from a full complement

More information

Cell Division (Meiosis)

Cell Division (Meiosis) Cell Division (Meiosis) Meiosis The form of cell division by which gametes, with half the number of chromosomes, are produced. Diploid (2n) haploid (n) Meiosis is sexual reproduction. Two divisions (meiosis

More information

Almost all human cells contain 46 chromosomes, and are diploid (2n). Q: If a sperm cell has 46 chromosomes (2n) & an egg cell has 46 chromosomes

Almost all human cells contain 46 chromosomes, and are diploid (2n). Q: If a sperm cell has 46 chromosomes (2n) & an egg cell has 46 chromosomes Almost all human cells contain 46 chromosomes, and are diploid (2n). Q: If a sperm cell has 46 chromosomes (2n) & an egg cell has 46 chromosomes (2n), when they combine during fertilization, how many chromosomes

More information

Agenda. 1. Lesson Learning Goals 2. Meiosis 3. Meiosis Bingo

Agenda. 1. Lesson Learning Goals 2. Meiosis 3. Meiosis Bingo Meiosis SBI 3U Agenda 1. Lesson Learning Goals 2. Meiosis 3. Meiosis Bingo Learning Goals By the end of today s lesson, you will be able: To use proper vocabulary related to this unit, including meiosis,

More information

MEIOSIS C H A P T E R 1 3

MEIOSIS C H A P T E R 1 3 MEIOSIS CHAPTER 13 CENTRAL DOGMA OF BIOLOGY DNA RNA Protein OFFSPRING ACQUIRE GENES FROM PARENTS Genes are segments of DNA that program specific traits. Genetic info is transmitted as specific sequences

More information

Reproduction & Cell Types

Reproduction & Cell Types Reproduction & Cell Types TYPES OF REPRODUCTION Asexual Relies on MITOSIS All of the parent s DNA goes to the offspring Sexual Relies on MEIOSIS Used to create sex cells TYPES OF CELLS Body Cells Includes

More information

Meiosis. Introduction. A life cycle is the generation-to-generation sequence of stages in the reproductive history of an organism.

Meiosis. Introduction. A life cycle is the generation-to-generation sequence of stages in the reproductive history of an organism. Meiosis The pomegranate (Punica granatum) is believed to have originated near Iran and southern Afghanistan. The flowers are bright red with five petals. After the flower is fertilized with pollen the

More information

Sexual Reproduction and Meiosis. Outline. Random?? fertilization. Chapter 13

Sexual Reproduction and Meiosis. Outline. Random?? fertilization. Chapter 13 Sexual Reproduction and Meiosis Chapter 13 Outline Reduction Division Unique Features of Meiosis Prophase I Metaphase I Completing Meiosis Second Meiotic Division Sexual Reproduction Origin and Maintenance

More information

Outline for today s lecture (Ch. 13)

Outline for today s lecture (Ch. 13) Outline for today s lecture (Ch. 13) Sexual and asexual life cycles Meiosis Origins of Genetic Variation Independent assortment Crossing over ( recombination ) Heredity Transmission of traits between generations

More information

Meiosis vs Mitosis. How many times did it go through prophase-metaphase-anaphase-telophase?

Meiosis vs Mitosis. How many times did it go through prophase-metaphase-anaphase-telophase? Meiosis vs Mitosis Mitosis produces identical copies of cells for growth or repair. Meiosis produces egg cells or sperm cells. Look at the diagram of meiosis: What happened during prophase I? How many

More information

Meiosis and Sexual Reproduction

Meiosis and Sexual Reproduction Meiosis and Sexual Reproduction Asexual Reproduction Single parent produces offspring All offspring are genetically identical to one another and to parent Produces identical somatic (body) cells Sexual

More information

SEXUAL REPRODUCTION MEIOSIS SPERMATOGENESIS & OOGENESIS 2/6/2011. Asexual Reproduction:

SEXUAL REPRODUCTION MEIOSIS SPERMATOGENESIS & OOGENESIS 2/6/2011. Asexual Reproduction: Asexual Reproduction: SEXUAL REPRODUCTON & MEOSS Many single-celled organisms reproduce by splitting, budding, parthenogenesis. Some multicellular organisms can reproduce asexually, produce clones (offspring

More information

Chapter 13: Meiosis and Sexual Life Cycles

Chapter 13: Meiosis and Sexual Life Cycles Name: AP Biology Chapter 13: Meiosis and Sexual Life Cycles 13.1 Offspring acquire genes from parents by inheriting chromosomes 1. Define the following terms: gene locus gamete male gamete female gamete

More information

Biology Kevin Dees. Chapter 13 Meiosis and Sexual Life Cycles

Biology Kevin Dees. Chapter 13 Meiosis and Sexual Life Cycles Chapter 13 Meiosis and Sexual Life Cycles Reproduction Characteristic of all living things Reproduction also involves the transmission of traits from one generation to the next; inheritance Heredity Latin

More information

Chapter 13 Meiosis and Sexual Life Cycles. Reproduction

Chapter 13 Meiosis and Sexual Life Cycles. Reproduction Chapter 13 Meiosis and Sexual Life Cycles Reproduction Characteristic of all living things Reproduction also involves the transmission of traits from one generation to the next; inheritance Heredity Latin

More information

Chapter 13: Meiosis & Sexual Life Cycles

Chapter 13: Meiosis & Sexual Life Cycles Chapter 13: Meiosis & Sexual Life Cycles What you must know The difference between asexual and sexual reproduction. The role of meiosis and fertilization in sexually reproducing organisms. The importance

More information

Meiosis. Section 8-3

Meiosis. Section 8-3 Meiosis Section 8-3 Meiosis process of nuclear division that reduces the number of chromosomes in new cells to half the number in the original cell For example, in humans, meiosis produces haploid reproductive

More information

Meiosis. Bởi: OpenStaxCollege

Meiosis. Bởi: OpenStaxCollege Meiosis Bởi: OpenStaxCollege Sexual reproduction requires fertilization, a union of two cells from two individual organisms. If those two cells each contain one set of chromosomes, then the resulting cell

More information

MGC New Life Christian Academy

MGC New Life Christian Academy A. Meiosis Main Idea: Meiosis produces haploid gametes. Key Concept: Asexual reproduction involves one parent and produces offspring that are genetically identical to each other and to the parent. Sexual

More information

Essential Knowledge: In eukaryotes, heritable information is passed to the next generation via processes that include the cell cycle and mitosis OR

Essential Knowledge: In eukaryotes, heritable information is passed to the next generation via processes that include the cell cycle and mitosis OR Essential Knowledge: In eukaryotes, heritable information is passed to the next generation via processes that include the cell cycle and mitosis OR meiosis plus fertilization Objective: You will be able

More information

CELL DIVISION: MEIOSIS

CELL DIVISION: MEIOSIS CELL DIVISION: MEIOSIS How do Organisms Reproduce? Option 1: Asexual Reproduction Can be done by a single organism without the involvement of gametes (sperm or egg) Offspring are clones of the parent,

More information

QQ 10/5/18 Copy the following into notebook:

QQ 10/5/18 Copy the following into notebook: Chapter 13- Meiosis QQ 10/5/18 Copy the following into notebook: Similarities: 1. 2. 3. 4. 5. Differences: 1. 2. 3. 4. 5. Figure 13.1 Living organisms are distinguished by their ability to reproduce their

More information

MEIOSIS LAB INTRODUCTION PART I: MEIOSIS

MEIOSIS LAB INTRODUCTION PART I: MEIOSIS MEIOSIS LAB INTRODUCTION Meiosis involves two successive nuclear divisions that produce four haploid cells. Meiosis I is the reduction division. It is this first division that reduces the chromosome number

More information

Division of sex cells

Division of sex cells Division of sex cells MEIOSIS VOCABULARY: Diploid = a cell containing TWO sets of chromosomes. one set inherited from each parent 2n (number of chromosomes) body b d cells (somatic cells) MEIOSIS VOCABULARY:

More information

Meiosis B-4.5. Summarize the characteristics of the phases of meiosis I and meiosis II.

Meiosis B-4.5. Summarize the characteristics of the phases of meiosis I and meiosis II. Meiosis B-4.5 Summarize the characteristics of the phases of meiosis I and meiosis II. Key Concepts Daughter cells Diploid Haploid Zygote Gamete Meiosis I vs. Meiosis II What You Already Know This concept

More information

Sexual Reproduction ( Cell Division ) - Chromosome # s

Sexual Reproduction ( Cell Division ) - Chromosome # s Sexual Reproduction ( Cell Division ) - Chromosome # s somatic cells: all the cells in the body except for specialized sex cells each somatic cell has a specific # of chromosomes - ( humans have 46, 23

More information

Meiosis & Sexual Reproduction

Meiosis & Sexual Reproduction Meiosis & Sexual Reproduction 2007-2008 Cell division / Asexual reproduction Mitosis produce cells with same information identical daughter cells exact copies clones same amount of DNA same number of chromosomes

More information

gametes Gametes somatic cells diploid (2n) haploid (n)

gametes Gametes somatic cells diploid (2n) haploid (n) Overview of Meiosis Meiosis is a form of cell division that leads to the production of gametes. Gametes: egg cells and sperm cells (reproductive) -contain half the number of chromosomes of an adult body

More information

Intitial Question: How can the mathematically impossible become the biologically possiblenamely,

Intitial Question: How can the mathematically impossible become the biologically possiblenamely, Intitial Question: How can the mathematically impossible become the biologically possiblenamely, a cell with 46 chromosomes splits to form tow cells each with 46 chromosomes/ This means 46 divided by 2

More information

Dr. Ramesh U4L3 Meiosis

Dr. Ramesh U4L3 Meiosis Dr. Ramesh U4L3 Meiosis The Cell Cycle and Cell Division: MEIOSIS The Cell Cycle and Cell Division KEY CONCEPT: Meiosis Halves the Nuclear Chromosome Content and Generates Diversity Organisms have two

More information

Biology Unit 6 Chromosomes and Mitosis

Biology Unit 6 Chromosomes and Mitosis Biology Unit 6 Chromosomes and Mitosis 6:1 Chromosomes DNA GENES CHROMATIN/CHROMOSOMES CHROMOSOMES/CHROMATIN are made of units called GENES. GENES are made of a compound called deoxyribonucleic acid or

More information

MEIOSIS, THE BASIS OF SEXUAL REPRODUCTION

MEIOSIS, THE BASIS OF SEXUAL REPRODUCTION MEIOSIS, THE BASIS OF SEXUAL REPRODUCTION Why do kids look different from the parents? How are they similar to their parents? Why aren t brothers or sisters more alike? Meiosis A process where the number

More information

Biology, 7e (Campbell) Chapter 13: Meiosis and Sexual Life Cycles

Biology, 7e (Campbell) Chapter 13: Meiosis and Sexual Life Cycles Biology, 7e (Campbell) Chapter 13: Meiosis and Sexual Life Cycles Chapter Questions 1) What is a genome? A) the complete complement of an organism's genes B) a specific sequence of polypeptides within

More information

Topic 8 Mitosis & Meiosis Ch.12 & 13. The Eukaryotic Genome. The Eukaryotic Genome. The Eukaryotic Genome

Topic 8 Mitosis & Meiosis Ch.12 & 13. The Eukaryotic Genome. The Eukaryotic Genome. The Eukaryotic Genome Topic 8 Mitosis & Meiosis Ch.12 & 13 The Eukaryotic Genome pp. 244-245,268-269 Genome All of the genes in a cell. Eukaryotic cells contain their DNA in long linear pieces. In prokaryotic cells, there is

More information

Sexual Reproduction. The two parent cells needed for sexual reproduction are called gametes. They are formed during a process known as meiosis.

Sexual Reproduction. The two parent cells needed for sexual reproduction are called gametes. They are formed during a process known as meiosis. Sexual Reproduction Recall that asexual reproduction involves only one parent cell. This parent cell divides to produce two daughter cells that are genetically identical to the parent. Sexual reproduction,

More information

Meiosis. Two distinct divisions, called meiosis I and meiosis II

Meiosis. Two distinct divisions, called meiosis I and meiosis II Meiosis A process in which the number of chromosomes per cell is cut in half through the separation of homologous chromosomes to form gametes, or sex cells Two distinct divisions, called meiosis I and

More information

KEY CONCEPT Cells have distinct phases of growth, reproduction, and normal functions.

KEY CONCEPT Cells have distinct phases of growth, reproduction, and normal functions. 5.1 10.1 The Cell Cell Growth Cycle KEY CONCEPT Cells have distinct phases of growth, reproduction, and normal functions. 5.1 10.1 The Cell Cell Growth Cycle Why must cells divide? Growth and Repair -

More information

CH 13 Meiosis & Sexual Life Cycles

CH 13 Meiosis & Sexual Life Cycles CH 13 Meiosis & Sexual Life Cycles AP Biology 2005-2006 Cell division / Asexual reproduction Mitosis produce cells with same information identical daughter cells exact copies clones same amount of DNA

More information

BIOLOGY. COLLEGE PHYSICS Chapter 11 MEIOSIS AND SEXUAL REPRODUCTION Chapter # Chapter Title PowerPoint Image Slideshow

BIOLOGY. COLLEGE PHYSICS Chapter 11 MEIOSIS AND SEXUAL REPRODUCTION Chapter # Chapter Title PowerPoint Image Slideshow BIOLOGY COLLEGE PHYSICS Chapter 11 MEIOSIS AND SEXUAL REPRODUCTION Chapter # Chapter Title PowerPoint Image Slideshow CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 13 Meiosis

More information

Meiosis & Sexual Reproduction

Meiosis & Sexual Reproduction Meiosis & Sexual Reproduction 2007-2008 Turn in warm ups to basket! Prepare for your test! Get out your mitosis/meiosis foldable After the test: New vocabulary! 2/23/17 Draw and label the parts of the

More information

Gametes are the reproductive cells - the egg or the sperm. Gametes.

Gametes are the reproductive cells - the egg or the sperm. Gametes. Meiosis Meiosis is the type of cell division for that produces the cells ( ) which are also known as gametes. Two important characteristics of meiosis is that it reduces the number of chromosomes to half

More information

Chapter 11 Meiosis and Sexual Reproduction

Chapter 11 Meiosis and Sexual Reproduction Chapter 11 Meiosis and Sexual S Section 1: S Gamete: Haploid reproductive cell that unites with another haploid reproductive cell to form a zygote. S Zygote: The cell that results from the fusion of gametes

More information

Unit 6 Test: The Cell Cycle

Unit 6 Test: The Cell Cycle Name Date Class Mrs. Knight Biology EHS Unit 6 Test: The Cell Cycle 1. What are the four main stages of the cell cycle (correct order)? A. G 1, S, G 0, M C. G 2, S, G 1, M B. G 1, S, G 2, M D. M, G 2,

More information

Sexual Reproduction and Meiosis. Chapter 11

Sexual Reproduction and Meiosis. Chapter 11 Sexual Reproduction and Meiosis Chapter 11 1 Sexual life cycle Made up of meiosis and fertilization Diploid cells Somatic cells of adults have 2 sets of chromosomes Haploid cells Gametes (egg and sperm)

More information

Meiosis and Sexual Reproduction Chapter 11. Reproduction Section 1

Meiosis and Sexual Reproduction Chapter 11. Reproduction Section 1 Meiosis and Sexual Reproduction Chapter 11 Reproduction Section 1 Reproduction Key Idea: An individual formed by asexual reproduction is genetically identical to its parent. Asexual Reproduction In asexual

More information

MEIOSIS. KEY CONCEPT Gametes have half the number of chromosomes that body cells have.

MEIOSIS. KEY CONCEPT Gametes have half the number of chromosomes that body cells have. MEIOSIS MEIOSIS KEY CONCEPT Gametes have half the number of chromosomes that body cells have. MEIOSIS : CELL TYPES You have Body cells and Gametes Body cells are also called somatic cells. Germ cells develop

More information

Sexual Reproduction Science 9- Mr. Klasz

Sexual Reproduction Science 9- Mr. Klasz Sexual Reproduction Science 9- Mr. Klasz Why sexual reproduction? Imagine a world where everyone was IDENTICAL. If we reproduced asexually, that would be our world Boring! Asexual Reproduction vs. Sexual

More information

CELL GROWTH AND DIVISION. Chapter 10

CELL GROWTH AND DIVISION. Chapter 10 CELL GROWTH AND DIVISION Chapter 10 Cell division = The formation of 2 daughter cells from a single parent cell Increases ratio of surface area to volume for each cell Allows for more efficient exchange

More information

Asexual vs. Sexual. Biology 3201 Unit II Reproduction How Reproductive Cells are Produced. two parents offspring is unique

Asexual vs. Sexual. Biology 3201 Unit II Reproduction How Reproductive Cells are Produced. two parents offspring is unique Biology 3201 Unit II Reproduction 14.2 How Reproductive Cells are Produced Asexual vs single parent offspring identical to parent parent passes on ALL its genes results in a clone Sexual two parents offspring

More information

Biology. Chapter 12. Meiosis and Sexual Reproduction. Concepts and Applications 9e Starr Evers Starr. Cengage Learning 2015

Biology. Chapter 12. Meiosis and Sexual Reproduction. Concepts and Applications 9e Starr Evers Starr. Cengage Learning 2015 Biology Concepts and Applications 9e Starr Evers Starr Chapter 12 Meiosis and Sexual Reproduction 12.1 Why Sex? In asexual reproduction, a single individual gives rise to offspring that are identical to

More information

BIOLOGY - CLUTCH CH.13 - MEIOSIS.

BIOLOGY - CLUTCH CH.13 - MEIOSIS. !! www.clutchprep.com CONCEPT: SEXUAL REPRODUCTION Meiosis is a special type of cell division that occurs as part of the sexual life cycle of eukaryotes Sexual reproduction parents donate a unique mixture

More information

Meiosis and Sexual Reproduction. Chapter 11 Loulousis

Meiosis and Sexual Reproduction. Chapter 11 Loulousis Meiosis and Sexual Reproduction Chapter 11 Loulousis Meiosis - Phenomena Parents can produce many types of offspring. Families will have resemblances, but no two are exactly alike Objectives Compare and

More information

Typical Life Cycle of Algae and Fungi. 5 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Typical Life Cycle of Algae and Fungi. 5 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Module 3B Meiosis and Sexual Life Cycles In this module, we will examine a second type of cell division used by eukaryotic cells called meiosis. In addition, we will see how the 2 types of eukaryotic cell

More information

11-4 Meiosis Meiosis. Slide 1 of 35. Copyright Pearson Prentice Hall

11-4 Meiosis Meiosis. Slide 1 of 35. Copyright Pearson Prentice Hall 11-4 Meiosis 1 of 35 Each organism must inherit a single copy of every gene from each of its parents. Gametes are formed by a process that separates the two sets of genes so that each gamete ends up with

More information

9-4 Meiosis Meiosis. Slide 1 of 35

9-4 Meiosis Meiosis. Slide 1 of 35 9-4 Meiosis 11-4 Meiosis 1 of 35 11-4 Meiosis Each organism must inherit a single copy of every gene from each of its parents. Gametes are formed by a process that separates the two sets of genes so that

More information

MEIOSIS DR. A. TARAB DEPT. OF BIOCHEMISTRY HKMU

MEIOSIS DR. A. TARAB DEPT. OF BIOCHEMISTRY HKMU MEIOSIS DR. A. TARAB DEPT. OF BIOCHEMISTRY HKMU Meiosis is a special type of cell division necessary for sexual reproduction in eukaryotes such as animals, plants and fungi The number of sets of chromosomes

More information

Meiosis. Two distinct divisions, called meiosis I and meiosis II

Meiosis. Two distinct divisions, called meiosis I and meiosis II Meiosis A process in which the number of chromosomes per cell is cut in half through the separation of homologous chromosomes to form gametes, or sex cells Two distinct divisions, called meiosis I and

More information

What is Mitosis? What is the purpose of Mitosis? Growth Repair Asexual reproduction What is the ultimate result of Mitosis?

What is Mitosis? What is the purpose of Mitosis? Growth Repair Asexual reproduction What is the ultimate result of Mitosis? Sexual Reproduction What is Mitosis? What is the purpose of Mitosis? Growth Repair Asexual reproduction What is the ultimate result of Mitosis? http://www.youtube.com/watch?v=1fyfdfdrymq Somatic cells

More information

biology Slide 1 of 35 End Show Copyright Pearson Prentice Hall

biology Slide 1 of 35 End Show Copyright Pearson Prentice Hall biology 1 of 35 Do Now: Turn in mitosis worksheet Write down your homework http://www.richannel.org/collection s/2013/chromosome#/chromosome -2 http://www.richannel.org/collection s/2013/chromosome#/chromosome

More information

Meiosis * OpenStax. This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0.

Meiosis * OpenStax. This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0. OpenStax-CNX module: m45466 1 Meiosis * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section, you will be able to: Abstract

More information

Warm up. sexual life cycle. 1. Compare sexual to asexual reproduction. 2. What are homologous chromosomes?

Warm up. sexual life cycle. 1. Compare sexual to asexual reproduction. 2. What are homologous chromosomes? Warm up 1. Compare sexual to asexual reproduction. 2. What are homologous chromosomes? 1. Describe what major processes occur during a sexual life cycle. Warm up 1. Describe what occurs during crossing

More information

Cell division / Asexual reproduction

Cell division / Asexual reproduction Cell division / Asexual reproduction Mitosis produces cells with same information identical daughter cells exact copies clones same amount of DNA same number of chromosomes same genetic information Asexual

More information

CELL REPRODUCTION VOCABULARY- CHAPTER 8 (33 words)

CELL REPRODUCTION VOCABULARY- CHAPTER 8 (33 words) CELL REPRODUCTION- CHAPTER 8 CELL REPRODUCTION VOCABULARY- CHAPTER 8 (33 words) 1. Chromosome 2. histone 3. chromatid 4. Centromere 5. chromatin 6. autosome 7. Sex chromosome 8. homologous chromosome 9.

More information

Meiosis produces haploid gametes.

Meiosis produces haploid gametes. Section 1: produces haploid gametes. K What I Know W What I Want to Find Out L What I Learned Essential Questions How does the reduction in chromosome number occur during meiosis? What are the stages of

More information

Bell Ringer 02/02/15. Match the stages of mitosis to their descriptions and pictures.

Bell Ringer 02/02/15. Match the stages of mitosis to their descriptions and pictures. Match the stages of mitosis to their descriptions and pictures. 1. Nuclear membrane disappears and chromosomes condense 2. Nuclear membrane reappears and cells begin to fully separate Bell Ringer 02/02/15

More information

Honors Biology Test Chapter 8 Mitosis and Meiosis

Honors Biology Test Chapter 8 Mitosis and Meiosis Honors Biology Test Chapter 8 Mitosis and Meiosis 1. In mitosis, if a parent cell has 16 chromosomes, each daughter cell will have how many chromosomes? a. 64 b. 32 c. 16 d. 8 e. 4 2. Chromatids that are

More information

Bio 111 Study Guide Chapter 13 Meiosis and Life Cycles

Bio 111 Study Guide Chapter 13 Meiosis and Life Cycles Bio 111 Study Guide Chapter 13 Meiosis and Life Cycles BEFORE CLASS: Reading: Read the whole chapter from p. 252-265. Pay special attention to Figure 13.8, as it is such a good depiction of meiosis. Figure

More information